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A CFD-based method for slurry erosion prediction

Gianandrea Vittorio Messa, Stefano Malavasi

DICA, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

Abstract

The numerical prediction of the impact erosion produced by slurries is partic-

ularly challenging from the modeling point of view, not only due to the com-

plex interactions between the phases, but also because self-induced geometry

changes can influence the course of the wear process. The usual methodol-

ogy for impact erosion estimation, which is based on the Eulerian-Lagrangian

description of the slurry flow followed by the application of a single-particle

erosion model to each particle-wall impingement, may be able to reproduce

the complex physics underlying slurry erosion only at the price of complex

algorithms and heavy computation, which is unaffordable in practical appli-

cations. In order to overcome these difficulties, an alternative approach was

proposed, which involved the steady-state simulation of the slurry flow by an

Euler-Euler model followed by the repeated calculation of individual particle

trajectories in the proximity of the solid walls and the continuous update of

the wear profile. The improved accuracy obtained in the simulation of sev-

eral abrasive jet impingement experiments reported in the literature make

the application of this method to more complex flows very promising.

Keywords: Abrasive jet testing, Computational fluid dynamics, Mixed

Euler-Euler \ Euler-Lagrange approach, Impact wear, Slurry erosion
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Nomenclature

A Cell surface area (L2)

Ã,B̃,C̃,D̃ coefficients in Eq. 8 (-)

B width of the specimen (L)

C1,C2 coefficients in Eq. 12 (-)

Cd drag coefficient (-)

Cl lift coefficient (-)

CM solid mass fraction at nozzle exit (-)

Cμ dimensionless parameter (-)

Cvm virtual masss coefficient (-)

D component of Ṁ due to phase diffusion (MT−1)

d nozzle diameter (L)

dp particle equivalent diameter (L)

d+p dimensionless particle size (-)

EC cutting wear related term in Eq. 12 (M)

ED deformation wear related term in Eq. 12 (M)

Ep mass removed by a single impact (M)
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Ė erosion rate (MT−1)

Ėtot erosion rate of the whole wall boundary (MT−1)

ERint integral erosion ratio (-)

ERref reference integral erosion ratio (-)

F component of Ṁ due to advection (MT−1)

Fs particle shape related coefficient (-)

H nozzle-to-specimen distance (L)

Hν Vickers hardness of target material (ML−1T−2)

I turbulence intensity (-)

K coefficient in Eq. 8 (-)

k turbulent kinetic energy of the fluid phase (L2T−2)

ks turbulent kinetic energy of the solid phase (L2T−2)

L length of the specimen (L)

le eddy size (L)

Ṁ solid mass flux (MT−1)

M impinging solid mass flux (MT−1)

mp particle mass (M)
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ṁp particle mass flow rate (MT−1)

n number of Lagrangian particles (-)

NT number of timesteps (-)

P average pressure (ML−1T−2)

r radial coordinate (L)

Δr Cell size along radial direction (L)

Rem mixture Reynolds number, Eq.10 (-)

Rep particle Reynolds number (-)

ss friction factor of the solid phase (-)

T testing time (T)

t physical time (T)

t̃ Lagrangian time (T)

te eddy lifetime (T)

tr particle transit-time (T)

Δt timestep size (T)

Utsh threshold velocity for deformation wear (LT−1)

Uz component of U along direction z (LT−1)
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ṽ0,r component of ṽ0 along direction r (LT−1)

ṽ0,z component of ṽ0 along direction z (LT−1)

Vjet jet velocity (LT−1)

Vr component of V along direction r (LT−1)

Vz component of V along direction z (LT−1)

Wp particle volume (L3)

y+ dimensionless wall distance of near-wall nodes (-)

z axial coordinate (L)

z′ coordinate in Figs. 9 and 15 (L)

Δz Cell size along axial direction (L)

Greek Symbols

β coefficient in Eq. 11 (-)

δ thickness of the Lagrangian layer (L)

ε turbulence dissipation rate (L2T−3)

η erosion depth (L)

η̇ penetration rate (LT−1)

ηmax maximum erosion depth (L)
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θp,w particle impact angle (-)

μ dynamic viscosity of the fluid phase (ML−1T−1)

μm friction, mixture viscosity-related parameter (ML−1T−1)

μs dynamic viscosity of the solid phase (ML−1T−1)

μt eddy viscosity of the fluid phase (ML−1T−1)

μt,s eddy viscosity of the solid phase (ML−1T−1)

ξr, ξz random normal scalars (-)

ρf fluid density (ML−3)

ρp particle density (ML−3)

ρw target material density (ML−3)

σφ turbulent Schmidt number for volume fractions (-)

τw,f wall shear stress of the fluid phase (ML−1T−2)

τw,s wall shear stress of the solid phase (ML−1T−2)

Φ average volume fraction of the solid phase (-)

φ’ fluctuating volume fraction of the solid phase (-)

ϕ specimen shape correction factor (-)

ψ particle spherical coefficient (-)
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Vectors

M interfacial momentum transfer term (ML−2T−2)

N vector of standard normal variables (-)

n unit normal vector (-)

U average velocity vector of the fluid phase (LT−1)

u velocity vector of the fluid phase (LT−1)

u′ fluctuating velocity vector of the fluid phase (LT−1)

V average velocity vector of the solid phase (LT−1)

V// component of V parallel to the wall at the near-wall nodes (LT−1)

v′ fluctuating velocity vector of the solid phase (LT−1)

ṽ particle velocity vector (LT−1)

ṽ0 initial particle velocity vector (LT−1)

vp,w particle impact velocity vector (LT−1)

x̃ particle position vector (L)

Subscripts and superscripts

∗ interpolated at the center of the interface element

〈...〉 average over all impingements
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→ j = 1...NT within time interval [(j − 1)Δt, jΔt]

j = 1...NT at time jΔt

T at time T

@p interpolated at particle position

el,i of generic interface element

el,w of generic wall element

in at inlet section

1. Introduction

The erosion of the surfaces exposed to the impingements of solid particles

in slurries is a very serious concern in many engineering fields, such as oil

and gas and mining, as it causes downtime, loss of income and high repair

costs. For some decades, the effort of researchers has been directed to the

development of models for predicting the impact erosion, which, when applied

by engineers, become a very useful tool for improving design and management

procedures.

Erosion is traditionally estimated by means of single-particle erosion mod-

els, which treat the wear process in terms of the interaction between each

abrasive particle and the target surface and express the mass of material

removed by a particle hitting a surface, Ep, as a function of the particle

mass, mp, the modulus of the particle impact speed vector, |vp,w|, the parti-
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cle impact angle, θp,w, and some properties of the materials involved in the

erosion process (Figure 1). A large number of single-particle erosion models

have been proposed in the literature [1, 2], and, in most cases, they are em-

pirical or semi-empirical algebraic expressions with the same mathematical

structure. The fluid dynamic characteristics of the abrasives at the impact

stage, i.e. |vp,w| and θp,w, are obtained by two-phase fluid-dynamic models

based on the Eulerian-Lagrangian approach, in which the fluid flow is solved

in an Eulerian framework and the solid phase is simulated by tracking the

trajectories of a certain number of particles [3].

The above mentioned approach has been used, with different possible

outcomes, to predict several gas-solid and liquid-solid erosion processes, from

simple (i.e. abrasive jet impingement tests, as reviewed in [4]) to complex

(i.e. those occurring in a valve [5–12]). However, its application to slurry

erosion is particularly difficult because of two reasons.

First, the solid content of slurries is generally high enough for them to

behave as dense. This means that the influence of the particles on the fluid

flow (two-way coupling interactions) and particle-particle collisions and con-

tacts (four-way coupling interactions) are important. Even if numerical tech-

niques are available to handle these effects in an Eulerian-Lagrangian frame-

work [13], the high computational cost results in the practical impossibility

of applying them to many engineering systems. In support of this claim,

it is noted that the few attempts in this direction concerned rather simple

calculation domains or flows in which four-way coupled effects were limited

to small regions of space [8, 14, 15]. Actually, peculiar features character-

ize the erosion produced by massive amounts of particles. For instance, a
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Figure 1: An eroding particle hitting a surface.

decrease in the integral erosion ratio, i.e. the ratio of the eroded mass to

the mass of abrasives, with increasing solid concentration has been observed

in several abrasive jet impingement experiments [16–22], and interpreted as

a consequence of the protective action that the rebounding particles exert

on the surface through their interaction with the incoming ones (shielding

effect). Numerical simulations carried out by Mansouri et al. [21] and Mah-

davi et al. [22] showed that, in case of dense flows, the application of a

decoupled, steady-state Eulerian-Lagrangian model, in which the two- and

four-way coupling interactions between the phases are neglected, produces

erosion estimates in disagreement with the experimental evidence, besides

being theoretically questionable.

