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Abstract: This study presents a novel approach called scenario-based Fitted Q-Iteration (sFQI)
for controlling water reservoir systems under climate uncertainty. In these problems, robust
control frameworks, based on worst-case realization, are usually adopted. Yet, these might be
overly conservative. In this paper, we use sFQI to design adaptive control policies by enlarging
the state space to include the space of the uncertain system’s parameters. This allows obtaining a
control policy for any scenario in the uncertainty set with a single learning process. The method
is demonstrated on a simplified model of the Lake Como system, a regulated lake operated
for ensuring reliable water supply to downstream users. Numerical results show that the sFQI
algorithm successfully identifies adaptive solutions to operate the system under different inflow
scenarios, which outperform the control policy designed under historical conditions. Moreover,
the sFQI policy generalizes over inflow scenarios not directly experienced during the policy
design, thus alleviating the risk of mis-adaptation, namely the design of a solution fully adapted
to a scenario that is different from the one that will actually realize.
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1. INTRODUCTION

The use of mathematical models to support planning
and management of water resources systems is rapidly
expanding over recent years due to advances in scientific
knowledge of the natural processes, efficiency of the op-
timization techniques, and availability of computational
resources (Washington et al., 2009). Most of the operation
problems involving water resources systems with mid-
term and long-term control objectives can be formulated
as Markov decision processes (MDPs, see White (1982))
and solved via Dynamic Programming or Reinforcement
Learning (Powell, 2007; Busoniu et al., 2010). For exam-
ple, water reservoir operations are a sequence of release
decisions, made at discrete time instants, over a system
affected by stochastic disturbances (i.e., inflows). Yet,
the optimal operations of these systems represent a wide
and challenging application domain for optimal control
methodologies due to non-linearities in the model and the
objective functions, high dimensional state-control space,
and strong uncertainties in the inputs due to the variability
in the hydrological regimes (Castelletti et al., 2008).

This increasing uncertainty associated to the hydrologi-
cal regimes, further enhanced by the impacts of climate
change, violates the stationarity assumption generally used
for describing the inflow processes, where the statistical
characteristics of future inflows are considered equivalent
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to those observed in the historical data. This assumption
of a stationary climate is unlikely to be valid in the future
(Milly et al., 2008). In this case, the probability density
function used for modeling the stochastic disturbances
becomes a deeply uncertain parameter (Kwakkel et al.,
2016), which cannot be described via any stochastic model,
but rather in a deterministic and set-membership based
fashion (Giuliani and Castelletti, 2016). These problems
call for robust and adaptive solutions able to withstand
deviations from the conditions for which they were de-
signed (Herman et al., 2015). Many studies adopt a robust
MDP framework (e.g., Nilim and El Ghaoui, 2005; Iyengar,
2005) where, assuming the uncertain parameters (i.e., in-
flow PDF) fall within a given uncertainty set, they search
a control policy that performs the best under the worst
realization of the parameters (Ben-Tal et al., 2009). These
robust solutions, however, can be overly conservative since
they are based on worst-case realizations (Lim et al., 2013).

In this paper, we contribute a novel method for designing
optimal, adaptive policies for controlling water reservoir
systems under climate-related uncertainty. In particular,
we propose an extension of the Fitted Q-Iteration (FQI)
algorithm, a batch-mode reinforcement learning (RL) al-
gorithm that combines RL concepts of off-line learning
and functional approximation of the value function (Ernst
et al., 2005; Castelletti et al., 2010). The proposed method,
called scenario-based FQI (sFQI), extends the continuous
approximation of the action-value function, originally per-
formed by FQI over the state-control space, to the space
of the uncertain parameters. As a result, sFQI embeds the
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set-membership uncertainty of the future inflow scenarios
in the action-value function and is able to approximate,
with a single learning process, the optimal control policy
associated to any parameter (i.e., inflow scenario) included
in the uncertainty set.

The proposed method is demonstrated on a simplified
model of the Lake Como (Italy), a regulated lake in
Northern Italy mainly operated for ensuring reliable water
supply to downstream users (Giuliani et al., 2016c). Beside
the historical inflow scenario, we consider four alternative,
uncertain scenarios of inflows, which approximate the
uncertain impacts of climate change (IPCC, 2013). We
first test the impacts of the inflows’ scenarios on the
performance of the control policy designed over historical
conditions. Then, we analyze the potential of the proposed
sFQI algorithm for designing solutions that perform well
under all the scenarios. The performance of the sFQI
policies will be finally contrasted with the upper bound of
system performance, represented by fully adapted policies
(i.e., solutions evaluated over the same inflow scenario used
in the policy design), as well as with the performance
obtained by mis-adapted policies (i.e., solutions evaluated
over an inflow scenario that is different from the one used
in the policy design).