Second, the changes in the flow field caused by the removal of material

from the impinged surfaces are likely to play a significant role in slurry ero-

sion. The paper of Nguyen et al. [23] demonstrated that, even for flows with

low solid content, self-induced geometry changes can significantly affect the

development of the erosion process in abrasive jet impingement tests, yield-
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ing a decrease in the integral erosion ratio with time. At a different scale, the

same effect was observed in abrasive slurry-jet micro-machining (ASJM) pro-

cesses. In ASJM, a slurry jet consisting of water and particles is used to cut

and mill a variety of materials, creating micro-channels and holes. In many

ASJM experiments [24–28], the depth of micro-machined channels increased

less-then-linearly with the number of machining passes. This behavior was

interpreted as a consequence of the changes in the slurry flow field occurring

as the channels become deeper. It is noted that, even if all the aforemen-

tioned studies refer to slurries with low solid content, the presence of high

solid concentrations is likely to further enhance the importance of geometry

changes, since dense slurries are expected to cause greater erosion depths for

similar testing times.

Conventional CFD-based erosion modeling in oil and gas and mining ap-

plications assume a constant erosion rate and unchanging surface profile.

Such hypothesis, which is reasonable for shallow erosion scars, can lead to

inaccurate predictions for higher wear depths. This is evident from the al-

ready mentioned abrasive jet test results of Nguyen et al. [23], but it was also

focus of discussion in the papers by Wallace et al. [7], McLaury et al. [29],

and Wong et al. [30], concerning more complex flows. Similarly, Nouraei et

al. [24] adapted for use in ASJM a surface evolution model initially developed

for abrasive air jet micro-machining and assuming constant erosion rate in

the centerline of the wear scar [31]. The authors reported good agreement

with their ASJM experiments unless the aspect ratio of the machined channel

(depth/width) exceeds a threshold value, thereby assessing the applicability

of the model to shallow channels.
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Relatively few attempts have been reported to account for geometry

changes in erosion prediction models. Solnordal and Wong [32] proposed

a particle-only model which assumes the motion of the particles to be com-

pletely driven by inertia and updates the wear profile based on changes in

the impact locations and impact angles. Comparison with different exper-

iments revealed the effectiveness of this approach for dilute gas-solid flows,

where fluid-particle and particle-particle interactions can be ignored. The

particle-only model was then successfully applied by Schrade et al. [33] to

predict the erosive change of shape of the leading edge of compressor blades.

Yaobao et al. [34] studied how the fluid dynamic characteristics of hydraulic

spool valves are affected by solid particle erosion. The authors developed

a predictive model in which the Eulerian-Lagrangian equations are repeat-

edly solved in a domain that is updated according to the development of

the wear profile. The problem was modeled as two-dimensional axisymmet-

ric, and the authors obtained good agreement between numerical predic-

tions and experimental data regarding both a laboratory test and a field

case. Rizkalla and Fletcher [35] proposed a computational model for slurry

abrasion-erosion which takes self-induced geometry changes into account by

iteratively solving the two-phase flow equations. Unlike all previous ones, in

this study the slurry flow is simulated using an Euler-Euler model, in which

both phases are interpreted as interpenetrating continua and solved in an

Eulerian, cell-based framework [3]. The model was employed to predict the

erosion of small converging-diverging channels and, after calibration of some

model’s constant, the authors reported good agreement with their experi-

ments. They also underlined that the iterative update of the flow field is
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necessary to achieve precise prediction of the amount of material removed by

erosion. In a recent work [36], the authors of the present paper proposed a

numerical strategy to account for self-induced geometry changes in the esti-

mation of the erosion produced by a dilute slurry jet. The slurry flow was

computed only once by a one-way coupled, steady-state Eulerian-Lagrangian

model, and the evolution of the wear profile was obtained by integrating a

simplified formulation of the particle Lagrangian equation of motion in the

erosion hole. Finally, it is noted that surface evolution models accounting for

geometry modifications have also been developed for application to ASJM.

Haghbin et al. [26] applied empirical correction factors to a solution for shal-

low channels in order to extend its applicability to deeper channels. To the

same purpose, Kowsari et al. [28] proposed two modeling strategies, the for-

mer involving a CFD simulation of the flow after each machining pass and

the latter employing an approximate, empirically-calibrated model for the

development of the stagnation zone.

In the present work, a numerical methodology was developed to attain

improved prediction of slurry erosion with, at the same time, sufficiently low

computational cost to be applicable to real-case geometries. As in [36], the

slurry flow field was calculated only once, but an Euler-Euler model was used

here to capture all the interactions between the phases occurring in dense

flows without the need of resorting to computationally expensive four-way

coupled Eulerian-Lagrangian models. A number of individual particles were

then released close to the solid walls, and their trajectories were tracked by

numerically solving a particle Lagrangian equation of motion unless they

impinged against the boundary of the erosion hole. After applying a single-
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Figure 2: Sketch of a normal abrasive jet impingement test.

particle erosion model to each particle-wall impingement, the eroded surface

was displaced and new trajectories were tracked, reiterating the process over

the whole period of exposure to erosion. Specific assumptions regarding

the slurry flow in the erosion hole (which did not require any calibration

with respect to experimental data) avoided the need for repeated and time-

consuming solution of the Euler-Euler equations.

The proposed methodology was applied to the already mentioned bench-

mark case of abrasive jet impingement test and, compared to the steady-

state models commonly used in the engineering practice, it provided im-

proved agreement with the experimental data obtained by several experi-

ments [18, 22, 23, 37] for different flow conditions. As sketched in Fig. 2,

a submerged slurry jet is normally directed to the eroding specimen in all

test cases, which differ for the nozzle diameter, d, the nozzle-to-specimen

distance, H, the jet velocity, Vjet, the particle characteristics (density, size,
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and shape), the solid mass fraction at the nozzle exit, CM , and the testing

time, T . The significance of the selected experiments for validation purposes

is evidenced by the wide range of variability of CM (1% to 25%) and T (30

min to 6 h).

The remainder of this paper is divided in four sections, followed by the

conclusions. The first one describes the Euler-Euler model employed for

simulating the slurry flow, together with the computational domain, the

boundary condition, and the solution strategy. The second one illustrates

the developed methodology for estimating the dynamic evolution of the ero-

sion process starting from the Euler-Euler solution. The third one focuses on

the application of the methodology to reproduce abrasive jet impingement

experiments reported in the literature, comparing the numerical predictions

to the experimental data. Finally, a discussion of the obtained results is

provided in the fourth section.

2. Mathematical models

2.1. The Euler-Euler model

As already mentioned, in the Euler-Euler models the flow of the ensemble

of particles, referred to as “solid phase”, is modeled in Eulerian framework

and solved coupled with that of the carrier fluid phase. In the present work,

use was made of the extension of the Inter-Phase Slip Algorithm (IPSA) of

Spalding [38] to slurry flows developed by the authors in previous work [39,

40]. The flows were simulated as statistically steady. Therefore, the mass

and momentum conservation equations for the fluid and the solid phases are,

respectively,
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∇ · [ρf (1− Φ)U]−∇ · (ρfφ′u′) = 0 (1)

∇ · (ΦρpV) +∇ · (ρpφ′v′) = 0 (2)

∇ · [ρf (1− Φ)UU]−∇ · (ρfφ′u′U)
(3)

−∇ · [(1− Φ) (μ+ μt)∇U] = − (1− Φ)∇P +M

∇ · (ρpΦVV) +∇ · (ρpφ′v′V)−∇ · [Φ (μs + μt,s)∇V] = −Φ∇P −M (4)

where: ρf and ρp are the densities of the fluid and the particles, respectively;

Φ and φ′ are the local average and fluctuating volume fraction of the solid

phase; U, u′, V, and v′ are the local average and fluctuating velocity vector

of the fluid and solid phases, respectively; P is the average pressure, shared

by the phases; μ, μs, μt, μt,s are the dynamic and eddy viscosities of the fluid

and solid phases, respectively; and M is the interfacial momentum transfer

term. The correlations between the fluctuating velocities and the fluctuating

volume fractions are modeled by means of the eddy diffusivity hypothesis, as

follows:

φ′u′ = φ′v′ = − μt

ρfσφ
∇Φ (5)

in which σΦ is the turbulent Schmidt number for volume fraction, which is

set to 0.7.

The dynamic viscosity of the solid phase, μs, accounting for the inter-

granular stresses among the particles, is evaluated by assuming a linear re-

lationship between μ, μs, and the parameter μm, which will be defined later:

μm = μ (1− Φ) + μsΦ (6)
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The interfacial momentum transfer term M quantifies the momentum

transfer between the phases, and it includes drag, lift, and virtual mass

forces:

M =
3

4dp
ρfΦCd|V −U| (V −U) +

6

π
ClρfΦ (V −U)× (∇×U) (7)

+ CvmρfΦ [(V · ∇)V − (U · ∇)U]

where dp is the particle equivalent diameter (that is, the diameter of a sphere

of equivalent volume), and Cd, Cl, and Cvm are the drag, lift, and virtual

mass coefficients, respectively. Both Cl and Cvm were set to 0.5, whilst the

drag coefficient has been evaluated by means of the following correlation,

which, as explained below, can be regarded as a generalization of the Haider

and Levenspiel formula [41] to multiple particles:

Cd =
24

Rem

(
1 + ÃReB̃m

)
+

C̃

1 +
D̃

Rem

(8)

where:

Ã = exp
(
2.33− 6.46ψ + 2.45ψ2

)
(9a)

B̃ = 0.096 + 0.557ψ (9b)

C̃ = exp
(
4.91− 13.89ψ + 18.42ψ2 − 10.26ψ3

)
(9c)

D̃ = exp
(
1.47 + 12.26ψ − 20.37ψ2 + 15.89ψ3

)
(9d)

In the equation above, the symbol ψ stands for the particle spherical coef-

ficient, i.e. the ratio of the surface area of a volume equivalent sphere to

the surface area of the considered particle. In Messa and Malavasi [4], we

proposed the following classification (which is adopted also in this work),
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namely ψ equal to 0.66, 0.76, and 0.86 for fully-sharp, semi-rounded, and

fully-rounded particles, respectively. One of the peculiar features of the

Euler-Euler model employed lies in the fact that, in the drag coefficient cor-

relation, the particle Reynolds number Rep = ρfdp|V −U|/μ is replaced by

a mixture Reynolds number, defined as

Rem =
ρfdp|V −U|

μm

(10)

The parameter μm, already appearing in Eq. 6, lacks of a precise physical

characterization, but it essentially accounts for the additional resistance that

a particle faces due to the presence of other particles. In turn, the evaluation

of μm is made by employing the following equation, analog of the compre-

hensive correlation proposed by Cheng and Law [42] for the viscosity of a

mixture, and, for this reason, μm is referred to as friction, mixture-viscosity

related parameter:

μm = μ · exp
{
2.5

β

[
1

(1− Φ)β
− 1

]}
(11)

where β is a numerical coefficient depending on the shape of the particles,

which was suggested as 3.0 for sand grains. It is noted that, when Φ → 0,

then μm → μ and, therefore, Rem reduces to the usual particle Reynolds

number, Rep.

The eddy viscosity of the fluid, μt, is obtained by means a two-phase

extension of the k − ε RNG turbulence model for high Reynolds number

flows of Yakhot et al. [43], which is available as option in the used CFD

code [44]. The eddy viscosity of the solid phase, μt,s, is evaluated from μt by

means of the algebraic correlation proposed by Issa and Oliveira [45], that is

μt,s = μtρp/ρf .
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The Euler-Euler model described above has been developed within the

authors’ research group to simulate the slurry flows encountered in hydro-

transport processes. Extensive comparison against experiments have demon-

strated that, with low computational burden, the model is capable in cor-

rectly predicting the main features of fully-suspended slurry flows in straight

pipes and fittings [39, 40, 46]. However, despite relying on some physical

basis, it is primarily semi-empirical and practical in nature. Past research

has suggested that the evaluation of Cd with respect to Rem is an effective

way to reproduce the phenomena occurring in regions with moderate or high

solid volume fraction, where two- and four-way coupling interactions between

the phases are important. However, the meaning of the parameter μm is not

completely clear. More generally, terms such as the viscosities and the pres-

sure in the momentum equation of the solid phase are not yet provided a

clear physical characterization, nor they are associated to a precise physical

mechanism. Research is still going on in this direction. Due to its proven

reliability and efficiency, the Euler-Euler model is used in this study for the

calculation of the slurry flow field produced by the impinging jet. However,

note that the proposed erosion prediction methodology may be extended for

coupling with different two-phase models as well.

2.2. Erosion model

A single-particle erosion model was needed for estimating the loss of ma-

terial starting from the solution of the Euler-Euler model. This was achieved

based on the method explained in detail in Section 3.1. In this study, the

mechanistic erosion model developed by Arabnejad and co-workers [47–49]

was employed, referring to the formulation reported in [48]. The mechanistic
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model attributes the loss of material produced by an impact, Ep, to cutting

and deformation mechanisms, and the erosion equation is:

Ep = Fs (EC + ED) (12)

where EC and ED are the mass of material removed due to cutting and

deformation wear, respectively, and Fs is a numerical coefficient related to

particle shape, being suggested to 1, 0.53, and 0.2 for sharp, nearly-rounded,

and fully-rounded grains, respectively [50]. The terms EC and ED are calcu-

lated as:

EC =

⎧⎪⎨
⎪⎩
C1mp

|vp,w|2.41 sin θp,w [2K cos θp,w − sin θp,w]

2K2
if tan θp,w < K

C1mp
|vp,w|2.41 cos2 θp,w

2
otherwise

(13)

and

ED =

⎧⎪⎨
⎪⎩
C2mp (|vp,w| sin θp,w − Utsh)

2 if|vp,w| sin θp,w > Utsh

0 otherwise

(14)

respectively. The parameters C1, C2, K, and Utsh are empirical, material-

dependent constants. Furthermore, Utsh depends also on particle size, scaling

with d
−3/2
p [47]. It is noted that, according to Eq. 14, deformation wear occurs

only if the component of the impact velocity normal to the wall exceeds the

threshold value Utsh.

2.3. Computational domain and boundary conditions

The axisymmetry of the geometry and the mean flow was exploited by

solving only over a thin slice of the jet with one cell in the azimuthal direction.

The computational domain is depicted in Fig. 3 together with the boundary

conditions, which are inlet, outlet, solid walls, and axis of symmetry.
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Figure 3: Computational domain and boundary conditions.

At the inlet, the mean axial velocities of both phases, U in
z and V in

z , the

mean volume fraction of the solid phase, Φin, the turbulent kinetic energy of

the fluid, kin, and its dissipation rate, εin, are imposed. All these quantities

were assumed uniformly distributed over the whole boundary, and calculated

as follows: U in
z and V in

z were both set equal to the mean jet velocity; Φin was

either the abradant volumetric concentration at the nozzle exit or that in the

reservoir tank, according to the information provided by the experimenters;

and kin and εin were estimated as

kin =
(
IU in

z

)2
(15)

and

εin = C3/4
μ

(
kin

)3/2
0.1d

(16)

respectively, where I = 0.05 is the turbulence intensity, and Cμ = 0.0845.
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At the outlet boundaries, the mean pressure was specified as zero, and

the normal gradients for all dependent variables are zero. The solid volume

fraction and mass outflow of the solid phase result as part of the overall

solution, but the solid phase was allowed to leave the domain only through

a layer of the “Outlet 2” surface adjacent to the specimen, in order to avoid

physically inconsistent Φ-distributions.

On the wall boundaries, the equilibrium log-law wall function [44] was

employed to evaluate the average fluid velocity parallel to the wall at the

first grid nodes, and the turbulent kinetic energy, and its dissipation rate

in the near-wall cells. Specific tests showed that replacing the equilibrium

log-law with its generalization to non-equilibrium conditions [44] produced

no detectable changes in the erosion predictions.

In the lack of a well-established and universally accepted wall boundary

condition for the solid phase in the Eulerian-Eulerian framework, use was

made of the boundary condition proposed in Messa and Malavasi [40] and

successfully validated for fully-suspended slurry flows in horizontal pipes.

Such condition consists of imposing, in the near wall cells, a solid wall shear

stress, τw,s equal to:

τw,s = ρpss|V//|V// (17)

where V// is the average mean solid velocity parallel to the wall at the first

grid node, and ss is a friction factor of the solid phase. All the mathematical

details of the boundary condition are reported in [40] and here only its basic

idea is presented. Basically, ss is differently calculated according to the local
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dimensionless particle size, d+p , defined as:

d+p =
ρfdp

√
τw,f/ρf
μ

(18)

where τw,f is the fluid wall shear stress. For d+p < 30, ss is calculated by

a solid-phase analog of the equilibrium log-law wall function for smooth

walls [44]. For d+p > 50, ss is evaluated by a local formulation of the semi-

empirical correlation of Ferre and Shook for Bagnold’s stress in the inertial

regime of sheared annular flows [51], and calibrated using pressure-drop data

for slurry flows in pipes. Within the intermediate range 30 < d+p < 50, the

friction factor is a linear combination of the two expressions.

Finally, at the axis of symmetry, the normal gradients for all dependent

variables are zero, so that a zero-flux condition is applied along such bound-

ary.