The paper is organized as follows. In the next section,
the methodological aspects of the proposed approach are
presented, while Section 3 provides a short description of
the case study application. Numerical results are reported
in Section 4, while final remarks and issues for further
research are discussed in the last section.

2. METHODOLOGY

2.1 Markov Decision Processes

Water reservoir operation problems generally require to
take sequential decisions ut at discrete time instants (t =
1, 2, . . .) on the basis of the current system conditions
described by the state vector xt (e.g., reservoir storage).
The control decisions are determined by a feedback control
policy ut = π(xt) and alter the state of the system
according to a transition function Pw(xt+1|xt, ut) affected
by a vector of stochastic external drivers qt+1 ∼ φt(w)
(e.g., reservoir inflows) described by a probability density
function, which depends on the considered climate scenario
w ∈ Ξ. Such system can be modeled as a discrete-time,
non-linear, stochastic Markov Decision Process defined as
a tuple

< X ,U ,Pw,R, γ >

where X ⊂ Rnx is the continuous state space, U ⊂ Rnu

is the continuous control space, Pw(xt+1|xt, ut) is the
transition model defining the transition density between
state xt and xt+1 under control ut for a specific scenario
w ∈ Ξ, R(xt, ut, xt+1) is a reward function that specifies
the instantaneous reward when state xt+1 is reached from
state xt by taking action ut, γ ∈ [0, 1] is a discount
factor. The policy is characterized by a density distribution
π(ut|xt) that specifies the probability of taking action ut

in state xt (Castelletti et al., 2011).

Solving an MDP means to find a policy that maximizes
the action-value function in each state:

π∗ = arg max
ut∈U

Q∗(xt, ut) (1)

where the optimal action-value function Q∗ is the solution
of the following equation

Q∗(xt, ut) =

∫

X
[R(xt, ut, xt+1)+

γ max
ut+1∈U

Q∗(xt+1, ut+1)]Pw(dxt+1|xt, ut)
(2)

2.2 Fitted Q-iteration

Fitted Q-iteration (FQI) is a batch-mode reinforcement
learning (RL) algorithm that estimates an approximation
of Q∗(xt, ut) from experience samples, collected either
from the system observations or via model simulations,
which constitute a finite sample dataset F defined as

F =
{
< xi

t, u
i
t, x

i
t+1, r

i
t+1 >, i = 1, . . . , N

}
(3)

where rt+1 = R(xt, ut, xt+1) and N is the cardinality of F .
Each tuple is a sample of the one-step transition dynamics
of the system, regardless the way it is generated, whether
from one single trajectory of the system (e.g., the historical
one) or from several, independently generated, one-step or
multi-step simulations of the system dynamics.

In particular, the fitted Q-iteration (FQI) algorithm pro-
posed by Ernst et al. (2005) and derived from fitted values
iteration works (Ormoneit and Sen, 2002), combines the
RL idea of learning from experience with the concept of
continuous approximation of the value function (Gordon,
1995). The advantage of this approach is twofold: first,
a continuous mapping of the state-action pair into the
action-value function should permit the same level of
accuracy as a look-up table representation based on an
extremely dense grid, but using a significantly coarser grid;
second, the learning process is performed offline, without
the need for a direct interaction with the real system.
FQI has been recently applied in different research fields,
such as robotics (Bonarini et al., 2008; Riedmiller et al.,
2009), control theory application for active suspensions
(Tognetti et al., 2009) and energy systems (Ernst et al.,
2009), biology and medicine (Pineau et al., 2009; Zhao
et al., 2011), environmental management (Castelletti et al.,
2010; Pianosi et al., 2013; Giuliani et al., 2014).