2.4. Solution strategy

The commercial CFD code PHOENICS version 2014 was employed for the

numerical solution of the finite volume analog of the mathematical model de-

scribed above. This required adding user-defined functions and subroutines

for implementation of specific constitutive equations and boundary condi-

tions. The calculations were performed following the elliptic-staggered for-

mulation in which volume fractions, scalar variables and pressure are stored

at the grid nodes, whilst the velocities are stored at the cell faces. Simulation

was steady-state, thereby converging to the steady-state solution without the

need for the user to specify a timestep. Central differencing was employed for

the diffusion terms, with harmonic averaging for diffusion coefficients, whilst

the convection terms were discretized using the hybrid differencing scheme
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of Spalding. In PHOENICS, the finite volume equations are solved itera-

tively by means of the SIMPLEST and IPSA algorithms of Spalding [38].

The calculation procedure is organized in a slab-by-slab manner along the z-

direction, in which all the dependent variables are solved at the current slab

before the routine moves to the next slab. The slabs are thus visited in turn,

and the complete series of slab visits is referred to as a sweep through the

solution domain. Multiple sweeps are required until convergence is attained,

and the pressure equation is solved in a simultaneous whole-field manner at

the end of each sweep. The settings related to the solution of the linear

system of equations were the default ones in PHOENICS, which are well

documented in [44].

The numerical solution procedure requires appropriate relaxation to the

field variables to achieve convergence. To this purpose, use was made of the

CONWIZ utility [44], in which the under-relaxation settings are automati-

cally set by PHOENICS. The solver was run until the sum of the absolute

residual errors on the whole solution domain is less than 0.01% of reference

quantities determined by the code based on the total inflow of the variable

in question. An additional requirement was that the values of the monitored

dependent variables at a selected location do not change more than 0.001%

between consecutive iteration cycles. The maximum number of sweeps was

set to 10000, enough for attaining convergence for all testing cases.

The domain was discretized by means of a structured mesh in polar co-

ordinates. The axisymmetry of the problem was exploited by setting one

unit cell in the azimuthal direction, and, therefore, the computational grid

was defined only in the r − z plane. With the Euler-Euler model, mesh
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requirements go beyond those for single-phase flow simulations, which are

grid-independence and consistency with the wall treatment approach. In

fact, the average process at the basis of the flow equations implies that the

dimension of the computational cells must be representative of the local be-

havior of the ensemble of particles. The influence of the cell size on the

erosion predictions was the objective of a detailed analysis, reported in Sub-

section 4.1. In the region between the nozzle exit and the target wall, the cells

were square in shape with edges equal to
√
2dp. Upstream the nozzle exit,

where no high resolution is required and the number of cells has practically

no effect on the wear results, in order to reduce the simulation time the mesh

volumes were elongated along the z direction and their axial edges followed a

power law distribution to avoid sudden changes in size. The overall number

of mesh elements was dependent on both the geometrical characteristics of

the nozzle-specimen system and the particle size, ranging from about 6000

to about 30000 for the different simulations.

The erosion calculations were performed by the in-house E-CODE, a

MATLAB library developed within the authors’ research group for wear esti-

mation in complex geometries with multiple components. The methodology

described in this paper was implemented in additional subroutines which

expand the applicability of the library. Details about the followed solution

procedure will be given in the next section.

3. Methodology for erosion prediction

The proposed strategy for attaining erosion estimates from the solution

of the Euler-Euler model is described. Particularly, two separate sections
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illustrate the key features, namely how to couple the fluid dynamic solution

with a single-particle erosion model, and how to account for the self-induced

geometry changes.

3.1. Coupling between Eulerian fluid-dynamic solution and single-particle

erosion model

As already mentioned, the Euler-Euler model allows capturing all the

interactions occurring in slurry flows avoiding the computational demand of

four-way coupled Eulerian-Lagrangian simulations, which would be unafford-

able for many engineering applications. However, for their inherent nature,

single-particle erosion models are based on a Lagrangian framework and,

therefore, their coupling with an Eulerian description of the solid phase is

not straightforward. In order to overcome this issue, Messa et al. [52] intro-

duced in the Euler-Euler domain a number of subdomains, in close position

to the erosion hotspots, where a Lagrangian tracking of computational par-

ticles was performed and wear estimation could be obtained by employing

single-particle erosion models. In this work, such mixed approach was taken

to the limit by reducing the Lagrangian subdomain to a small layer adjacent

to the entire wall boundary, referred to as “Lagrangian layer”. The thick-

ness of the Lagrangian layer, δ, does not have a precise physical meaning,

and its value was assessed on the grounds of consistency analyses (that is, by

demonstrating that further increase in δ did not produce appreciable changes

in the erosion predictions). This will be discussed in Section 4.1.

For simplicity of exposure, and without loss of generality, the method-

ology will be illustrated making reference to a 2D case in the r − z plane,

shown in Fig. 4(a) and consistent with the computational domain in Fig. 3.
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Figure 4: A simple two-dimensional case: (a) computational mesh, Lagrangian layer, and

key geometrical parameters; (b) key fluid dynamic parameters
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Two regular plane grids normal to the z direction are generated by project-

ing the CFD mesh on (i) the interface between the Lagrangian layer and the

remainder of the domain and (ii) the wall boundary. Be Ael,i the surface area

of a generic cell of the interfacial plane grid (for an axisymmetrical domain,

Ael,i ≈ 2πrel,iΔrel,i). Computational particles were released from the cell,

which acts as the inlet section in an Eulerian-Lagrangian simulation, and

their trajectories were tracked within the Lagrangian layer. The number of

particles released in the element, nel,i, was calculated as the ratio between a

characteristic impinging solid mass flow rate through the cell,Mel,i, and the

mass flow rate that each individual particle represents, ṁp.

Since the Euler-Euler model solves for the average fluid dynamic proper-

ties of the solid phase, the calculated solid mass flow rate through a surface

in the proximity of a wall boundary can be interpreted as the net balance

between that due to the impinging particles, directed towards the wall, and

that due the rebounding particles, directed away from the wall. In principle,

there is no way to separate the two contributions and identify the former,

which is the only one that matters from the point of view of erosion. The

solid mass flux through the interface cell is given by:

Ṁel,i = Φ∗ρpV ∗z Ael,i︸ ︷︷ ︸
Fel,i

−ρp μ∗t
ρfσφ

∂Φ

∂z

∣∣∣∣∗Ael,i︸ ︷︷ ︸
Del,i

(19)

where, as shown in Fig. 4(b), Vz is the component of the mean particle veloc-

ity vector along direction z, and the asterisk indicates that the quantities Φ,

Vz, μt, and ∂Φ/∂z are interpolated at the center of the cell. The two terms

on the right hand side represent the solid mass flow rate due to advection

and phase diffusion mechanisms, and are referred to as Fel,i and Del,i, respec-
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tively. A positive value of Vz implies that Fel,i > 0, and, according to the

notation in Fig. 4(b), it indicates the advective flux is directed towards the

wall. However, the solid volume fraction increases as the wall is approached,

yielding ∂Φ/∂z > 0 and, therefore, Del,i < 0. Based on these considerations,

the following criteria were adopted, namely (i) particles were released only

from surface cells having Fel,i + Del,i > 0, and (ii) in these cells, Mel,i was

assumed equal to Fel,i.

The initial positions of the nel,i = Mel,i/ṁp particles were generated by

random sampling over the cell’s area, whilst their initial velocity, ṽ0, includes

mean and random fluctuating components, as follows

ṽ0,r = V ∗r + ξr

(
2k∗s
3

)1/2

(20a)

ṽ0,z = V ∗z + ξz

(
2k∗s
3

)1/2

(20b)

where: ṽ0,r and ṽ0,z are the components of ṽ0 along directions r and z in

Fig. 4, respectively; ξr and ξz are random scalars drawn from the standard

probability density function (PDF); and V ∗r and k∗s are the r-component of

the local average velocity vector of the solid phase and the turbulent kinetic

energy of the solid phase evaluated at the cell center by interpolation from

the nearest nodes. The turbulent variable ks, which is not calculated by the

Euler-Euler model, was approximated with the corresponding fluid quantity,

k.

The trajectory followed by each computational particle in the Lagrangian

layer was determined by integrating the following ordinary differential equa-

tion:

(ρp + Cvmρf )Wp
dṽ

dt̃
= −1

8
πρfd

2
pCd|ṽ − u@p| (ṽ − u@p)−Wp (∇P )@p (21)
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in conjunction with another one for particle position:

dx̃

dt̃
= ṽ (22)

The symbols in Eqs. 21 and 22 are as follows: t̃ is the Lagrangian time,

x̃ and ṽ are the instantaneous particle position and velocity vectors, Wp is

the particle volume, and the subscript @p indicates that the mean pressure

gradient, ∇P , and the instantaneous fluid velocity vector, u, are evaluated

at particle position. The drag coefficient, Cd, was calculated from Eq. 8, with

the particle Reynolds number based on μm, that is Rem = ρfdp|ṽ−u@p|μm,@p.