Given the dataset F , FQI reformulates Problem (1) as a
sequence of regression problems, producing a sequence of
Q̂h-functions which approximate the optimal action-value
function Q∗(xt, ut) defined in eq. (2) by iteratively extend-
ing the optimization horizon h. In the first iteration (h =
1), the algorithm produces an approximation of the ex-

pected immediate reward Q̂1(xt, ut) = E[R(xt, ut, xt+1)]
for each tuple, i.e. it performs a regression as (xi

t, u
i
t) →

rit+1. Based on this approximation, the second iteration
extends the optimization horizon h by estimating the
function Q̂2(xt, ut) through a regression performed on the
following training set:

T S2 =

{[
(xi

t, u
i
t) → rit+1 +max

ut+1

Q̂1(x
i
t+1, ut+1)

]}
(4)

By proceeding in the same way, at the h-th iteration it
is possible to compute an approximation of the optimal
action-value function Q∗

h at horizon h (Castelletti et al.,
2011). The procedure iterates until the Q-function con-
verges or a maximum number of iterations is reached (see
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2.1 Markov Decision Processes

Water reservoir operation problems generally require to
take sequential decisions ut at discrete time instants (t =
1, 2, . . .) on the basis of the current system conditions
described by the state vector xt (e.g., reservoir storage).
The control decisions are determined by a feedback control
policy ut = π(xt) and alter the state of the system
according to a transition function Pw(xt+1|xt, ut) affected
by a vector of stochastic external drivers qt+1 ∼ φt(w)
(e.g., reservoir inflows) described by a probability density
function, which depends on the considered climate scenario
w ∈ Ξ. Such system can be modeled as a discrete-time,
non-linear, stochastic Markov Decision Process defined as
a tuple

< X ,U ,Pw,R, γ >

where X ⊂ Rnx is the continuous state space, U ⊂ Rnu

is the continuous control space, Pw(xt+1|xt, ut) is the
transition model defining the transition density between
state xt and xt+1 under control ut for a specific scenario
w ∈ Ξ, R(xt, ut, xt+1) is a reward function that specifies
the instantaneous reward when state xt+1 is reached from
state xt by taking action ut, γ ∈ [0, 1] is a discount
factor. The policy is characterized by a density distribution
π(ut|xt) that specifies the probability of taking action ut

in state xt (Castelletti et al., 2011).

Solving an MDP means to find a policy that maximizes
the action-value function in each state:

π∗ = arg max
ut∈U

Q∗(xt, ut) (1)

where the optimal action-value function Q∗ is the solution
of the following equation

Q∗(xt, ut) =

∫

X
[R(xt, ut, xt+1)+

γ max
ut+1∈U

Q∗(xt+1, ut+1)]Pw(dxt+1|xt, ut)
(2)

2.2 Fitted Q-iteration

Fitted Q-iteration (FQI) is a batch-mode reinforcement
learning (RL) algorithm that estimates an approximation
of Q∗(xt, ut) from experience samples, collected either
from the system observations or via model simulations,
which constitute a finite sample dataset F defined as

F =
{
< xi

t, u
i
t, x

i
t+1, r

i
t+1 >, i = 1, . . . , N

}
(3)

where rt+1 = R(xt, ut, xt+1) and N is the cardinality of F .
Each tuple is a sample of the one-step transition dynamics
of the system, regardless the way it is generated, whether
from one single trajectory of the system (e.g., the historical
one) or from several, independently generated, one-step or
multi-step simulations of the system dynamics.

In particular, the fitted Q-iteration (FQI) algorithm pro-
posed by Ernst et al. (2005) and derived from fitted values
iteration works (Ormoneit and Sen, 2002), combines the
RL idea of learning from experience with the concept of
continuous approximation of the value function (Gordon,
1995). The advantage of this approach is twofold: first,
a continuous mapping of the state-action pair into the
action-value function should permit the same level of
accuracy as a look-up table representation based on an
extremely dense grid, but using a significantly coarser grid;
second, the learning process is performed offline, without
the need for a direct interaction with the real system.
FQI has been recently applied in different research fields,
such as robotics (Bonarini et al., 2008; Riedmiller et al.,
2009), control theory application for active suspensions
(Tognetti et al., 2009) and energy systems (Ernst et al.,
2009), biology and medicine (Pineau et al., 2009; Zhao
et al., 2011), environmental management (Castelletti et al.,
2010; Pianosi et al., 2013; Giuliani et al., 2014).