As already noted, the use of the friction, mixture viscosity-related parameter

μm,@p, which depends on the local volume fraction, φ@p, is an empirical way to

account for the effect of the surrounding slurry on the motion of the particles.

The vector u@p was calculated as the sum of the mean fluid velocity at

the same location, U@p, plus a fluctuation, u′. In turn, u′ was evaluated as:

u′ = N
√

2k@p

3
(23)

where N is a vector containing random scalars drawn from the standard

PDF. The fluctuation u′ was assumed to act over a time interval which is

the minimum between (i) the eddy lifetime, te = le/|u′| and (ii) the particle

transit-time, tr = le/|u@p − ṽ|. In the above equations, le is the eddy size,

estimated as:

le = C3/4
μ

k
3/2
@p

ε@p

(24)

As soon as this condition was not satisfied, a new fluctuation velocity was

generated.
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The particle motion equations (Eqs. 21-22) were integrated following the

semi-analytical procedure described in Crowe et al. [53] until a particle left

the Lagrangian layer, or reached a distance from the target wall equal to half

of its size, in which case an impact occurs. Each impingement was associated

to the center of the nearest element of the plane mesh in which the CFD mesh

divides the wall boundary, whose surface area is denoted by Ael,w (Fig. 4(a)).

The impact velocity, vp,w, was taken as the ṽ vector half particle size from

the wall, whilst the impact angle, θp,w was evaluated from the unit normal

vector of the nearest element, nel,w:

vp,w · nel,w = |vp,w| cos
(π
2
− θp,w

)
(25)

The application of the single-particle erosion model (Eq. 12), in which the

mass of the physical particle, mp, was replaced by the mass flow rate of the

computational particle, ṁp, yielded the mass flow rate of eroded material

associated to the current impingement. The sum over the impingements

occurring in the same wall element gave the erosion rate of this cell, that

is Ėel,w. Finally, the integral erosion ratio, ERint [kg/kg] was obtained by

summing the Ėel,w values over the elements and dividing by the solid mass

flux entering the domain through the inlet section, Ṁ in, as follows

ERint =
Ėtot

Ṁ in
=

Ėtot

ρpV in
z Φin

(
π
d2

4

) (26)

where Ėtot =
∑
Ėel,w. Finally, the penetration rate of each element, i.e. the

velocity at which the erosion depth increases, was calculated as:

η̇el,w =
Ėel,w

Ael,wρw
(27)

where ρw is the density of the target material.
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Figure 5: (a) subdomain in which the particles are tracked during the second timestep (b)

auxiliary nodes for the evaluation of the slurry flow characteristics within the scar layer.
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3.2. Dynamic evolution of the erosion process

The calculations described in subsection 3.1 provide time-independent

wear parameters and, therefore, they predict a linear increase of erosion depth

with time. In order to account for non-linear effects, the wear estimation

procedure described above was executed within a time loop.

The time of exposure to erosion, T , was discretized in NT intervals, which,

for simplifying the discussion, were assumed equally-spaced with size Δt. The

superscripts j and → j are used to denote quantities evaluated at the time

instant tj = jΔt and within the time interval (tj−1, tj), respectively.

Following the steps described at the end of Subsection 3.1, the erosion

rate of the generic element and the total erosion rate over the entire wall

boundary were obtained within the interval (0, t1). These quantities, which

are referred to as Ė→1
el,w and Ė→1

tot and correspond to the steady-state solu-

tion, were used to estimate the erosion characteristics at the end of the first

timestep. Particularly, the integral erosion ratio, ER1
int, and the erosion

depth of each cell, η1el,w (Fig. 5(a)), were calculated by applying the following

formulas:

ER1
int =

Ė→1
tot Δt

Ṁ inΔt
(28)

η1el,w = η̇→1
el,wΔt =

Ė→1
el,wΔt

Ael,wρw
(29)

By connecting the local depths η1el,w and the wall boundary of the CFD do-

main, a new subdomain was generated, referred to as “scar layer” (Fig. 5(a)).

Starting from the same initial conditions, the particles’ trajectories were re-

calculated within the Lagrangian and the scar layers, unless they either left
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the domain or impingements occurred. The integration of Eqs. 21 and 22

requires knowledge of the fluid dynamic variables U, k, P , and Φ in the

scar layer. However, these quantities cannot be directly determined from the

Euler-Euler equations, which are solved only once and within the domain

with unchanged geometry. Thus, they had to be modeled. In this work, the

fluid was assumed still in the scar layer (that is, U = 0 and k = 0), whilst

the scalar variables P and Φ at particle’s position were obtained by linear in-

terpolation of the values at auxiliary nodes (filled circles in Fig. 5(b)), which,

in turn, were equal to those at the closest near-wall nodes (unfilled squares

in the same figure). This simple assumption procured slurry jet erosion pre-

dictions in reasonable agreement with the experimental evidence. Indeed,

different slurry flow models can be employed in the context of the proposed

approach, for this and other types of flows.

The impact velocities within the second timestep, v→2
p,w, were evaluated

at half particle size from the crater, and the corresponding impact angles,

θ→2
p,w, were obtained by applying Eq 25 with updated velocities and normal

unit vectors. As clearly shown in Fig. 5(b), two different vectors (n→2
el,w,− and

n→2
el,w,+) are associated with the same element in a two-dimensional case.

The single-particle erosion model allowed obtaining the eroded mass flow

rate of each impact, and, thus, the erosion rate of each element and the whole

boundary between t1 and t2, i.e. Ė→2
el,w and Ė→2

tot . The integral erosion ratio

and the local erosion depth at t2 were calculated as

ER2
int =

Ė→1
tot Δt+ Ė→2

tot Δt

Ṁ in2Δt
=

1

Ṁ in

Ė→1
tot + Ė→2

tot

2
(30)
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η2el,w = η1el,w + η̇→2
el,wΔt = η1el,w +

Ė→2
el,wΔt

Ael,wρw
(31)

The procedure above was repeated for all the subsequent timesteps j =

3, ...NT , as follows: (i) identification of the scar layer at current timestep;

(ii) particle tracking within the current domain (that is, Lagrangian layer

and current scar layer); (iii) evaluation of the impact velocities, v→j
p,w, and

impact angles, θ→j
p,w, based on the updated normal unit vectors, n→j

el,w; (iv)

application of the single-particle erosion model to estimate the eroded mass

flow rate of the impacts and subsequent calculation of the erosion rates of

the elements and the entire target wall, Ė→j
el,w and Ė→j

tot ; (v) evaluation of the

integral erosion rate and the erosion depth of each element by application of

the following formulas:

ERj
int =

∑j
s=1 Ė

→s
tot Δt

Ṁ injΔt
=

1

Ṁ in

∑j
s=1 Ė

→s
tot

j
(32)

ηjel,w = ηj−1el,w + η̇→j
el,wΔt = ηj−1el,w +

Ė→j
el,wΔt

Ael,wρw
(33)

Finally, it is remarked that, whilst the Lagrangian layer does not change

during the computation, the scar layer expands at each timestep depending

on its configuration at the previous timestep. As it will be shown in the next

section, both the Euler-Euler solution and the erosion model contribute to

this evolutionary process.

4. Testing and validation of the methodology

The calculation method described in the previous section was validated

against the outcomes of abrasive jet impingement experiments reported in

35



the literature by different researchers [18, 22, 23, 37]. Six cases were selected

to assess the capability of the methodology in different testing conditions,

reported in Table 1. All experiments were performed in closed loops in which

the slurry is recirculated, and the integral erosion ratio was calculated by the

experimenters as the ratio between the mass loss of test specimen, obtained

by high precision balances, and the sand throughput, i.e. the product of

the solid mass flow rate exiting the nozzle and the testing time. This, in

turn, required to evaluate the concentration of the particles coming out of

the nozzle. Another measured variable was the slurry flow rate, from which

the jet velocity can be inferred. In some cases, the experimenters also used

3-D profilometers to measure the depth of erosion area.

The rectangular section of the specimens used in the experiments was

taken into account when evaluating the integral erosion ratio from the ax-

isymmetric solution. This was achieved by multiplying the erosion rate of

each wall element, Ėel,w, by a correction factor, ϕel,w, given by:

ϕel,w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if rel,w ≤ B

2
2

π
asin

(
B/2

rel,w

)
if
B

2
< rel,w ≤ L

2
2

π

[
asin

(
B/2

rel,w

)
− acos

(
L/2

rel,w

)]
if
L

2
< rel,w ≤ 1

2

√
L2 +B2

0 if rel,w >
1

2

√
L2 +B2

(34)

where B and L are the lengths of the edges of the rectangular specimen, and

rel,w is the radial position of the center of the current wall element. The sketch

in Fig. 6 helps in understanding the criterion at the basis of the definition of

the ϕel,w factor. It is noted that the formula for ϕel,w is approximate, as it

should be derived from a ratio between areas rather than angles; furthermore,
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Figure 6: Procedure for estimating the erosion of a rectangular section specimen from the

axisymmetric solution. The correction factor ϕel,w is the ratio between the angle spanned

by the arcs lying in a quarter of the specimen (blue colored) and the right angle.

it assumes that the center of the specimen is perfectly aligned with the nozzle

axis, which may not be the case in the actual experiments.