Given the dataset F , FQI reformulates Problem (1) as a
sequence of regression problems, producing a sequence of
Q̂h-functions which approximate the optimal action-value
function Q∗(xt, ut) defined in eq. (2) by iteratively extend-
ing the optimization horizon h. In the first iteration (h =
1), the algorithm produces an approximation of the ex-

pected immediate reward Q̂1(xt, ut) = E[R(xt, ut, xt+1)]
for each tuple, i.e. it performs a regression as (xi

t, u
i
t) →

rit+1. Based on this approximation, the second iteration
extends the optimization horizon h by estimating the
function Q̂2(xt, ut) through a regression performed on the
following training set:

T S2 =

{[
(xi

t, u
i
t) → rit+1 +max

ut+1

Q̂1(x
i
t+1, ut+1)

]}
(4)

By proceeding in the same way, at the h-th iteration it
is possible to compute an approximation of the optimal
action-value function Q∗

h at horizon h (Castelletti et al.,
2011). The procedure iterates until the Q-function con-
verges or a maximum number of iterations is reached (see
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Algorithm 1 sFQI Algorithm

Inputs: a learning set of tuples Fw and a regression
algorithm
Initialization:
Set h = 0

Set Q̂0(·) = 0 over the whole enlarged state-action space
(X × Ξ)× U
Iterations: repeat until stopping conditions are met
- h ← h+ 1
- build the training set
T S =

{
(IN i, OUT i), i = 1, . . . , Nw

}
where
IN i = (xi

t, w
i, ui

t)

OUT i = rit+1 + γmaxut+1∈U Q̂h−1(x
i
t+1, w

i, ui
t+1)

- Run the regression algorithm on T S to get Q̂h(·)

Ernst et al. (2005) for a discussion about the stopping con-
dition and the convergence properties of the algorithm).

2.3 Scenario-based FQI

In this paper, we propose to extend the FQI algorithm to
solve MDPs under set-membership uncertainty. The idea
of the scenario-based fitted Q-iteration (sFQI) is to enlarge
the state space X to include the uncertain parameter
w ∈ Ξ to account for the uncertainty in the disturbance
vector’s PDF. The original sample dataset F is hence
modified to construct a new dataset Fw, defined as:

Fw =
{
< xi

t, w
i, ui

t, x
i
t+1, w

i, rit+1 >, i = 1, . . . , Nw

}
(5)

where Nw = N · nw is the number of tuples in the sFQI
dataset, which is larger than N because sFQI operates in
an enlarged state space, and nw is the number of uncertain
parameters w sampled in the algorithm learning set. Given
Fw, sFQI estimates an approximation of the optimal
action-value function Q∗(xt, w, ut) that generalizes over
the uncertain parameter space Ξ. A tabular version of the
algorithm is given in Algorithm 1.

As a consequence, sFQI allows learning a continuous ap-
proximation over Ξ of the optimal action-value function,
and hence deriving an adaptive control policy π∗ condi-
tioned on the uncertain scenarios w ∈ Ξ. Note that the
continuous approximation over Ξ allows the sFQI policy
to deal with scenarios w′ ∈ Ξ not directly experienced
during the training process. Indeed, like the continuous
FQI mapping of state-action pairs into Q∗(xt, ut) allows
attaining the same level of accuracy as a look-up table
representation based on an extremely dense grid, but
using a definitely coarser grid for the state-action space,
the continuous sFQI mapping of state-scenario-action into
Q∗(xt, w, ut) can be performed on a limited number of
scenarios w, while ensuring the same level of accuracy in
scenarios w′ �= w.

3. CASE STUDY DESCRIPTION

The proposed scenario-based FQI approach is demon-
strated on a simplified model of the Lake Como system,
a regulated lake in Northern Italy (Figure 1). Lake Como
is characterized by an active storage capacity of 254 Mm3

and a mean inflow rate of 160 m3/s. It is fed by a 4,552

Fig. 1. Map of the Lake Como system.

km2 catchment, which is located at an average elevation of
1500 m in the central part of the Alps and is characterized
by the typical mixed snow-rain Alpine hydrological regime
(Denaro et al., 2017). Lake Como inflow and effluent is the
Adda River, a tributary of the Po River and the fourth
longest Italian river. The lake release feeds eight run-of-
river hydroelectric power plants and supports four agri-
cultural districts with a total surface of 1,400 km2. Major
crops are cereals, especially maize, along with temporary
grasslands for livestock (Giuliani et al., 2016b).

The Lake Como system is modeled as a discrete-time,
stationary, non-linear, stochastic MDP. The state variable
xt is the reservoir storage and the control ut is the
release decision. The system is affected by a stochastic
disturbance qt+1 representing the inflow to the reservoir in
the time interval [t, t+1). In the adopted notation, the time
subscript of a variable represents the instant at which its
value is deterministically known. The state xt is observed
at time t, whereas the disturbances vector has subscript
t + 1 denoting the realization of the stochastic process in
the time interval [t, t+1). The transition function is defined
by the mass-balance equation of the lake storage, i.e.

xt+1 = xt + qt+1 − qRt+1 (6)

where the release qRt+1 depends on the control ut con-
strained within a certain zone of operation discretion by
the maximum and minimum feasible release functions,
which mathematically embody some physical and norma-
tive constraints according to the current water level of the
reservoir.

The daily operations of the lake aims at minimizing the
vulnerability of the water supply to the downstream users.
According to previous works (Giuliani et al., 2016b), this
cost function rt+1(·) is formulated as the quadratic daily
deficit with respect to a fixed water demand downstream
d=370 m3/s, i.e.

rt+1 = (max
(
(d− qRt+1), 0

)
)2 (7)

where the quadratic formulation penalizes severe deficits
in a single time step, while allowing for more frequent,
small shortages (Hashimoto et al., 1982).
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Fig. 2. Comparison of the historical inflow trajectory with
the four perturbed scenarios.

4. APPLICATION RESULTS

4.1 Experiment Setting

In this work, we consider four scenarios of inflows, approx-
imating the impacts of climate change. These scenarios,
displayed in Figure 2, present daily inflow values for 730
days and are obtained via perturbation of the historical
inflow wh by reducing or increasing the historical average
by 3% and 5% (Culley et al., 2016).

To demonstrate the potential of the proposed scenario-
based FQI in controlling water reservoir systems under
uncertainty, we performed the following experiments:

• Historical policy (πh): the optimal control policy is
determined via FQI using a sample dataset F gen-
erated through 100 model simulations with pseudo-
random controls and historical inflows. The perfor-
mance of this policy will be then evaluated against
both the historical inflows (i.e., the same used in the
policy design) and the four perturbed scenarios of
inflows.

• Fully Adapted policy (πfa): the optimal control policy
is determined via FQI using a sample dataset F gen-
erated through 100 model simulations with pseudo-
random controls and one perturbed scenario of in-
flows. This policy represents the upper-bound of the
system performance under climate change, assuming
the system operator recognizes the change and opti-
mally re-operates the system based on the new hydro-
logical conditions. In particular, we consider two fully
adapted policies, namely pfa−5 and pfa+5, which are
designed under scenarios w−5 and w+5, respectively.

• sFQI policy (πsFQI): the optimal control policy is
determined via sFQI using a sample dataset Fw gen-
erated through 100 model simulations with pseudo-
random controls and three scenarios of inflows, in-
cluding wh, w+5, and w−5.

We tested several parameter settings for FQI and sFQI and
stable solutions have been reached when the parameters of
both algorithms are set as follows:

• number of trees M = 300;
• number of random cut directions K = 2 for FQI and
K = 3 for sFQI;

• minimum number of points per leaf nmin = 25;
• number of iterations for approximating theQ-function
h = 40.
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Fig. 3. Performance of policy πh evaluated over different
inflow scenarios.

4.2 Numerical results

Figure 3 illustrates the impacts of the different inflow
scenarios on the performance of the historical policy πh.
When evaluated over the historical inflow scenario wh, πh

attains a performance equal to 48.15 [m3/s]2, correspond-
ing to a daily volume of 5.99e+05 m3. This latter degrades
to 259.94 [m3/s]2 (1.39e+06 m3/d) and to 516.32 [m3/s]2

(1.96e+06 m3/d) if the same policy is evaluated with no
adaptation under scenarios w−3 and w−5, respectively.
On the contrary, the performance of πh is equal to 6.32
[m3/s]2 (2.17 m3/d) and 5.61 [m3/s]2 (2.05e+05 m3/d)
when evaluated under scenarios w+3 and w+5, respectively.
The same trends apply also to the performance of the
fully adapted and the sFQI policies, as reported in Table
1: decreasing inflows always induce a worsening of the
performance, while increasing inflows reduces the water
supply deficit. These results demonstrate that the control
policy performance is sensitive to the climate scenario that
will realize. Moreover, the uncertainty in the scenarios
is transferred and amplified when evaluated in terms of
policy performance (Giuliani et al., 2016a).