As a preliminary step, the numerical consistency of the solution was as-

sessed.

4.1. Consistency of the erosion predictions

The post-processing procedure introduces some numerical settings which

may have spurious effects on the wear estimates, namely the number of re-

leased particles, n, the number of time steps, NT , and the thickness of the

Lagrangian layer, δ. The consistency study of the numerical solution con-

cerned these parameters in addition to the usual ones of CFD studies, namely

grid size, convergence criterion, and so on. The fact that all these effects in-

teract with each other increased the complexity of the analysis.
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Figure 7: Minimum cell size in the consistency study.

Simulations aimed at consistency assessment were performed for all test

cases and different erosion parameters were considered. Due to reasons of

space, only few results regarding case A are presented herein. The em-

ployed values of the numerical constants in the erosion model were those

suggested for SS316, namely C1 = 4.58 · 10−8, C2 = 5.56 · 10−8, K = 0.4,

and Utsh = 5.8 m/s, whilst the particle shape factor, Fs was set to 1. As

already mentioned, the computational mesh consisted of square elements in

the r-z plane, whose dimension Δr = Δz was defined in compliance with

the constraint imposed by the Euler-Euler models that the cell size must be

representative of an ensemble of particles. Particularly, the smallest value

was
√
2dp, so that roughly two spherical particles fit into a grid cell (Fig. 7),

the others were 2dp and 3dp. It is noted that, in the selection of the testing

cases, the requirements of the wall-function approach on which the Euler-

Euler model is based were also taken into account. This was achieved by

referring only to sufficiently large particles, which produced average y+ val-

ues on the target wall between 30 and 130. The parameters n, NT , and δ

were varied between 100 and 10000, 1 and 40, and 1 and 3.5 times the cell
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size, respectively.

The combined effect of n and NT was studied first, and the results are

shown in Figs. 8(a) and (b). The influence of the number of tracked parti-

cles was substantially negligible in terms of integral erosion ratio, but about

5000 trajectories were needed to attain a smooth erosion depth profile, which

showed the typical “W” produced by slurry jets. Conversely, the integral ero-

sion ratio was affected by the number of timesteps, but the series reached a

plateau for NT ≥ 15. The influence of grid size and δ is shown in Fig. 8(c)

for n = 5000 and NT = 15. The Lagrangian layer had to extend over about

three rows of cells for the integral erosion ratio at t = T to be unaffected by

further increase in δ. However, no independence was reached with respect to

the grid resolution, being apparently impossible to meet the requirements of

numerical accuracy and meaningfulness of the average. Following previous

studies [55], a cell size of
√
2dp was judged the best compromise to overcome

this typical issue of Euler-Euler models. In summary, the following settings

were chosen, namely n = 5000, NT = 15, δ = 3Δz, and Δz =
√
2dp. More

extended analyses confirmed the suitability of these values for all simulation

scenarios in Table 1. Finally, releasing the particles within the third row of

cells from the wall (δ=3Δz) has also the advantage of reducing the depen-

dence of the wear estimates on the wall boundary condition of the solid phase.

As already noted, this is still an unresolved issue in Euler-Euler models.

4.2. Experiments by Nguyen et al. [23]

Nguyen et al. [23], who tested experimentally case A, reported values of

the integral erosion ratio at different times during the test, namely 0.5, 5, 15,

and 30 minutes. As already mentioned, the authors attributed the decrease
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Figure 8: Consistency analysis of the wear estimates for case A.
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of the integral erosion ratio with time to the geometry changes induced by

the erosion process. The low solid concentration (1.32% by mass) suggests a

limited importance of four-way coupling effects.

Details of the Euler-Euler solution are shown in Fig. 9. Particularly, the

four plots report the distributions of |U|, |V|, P , and Φ downstream the

nozzle outlet up to a distance from the target wall equal to dp/2 (where the

coordinate z′, opposite to the z-direction, is zero). Such fluid-dynamic solu-

tion is consistent with those previously obtained using Eulerian-Lagrangian

models [4, 23]. The slurry jet leaving the nozzle rapidly decelerates in the

proximity of the wall, and, after impingement, it radially deflects. The decel-

eration of the jet is accompanied by an increase in pressure, which reaches the

maximum value in correspondence to the stagnation point. The two phases

move with similar velocity in the core region of the jet, but, mainly due

to their different inertia, noticeable differences exist close to the stagnation

region. The solid phase keeps uniformly distributed up to a small distance

from the wall, then a sudden increase in mean solid volume fraction occurs

in the stagnation region.

The predicted integral erosion ratio at the first timestep (which, as al-

ready noted, corresponds to the steady-state value) was 1.97·10−5 kg/kg,

about 40% lower than the measurement (3.38·10−5 kg/kg). However, as

shown in Fig. 10(a), the time evolution of the normalized integral erosion

ratio, obtained by dividing the integral erosion ratio by the value at the

smallest measured/computed time, was in good agreement with the experi-

mental data.

The predicted time evolution of the entire wear profile and the maxi-
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Figure 9: Detail of the Euler-Euler solution for case A: color plot distributions of (a)

modulus of average velocity of the fluid phase; (b) modulus of average velocity of the

solid phase; (c) average pressure; (d) mean solid volume fraction. The zero value of the

coordinate z′, opposite to the the z-direction, corresponds to a distance from the target

wall equal to dp/2.
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mum erosion depth, shown in Figs. 10(b) and 10(c), respectively, revealed a

correspondence between the reduction of the integral erosion ratio and the

deceleration in the growth of the erosion hole. The proposed methodology

was capable in reproducing this effect because, in order to reach the surface

of the specimen and produce damage, the particles had to overcome the re-

sistance exerted by the still fluid in the scar layer. As the time increased and

the scar got deeper, the particle faced more and more difficulties in crossing

the scar layer and, therefore, they impinged the target at lower velocity or

even did not impinge it at all. As a consequence, the erosion slowed down.

This is further exemplified in Fig. 10(d), which shows the time evolution of

the mean particle impact velocity modulus, 〈|vp,w|〉 (that is, the average over
all impingements). The curve indicates that, for case A, the model achieved

a deceleration of the erosion process through a reduction of the impact ve-

locity. No substantial variation was observed in the number of impingements

and only minor changes occurred in the average impact angle. The plots in

Fig. 10 underline the difference between the proposed methodology and the

steady-state model, which predicts a constant growth of the wear depth in

time.

Finally, Fig. 10(a) reports also the normalized integral erosion ratios as

numerically predicted by Nguyen et al. [23]. These results were obtained by

performing four independent, Eulerian-Lagrangian, two-way coupled simu-

lations in which the experimentally-determined scar profile was imposed as

domain boundary. This additional comparison further enhances the engi-

neering potential of the proposed method, which evaluates the evolution of

erosion starting from just one steady-state CFD simulation.
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Figure 10: Comparison between proposed method and steady-state model for case A: (a)

time evolution of the integral erosion ratio, normalized by the value at the smallest time;

(b) erosion depth profiles at different timesteps; (c) time evolution of the maximum erosion

depth, ηmax; (d) time evolution of the mean particle impact velocity modulus, 〈|vp,w|〉.
Plot (a) reports also the experimental data and the CFD predictions of Nguyen et al. [23].
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4.3. Experiments by Mansouri et al. [37]

Cases B and C, reported in Mansouri et al. [37], were characterized by

different geometrical characteristics of the abrasive grains. In case B, the

abradant was California 60 sand, with mean size of 300 μm and angular

shape (thus, ψ = 0.66 and Fs = 1). In experiment C, Oklahoma #1 particles

were used, with dp = 150 μm and semi-rounded shape (thus, ψ = 0.76

and Fs = 0.53). All other test parameters, including particle density (2650

kg/m3), were the same. The parameter Utsh in the mechanistic erosion model

was set to 2.0 m/s and 5.8 m/s for cases B and C, respectively. All other

constants were not changed from the values reported in the previous section.

For both scenarios, the solution of the Euler-Euler model was qualita-

tively analogous to case A, depicted in Fig. 9. Similarly, the predicted inte-

gral erosion ratio decreased with time, as shown in Fig. 11(a). This trend

corresponds to a deceleration in the growth of the wear depth, evident in

Figs. 11(b) to (d). The behavior can be interpreted on the grounds of the

considerations set up in Section 4.2.