Table 1. Performance of the four considered
policies (rows) evaluated over the four per-

turbed inflow scenarios (columns).

w−5 w−3 w+3 w+5

πh 516.32 259.94 6.32 5.61
πfa−5 500.91 256.05 9.58 7.98
πfa+5 514.31 258.29 6.32 5.60
πsFQI 505.45 249.50 6.32 5.60

The results in Table 1 suggest that the most challenging
scenario is w−5 (first column). In fact, all the policies at-
tain their worst performance under this scenario. However,
despite the challenging conditions, adapting the operations
of the lake allows a partial mitigation of these adverse
climate change impacts. In fact, the performance of πh is
equal to 516 [m3/s]2, while policy πfa−5, which is fully
adapted to this scenario, reduces the water deficit by
3% (Figure 4). It is worth noting that such improvement
requires adapting to the actual scenario that will realize
in the future. Since the inflow scenarios are uncertain,
such adaptation might be difficult. We therefore need to
consider the risk of mis-adaptation, namely the design of a
solution fully adapted to an inflow scenario that is different
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4. APPLICATION RESULTS

4.1 Experiment Setting

In this work, we consider four scenarios of inflows, approx-
imating the impacts of climate change. These scenarios,
displayed in Figure 2, present daily inflow values for 730
days and are obtained via perturbation of the historical
inflow wh by reducing or increasing the historical average
by 3% and 5% (Culley et al., 2016).

To demonstrate the potential of the proposed scenario-
based FQI in controlling water reservoir systems under
uncertainty, we performed the following experiments:

• Historical policy (πh): the optimal control policy is
determined via FQI using a sample dataset F gen-
erated through 100 model simulations with pseudo-
random controls and historical inflows. The perfor-
mance of this policy will be then evaluated against
both the historical inflows (i.e., the same used in the
policy design) and the four perturbed scenarios of
inflows.

• Fully Adapted policy (πfa): the optimal control policy
is determined via FQI using a sample dataset F gen-
erated through 100 model simulations with pseudo-
random controls and one perturbed scenario of in-
flows. This policy represents the upper-bound of the
system performance under climate change, assuming
the system operator recognizes the change and opti-
mally re-operates the system based on the new hydro-
logical conditions. In particular, we consider two fully
adapted policies, namely pfa−5 and pfa+5, which are
designed under scenarios w−5 and w+5, respectively.

• sFQI policy (πsFQI): the optimal control policy is
determined via sFQI using a sample dataset Fw gen-
erated through 100 model simulations with pseudo-
random controls and three scenarios of inflows, in-
cluding wh, w+5, and w−5.

We tested several parameter settings for FQI and sFQI and
stable solutions have been reached when the parameters of
both algorithms are set as follows:

• number of trees M = 300;
• number of random cut directions K = 2 for FQI and
K = 3 for sFQI;

• minimum number of points per leaf nmin = 25;
• number of iterations for approximating theQ-function
h = 40.
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4.2 Numerical results

Figure 3 illustrates the impacts of the different inflow
scenarios on the performance of the historical policy πh.
When evaluated over the historical inflow scenario wh, πh

attains a performance equal to 48.15 [m3/s]2, correspond-
ing to a daily volume of 5.99e+05 m3. This latter degrades
to 259.94 [m3/s]2 (1.39e+06 m3/d) and to 516.32 [m3/s]2

(1.96e+06 m3/d) if the same policy is evaluated with no
adaptation under scenarios w−3 and w−5, respectively.
On the contrary, the performance of πh is equal to 6.32
[m3/s]2 (2.17 m3/d) and 5.61 [m3/s]2 (2.05e+05 m3/d)
when evaluated under scenarios w+3 and w+5, respectively.
The same trends apply also to the performance of the
fully adapted and the sFQI policies, as reported in Table
1: decreasing inflows always induce a worsening of the
performance, while increasing inflows reduces the water
supply deficit. These results demonstrate that the control
policy performance is sensitive to the climate scenario that
will realize. Moreover, the uncertainty in the scenarios
is transferred and amplified when evaluated in terms of
policy performance (Giuliani et al., 2016a).