The predicted erosion depth profiles at the end of the test were consistent

with the experimental evidence, and so is the integral erosion ratio for case

C, depicted in Fig. 11(b). Making a comparison against the experiment was

more complicated for case B, because the numerical estimation was close to

the integral erosion ratio obtained by integrating the measured wear depth

profile, but this apparently did not match the value obtained by the exper-

imenters by weighting the sample. Anyway, the simulation results appeared

satisfactory.
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Figure 11: Results for cases B and C: (a) time evolution of the integral erosion ratio. Labels

exp(1) and exp(2) stand for the integral erosion ratios reported by the Mansouri et al. [37]

and obtained by integrating the experimentally determined scar profiles in plots (c) and

(d), respectively; (b) time evolution of the maximum erosion depth; (c,d) time evolution

of the wear depth profile and comparison against the experimental measurements.
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4.4. Experiments by Mahdavi et al. [22]

In experiments D and E, performed by Mahdavi et al. [22], the solid

concentration was increased without varying the testing time, making them

interesting validation cases for a couple of reasons. On one hand, the con-

siderable levels of concentration (up to about 25% by mass) suggested that

four-way coupling effects could be important. On the other hand, the fact

that the erosion hole became deeper as the concentration increases (due to

the time of exposure being the same) indicated that the expansion of the

scar layer could play a key role as well.

The experimental data reported in [22] clearly show a reduction of the in-

tegral erosion ratio with the solid mass fraction, which is more significant for

case D, where the jet velocity is higher. The two scenarios were numerically

reproduced using the mechanistic erosion model, in which the parameter Utsh

was 2.0 m/s and the other constants were set as previously reported. The

measured and computed relative integral erosion ratios (i.e. after normal-

ization with respect to the value for case D and CM = 1%) are depicted in

Fig. 12(a) as a function of CM .

The proposed methodology correctly predicted the decrease of the inte-

gral erosion ratio with increasing concentration, and this capability appeared

mainly attributable to the procedure for estimating the development of the

wear profile. The analysis of the time evolution of the maximum wear depth,

shown in Fig. 12(b) for case D at different concentrations, gave support to

this claim. The deceleration in the development of the erosion hole, almost

absent for CM equal to 1 and 5%, was more and more pronounced for in-

creasing concentration, and, as a consequence, the wear depth increased less
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than proportionally with CM (Fig. 12(c)). This had a clear correspondence

with the time evolution of the integral erosion ratio, depicted in Fig. 12(d).

For low erosion times the influence of CM on ERint was practically absent,

whilst, as the scar gets deeper, ERint decreased faster for higher CM .

This means that accounting for the evolution of the wear profile was fun-

damental for the proposed model to correctly predict the decrease of integral

erosion ratio with concentration observed experimentally (Fig. 12(a)). Fig-

ure 13 shows, for three values of CM , the distibutions of the particle impact

velocities and angles at t = 0 and t = T superimposed to the final erosion

depth profiles, and it helps getting insight into this aspect. As the time

increased, the particles impact characteristics underwent different evolution

histories depending on the solid concentration. In fact, whilst no significant

variation was observed for CM = 1%, a decrease in the impact velocity be-

came more and more enhanced for increasing CM . This is further highlighted

in Fig. 14, which shows the time evolution of the mean particle impact veloc-

ity modulus, 〈|vp,w|〉. Figure 13 also indicated that the particles experiencing

the most reduction of the impact velocity were those traveling through a big-

ger scar layer before impingement. Time variations in the particle impact

angles were apparently less relevant, and, similarly, no change of the number

of impingements with time was observed (that is, all particles were able to

reach the target wall even for CM = 20%).

However, it is not correct to conclude that the influence of CM was limited

to that on the extension of the scar layer. A side role was also played by

the fact that, as CM increased, the local average solid volume fraction, Φ, in

the scar layer increased as well (Fig. 15). This, in turn, produced changes in
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Figure 12: (a) effect of concentration on the integral erosion ratio (normalized by the value

for case D at CM = 1%, referred to as ERref) for cases E and D: comparison between

numerical predictions and experimental data [22]. Labels “exp(1)”, “exp(2), and “exp(3)”

indicate different repetitions of the experiment; (b) time evolution of the maximum erosion

depth for case D at different concentrations; (c) predicted scar depth profiles at the end

of the test for for case D at different concentrations; (d) time evolution of the integral

erosion ratio for case D at different concentrations.

50



Figure 13: Case D at different concentrations: modulus of the impact velocity (a,c,e) and

impact angle (b,d,f) for all tracked particles at t = 0 and t = T . In all plots, the scar

depth at t = T is also shown and labeled on the right side axis.
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Figure 14: Time evolution of the mean particle impact velocity modulus for case D.

the friction parameter μm (Eq. 11), in Rem (Eq. 10), and, finally, in the drag

coefficient Cd (Eq. 8). Thus, the motion of a particle in the scar layer was

affected by CM . Among the fluid dynamic variables solved by the Euler-Euler

model, Φ is practically the only one which was strongly affected by CM . The

flow field data for different concentrations of particles were compared, but no

detectable change was observed. Thus, the effect of increasing concentration

was not strongly related to variations in U and V.

The experimental data in Fig. 12(a) also indicate that the decrease of

the integral erosion ratio with increasing concentration is enhanced for the

high-velocity jet. From a qualitatively point of view, this behavior was well

captured by the computational model. This capability was mainly attributed

to the lower erosion depths occurring in case E (low-velocity jet), which made

easier for the particles to cross the scar layer and reach the target wall with

almost unchanged velocity.
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Figure 15: Color plot distribution of the average solid volume fraction at t = T for

CM = 20%, and details of the Φ-distributions within the Lagrangian and scar layer for

different values of CM . The origin of the coordinate z′, which is opposite to the z-direction,

is at a distance of dp/2 from the uneroded specimen surface.

.
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ERT
int [kg/kg]

Case Exp. CFD

D 6.04 · 10−6 2.83 · 10−6

E 3.09 · 10−6 1.54 · 10−6

Table 2: Computed and measured integral erosion ratios for cases D and E at CM = 1%.

Finally, it is noted that the reduction of the integral erosion ratio with

increasing concentration was underestimated by the numerical model. A

possible reason is that the μm-factor did not allow accurately capturing the

already mentioned shielding effect, i.e. the disturbance exerted by the re-

bounding particles on the incoming ones. Further research work on the

Euler-Euler is planned within the authors’ research group to improve the

prediction accuracy.

4.5. Experiments by Wang et al. [18]

The simulations of the abrasive jet experiments performed by Wang et

al. [18] on a 44W carbon steel specimen provided further confirmation to

the key role played by the erosion model. As in previous cases D and E,

all testing parameters were kept the same except for the solid concentration,

which was varied between 1% and 8%. Such an increase of the solid loading

was accompanied by a decrease in the integral erosion ratio from 3.21 · 10−6

to 2.08 · 10−6 kg/kg.

The experiments were numerically reproduced and, at first, the mechanis-

tic model was employed with the constants suggested by Arabnejad et al. [48]

for the most similar material to the 44W carbon steel, that is 1018 carbon

steel (C1 = 5.90 ·10−8, C2 = 4.25 ·10−8, and K = 0.5). The variable Utsh was
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estimated as 2.0 for the 300 μm abrasive particles used in the experiments,

and, in the lack of any information on the shape of the grains, Fs and ψ were

set as 0.53 and 0.76, respectively.

However, these settings were not appropriate for this case, yielding not

only significant underestimation of the integral erosion ratio but also the

same integral erosion ratio for the different values of CM , in clear contra-

diction with the experimental evidence (Fig. 16). The numerical results can

be interpreted with the aid of plots (a,c,e) in Fig. 17, which indicate that

the maximum wear depth linearly increased with time, that the scar depth

increased proportionally with CM , and that the integral erosion ratio did not

change over time. These findings suggested that the wear depths predicted

by the mechanistic erosion model with the constants for 1018 carbon steel

were too small for any significant deceleration of the particles in the scar

layer to take place even for the highest concentration.

With the aim of assessing this interpretation, the constants C1 and C2

of the erosion model were increased to 3.54 · 10−7 and 2.55 · 10−7, respec-
tively, so that the predicted ERT

int at CM = 1% became equal to the exper-

imental value. This change affected the penetration rate, which reduced in

time (Fig. 17(b)), yielding a temporal decrease of the integral erosion ratio

(Fig. 17(f)). As already discussed in section 4.4, this phenomenon was en-

hanced for higher CM , because the particles encountered more resistance to

motion and they had to travel a longer distance before reaching the target

wall. This caused the wear profile to develop less than proportionally with

CM (Fig. 17(e)), and, thus, it produced a decreasing trend of integral erosion

ratio with CM (Fig. 16), in good agreement with the laboratory experiment.
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Figure 16: Case F: effect of concentration on the integral erosion ratio as measured by

Wang et al. [18] and predicted by our CFD simulations. In series CFD(1), the constants

C1 and C2 in the mechanistic erosion model were those recommended for 1018 carbon

steel, whilst in CFD(2), their values were 3.54 · 10−7 and 2.55 · 10−7.
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Figure 17: Numerical results for case F at different CM : (a,b) time evolution of the

maximum erosion depth; (c,d) wear profile at the end of the test; (e,f) time evolution of

the integral erosion ratio. In plots (a,c,e), the constants C1 and C2 in the mechanistic

erosion model were those recommended for 1018 carbon steel, whilst in plots (b,d,f) their

values were 3.54 · 10−7 and 2.55 · 10−7.
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5. Discussion

Some considerations on the numerical results are now presented, and

future research directions for further developments are outlined.

5.1. Importance of the dynamic evolution algorithm

The decrease of the integral erosion ratio with increasing concentration

was achieved through a two-phase model which accounts for the complex

phenomena occurring in dense flows and a post-processing procedure which

dynamically updates the wear profile. Figure 18 indicates that the unsteady

treatment of the wear process was necessary for the model to correctly cap-

ture the effect of the amount of particles in the jet. However, from these

results it cannot be concluded that the decrease of integral erosion ratio with

increasing concentration observed in many experiments is due to geometry

changes and not to the shielding effect. In fact, the particle tracking in the

Lagrangian and scar layers (and thus the evolution of the wear profile) was

indeed affected by concentration through the parameter μm. In turn, μm has

some relation with the interactions occurring in dense slurries but, like any of

the other terms in the Euler-Euler equations, is not specifically associated to

particle-particle collisions and contacts. Future research will be aimed at iso-

lating the effect of particle-particle interactions in the Euler-Euler model and

within the particle tracking in the erosion hole. This will yield an improved

version of the proposed methodology, which will be capable in assessing the

importance of the shielding effect.
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Figure 18: Integral erosion ratio at t = T as a function of concentration for case C:

comparison between the proposed method and a steady-state model.

5.2. Assumptions on the particle size distribution

The Euler-Euler models solve for just one solid phase, which is character-

ized by a single-particle size. Thus, in this work, the solid phase was treated

as monodisperse with representative size equal to the mean diameter. In

reality, the particles used in the experiments are never monodisperse, and,

therefore, this simplification could have affected the validation results [56].

To have a broad idea of the influence that the approximation of monodis-

perse particles had on the numerical predictions, case A was simulated with

particle size equal to the min/max values indicated by the experimenter [23],

namely 125 μm and 180 μm, and the wear estimates were compared with

that previously obtained considering the mean diameter, that is 150 μm.

The results, shown in Fig. 19, indicated that the time evolution of the in-

tegral erosion ratio was indeed affected by particle size, and, particularly,
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Figure 19: Time evolution of the integral erosion ratio for case A: effect of particle size.

bigger particles determined a slower decrease of the integral erosion ratio.

This was interpreted because of the fact that bigger particles possess greater

inertia, and, therefore, they were more prone to cross the scar layer with

constant velocity. The plot also reveals that the steady state integral erosion

ratio (that is, the value at the end of the first timestep) was substantially

unaffected by the particle size. This was attributed to the fact that the used

erosion model (Eqs. 12-14) does not involve an explicit dependence on the

particle size, which has only a minor influence via the threshold velocity,

Utsh, in the deformation wear term.

In order to account for polydisperse particle distributions, the Euler-Euler

model should be turned into an Eulerian multi-fluid model, which can solve

for different particle size classes. This will open challenging perspectives for

future development of the current research.
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5.3. Sources of uncertainty in experiments and simulation

It is well known that every time a comparison is made between exper-

iments and numerical predictions, the uncertainties inherent in both ap-

proaches must be taken into account.

Sources of uncertainty in the experimental data include measurement er-

rors, errors in the positioning of the specimen, and difficulties in keeping the

experimental conditions constant during the test. Regarding the last aspect,

it is noted that all the tests considered for comparison were performed in

setups where the particles are recirculated. The recycle use of the abradant

may have induced spurious effects due to possible changes in particle size

and shape [23, 57]. Another key point was the evaluation of the particle

concentration. Mansouri et al. [37] and Mahdavi et al. [22] showed that the

solid concentration coming out from the nozzle is different than the prepared

concentration which is added to the slurry tank, but Nguyen et al. [23] and

Wang et al. [18] did not specify how they measured this parameter. Fur-

thermore, the slurry concentration could also have varied during the tests.

The azimuthal variability of the radial depth profile observed in Fig. 11 and

the difference between the experimental series in Fig. 12 may be interpreted

in the light of the considerations set out above. Unfortunately, not enough

information was available to the authors to attribute error bars to the data.

The numerical erosion predictions were subjected to many uncertainties

as well, as they were obtained as output of a complex process involving an

Euler-Euler simulation, the tracking of particle trajectories, and the appli-

cation of an erosion model. All these steps included factors of uncertain

nature or difficult to obtain, which may affect the wear estimates. Neverthe-
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less, quantifying their combined effects in realistic error bars was extremely

complicated. The experience gained in previous research was fundamental

to assign appropriate values to these subjectively determined parameters.

5.4. Comparison with alternative approaches

Finally, the present method is discussed in the light of some of the alterna-

tive approaches illustrated in Section 1. First, the procedure for estimating

the time evolution of the surface profile would reduce to the particle-only

model by Solnordal and Wong [32] if the inertia of the particles in the scar

layer was dominant and the effect of the surrounding slurry was negligible.

Under this condition, in fact, the particles would keep the same velocity

across the scar layer, and the nonlinear growth of the erosion hole would be

due only to changes in the impact locations and angles. Second, the combina-

tion of a CFD simulation with uneroded geometry and a simplified modeling

of the flow within the erosion hole is a feature shared with the model of

Kowsari [27] for application to ASJM. Compared to [27], the assumptions

of the proposed method on the flow in the erosion hole were, on one hand,

more simplistic, but, on the other hand, they did not require experimental

calibration. Third, the approach of Rizkalla and Fletcher [35] appears con-

ceptually simpler, as it does not introduce a Lagrangian layer, and it allows

for a more physically based description of the unsteady process. At time

same time, it requires higher simulation time, and it strongly relies on the

predicted solid phase velocity in the near-wall cells, which, in the absence of

a well-established wall boundary conditions for the solid phase, may be hard

to estimate accurately.
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5.5. Note on the computational gain

For all the simulations performed in this study, the overall calculation

time (including the solution of the Eulerian-Eulerian equations and the ero-

sion prediction with updating geometry) was less than one hour on a com-

puter with Intel Core i7-4790 CPU at 3.60 GHz and 8 GB RAM. The time

saving over one-way and two-way coupled Eulerian-Lagrangian simulations,

in which the particles are tracked in the whole computational domain, was

estimated as -67% and -90%, respectively. To obtain these values, the simu-

lation time of the steady-state Eulerian-Lagrangian simulations (performed

on the same 2D axi-symmetrical domain discretized with the same num-

ber of cells) was multiplied by a factor equal to the number of timesteps,

i.e. 15. The computational gain would be even higher if compared to more

detailed two-phase models, like those accounting for particle-particle interac-

tions or those in which the particles are fully resolved in space. This further

enhances the potential of the proposed method for applications involving

complex flows.

6. Conclusion

A new computational strategy was developed for estimating the impact

erosion produced by liquid-solid slurries. The method required to perform

just one steady-state simulation of the slurry flow by an Euler-Euler model,

followed by an iterative post-processing procedure. Particularly, use was

made of the Euler-Euler model developed within the authors’ research group

[40], which extensive past research proved to be computationally efficient

and effective in capturing the effect of the complex interactions occurring
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in slurry flows. A small Lagrangian layer was defined adjacent to the solid

boundaries, in which the trajectories of Lagrangian particles were tracked and

a single-particle erosion model was applied to each particle-wall impingement,

determining the formation of an erosion hole. The particle tracking and the

update of the wear profile were iteratively executed in a time loop. The slurry

flow field in the erosion hole was obtained by an approximate model, thereby

avoiding the need of repeating the Euler-Euler simulation at every time step.

Besides the Euler-Euler model, also the particle equation of motion accounted

for the effect of the presence of multiple particles in the slurry mixture via

empirical parameters.

The capability of the method was assessed by reproducing several slurry

abrasive jet experiments reported in the literature [18, 22, 23, 37]. The model

proved able to reproduce the deceleration of the erosion process which is well

known to accompany the increase in the erosion depth. Furthermore, it

allowed capturing the decrease in the integral erosion ratio with increasing

concentration.

The method provided improved wear predictions compared to the CFD-

based erosion prediction models commonly used in the engineering practice.

The concept underlying the proposed strategy has thus potential for effec-

tively addressing geometries of engineering interest, which cannot be prac-

tically simulated using more complex models that accurately describe all

the physical mechanisms at the basis of the slurry transport and erosion

processes, because their computational burden would be unaffordable. This

makes the method worthy of application to real case studies and, at the same

time, of further research and improvement.
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