Table 1. Performance of the four considered
policies (rows) evaluated over the four per-

turbed inflow scenarios (columns).

w−5 w−3 w+3 w+5

πh 516.32 259.94 6.32 5.61
πfa−5 500.91 256.05 9.58 7.98
πfa+5 514.31 258.29 6.32 5.60
πsFQI 505.45 249.50 6.32 5.60

The results in Table 1 suggest that the most challenging
scenario is w−5 (first column). In fact, all the policies at-
tain their worst performance under this scenario. However,
despite the challenging conditions, adapting the operations
of the lake allows a partial mitigation of these adverse
climate change impacts. In fact, the performance of πh is
equal to 516 [m3/s]2, while policy πfa−5, which is fully
adapted to this scenario, reduces the water deficit by
3% (Figure 4). It is worth noting that such improvement
requires adapting to the actual scenario that will realize
in the future. Since the inflow scenarios are uncertain,
such adaptation might be difficult. We therefore need to
consider the risk of mis-adaptation, namely the design of a
solution fully adapted to an inflow scenario that is different
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from the one that will actually realize. Figure 4 shows that
the mis-adapted policy πfa+5, designed assuming scenario
w+5 and evaluated under scenario w−5 is almost equivalent
to the historical policy. The performance of πsFQI , instead,
improves the historical one by 2%. Moreover, without
assuming the realization of scenario w−5, it attains a per-
formance that is close to the upper-bound represented by
πfa−5. Beside comparing the performance of the different
policies under scenario w−5, it is interesting to focus also
on scenario w−3 (see Table 1, second column). This latter
represents a scenario with the same overall trend than
w−5 (i.e., a reduction of inflows) which is not used in the
design of any policy reported in Table 1. Scenario w−3

hence allows testing the effectiveness of sFQI in learning
a continuous approximation over the entire space of sce-
narios. Figure 5 shows that, again, πh and πfa+5 attain
the worst performance (i.e., highest water deficit). Under
this scenario, the performance improvement obtained with
policy πfa−5 is reduced by 1.5%. The solution designed
via sFQI, instead, is able to generalize over this scenario
and produces a 4% improvement in the control policy
performance. This feature of sFQI makes it extremely
promising for handling the deep uncertainty associated to
the future climate.

Finally, the performance of all the policies improve under
increasing inflows (i.e., w+3 and w+5) with respect to their
evaluation under the historical inflows (see Table 1, third
and fourth columns). This is due to the increased water
availability in the system, which simplifies the operations
of the lake and allows reducing the water deficit. It is still
interesting to observe that a mis-adapted policy, which in
these scenarios is πfa−5, attains the worst performance
in both scenarios as it was designed assuming a decrease
of inflows. On the contrary, the policy designed via sFQI
outperforms πh and is equivalent to πfa+5.

5. CONCLUSION

The paper presents a novel method, called scenario-based
Fitted Q-Iteration, to control water reservoir systems
under climate change, which are modeled as MDPs under
set-membership uncertainty. This method represents an
extension of the Fitted Q-Iteration algorithm to learn a
continuous approximation of the action-value function over
the space of the uncertain parameters (i.e., the uncertain
climate scenarios). As a result, sFQI embeds the set-
membership uncertainty of the inflow scenarios and is able
to approximate with a single learning process the optimal
control policy for any scenario in the uncertainty set.
The method is demonstrated on a simplified model of the
Lake Como (Italy) under historical and perturbed inflow
scenarios, where decreasing inflows significantly challenge
the ability of the system of ensuring a reliable water supply
to the downstream users.

Results show that the sFQI algorithm performs satisfac-
torily compared to the original FQI, regardless of the
inflow scenario used for the evaluation of the policy. Since
the sFQI policy is continuously approximated over the
scenarios’ space, it is also able to deal with realizations
that were not directly experienced during the learning
process. This feature is extremely valuable for designing
adaptive control policies for managing water reservoir sys-
tems under climate-related uncertainty, where, generally,
a solution fully adapted to a specific scenario suffers a
degradation of performance when evaluated on a different
scenario.

Future research efforts will focus on testing the sensitivity
of sFQI to increasing levels of uncertainty by enlarging the
range of variability of the inflows’ scenarios as well as by
including other co-varying factors affecting water reservoir
systems (e.g., energy price, water demand). Moreover, we
will assess the performance of sFQI in multi-objective
control problems and we will validate its potential in real-
world applications.
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