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WAYPOINT-OPTIMIZED CLOSED-LOOP GUIDANCE FOR 
SPACECRAFT RENDEZVOUS IN RELATIVE MOTION  

Roberto Furfaro*, Roberto Ruggiero†, Francesco Topputo‡, Marco Lovera§, 
Richard Linares** 

The design of a closed-loop guidance algorithm for autonomous relative motion 
is an important issue within the field of orbital dynamics. In this paper, we develop 
a closed-loop, waypoint-based, quasi-optimal algorithm that can be employed to 
execute autonomous rendezvous in relative motion.  Specifically, the deputy 
spacecraft is executing an autonomous rendezvous with the chief spacecraft via a 
modified version of the zero-effort-miss/zero-effort-velocity (ZEM/ZEV) feed-
back guidance. Here, the concept of waypoints-based guidance is introduced; they 
are defined as intermediate position and velocity targets between the departure 
point and the real final rendezvous. The position and velocity guidance is there-
fore divided in intervals. The ZEM/ZEV guidance parameters, represented by the 
coordinates of the final desired position, the components of the final required ve-
locity and the time needed to reach these targets, will be different depending on 
the time interval. To determine the guidance parameters, referred to as waypoints 
parameters, different strategies are analyzed. Specifically, a series of optimization 
problems, based on the minimization of the fuel consumption constrained by the 
need to achieve high level of position and velocity accuracy, are formulated and 
solved. The first the case analyzed is the one in which the position trajectory of 
the spacecraft is unconstrained. The dynamical models considered for this case 
are the Clohessy-Wiltshire-Hills (CWH) model (circular orbit) and the Linearized 
equations of relative motion (LERM) model (elliptic orbit). Then, a more chal-
lenging case is studied: some nonlinear constraints related to the entire position 
trajectory are introduced in the optimization problem formulation. It is demon-
strated that in all scenarios, the performances are satisfactory both from the point 
of view of the mass propellant expenditure and of the final position and velocity 
errors. Finally, the robustness of the waypoint-based ZEM/ZEM guidance is 
tested by simulating the closed-loop guidance in a higher fidelity dynamical 
model comprising the Restricted-two-body-problem (R2BP) nonlinear model 
with perturbations, expressed in form of acceleration.  In addition to disturbances, 
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a Monte Carlo analysis is conducted to test the system under off-nominal condi-
tions. The results show that the waypoint-based ZEM/ZEV feedback guidance is 
able to execute not only precise but also quasi-optimal  rendezvous maneuvers  in 
perturbed working conditions. 

 

INTRODUCTION 

Designing comprehensive and integrated closed-loop guidance and control algorithms for au-
tonomous relative motion is an important problem in space flight mechanics. Indeed,  over the past 
twenty years, a large variety of control and guidance approaches for controlling the chief-deputy 
relative motion in circular and elliptical motion have been proposed and studied. Most of the pro-
posed algorithms included impulsive and continuous control formulated in both Cartesian and or-
bital element formulations. Schaub et al. 1,2 provided the basis for devising impulsive feedback 
control algorithms using mean orbital elements. More recently, following a similar line of though, 
Anderson and Schaub3, devised a N-impulse control schema for formation flight in geostationary 
orbit using non-singular element description. On the continuous control side, both linear and non-
linear feedback approaches have been considered. Naasz et al.4 solved the relative motion control 
problem via the 𝐻"/𝐻$approach using the Clohessy-Wiltshire equations. Massari and Zamaro5 
proposed a control algorithm based on the solution of the state-dependent Riccati Equation. Queiroz 
et al.6 presented a non-linear Lyapunov based approach to devise an adaptive controller for multiple 
spacecraft in formation flight. More recently, Sherrill et al.7 proposed a method for continuous 
control of spacecraft formation flight in elliptical orbits based on Lyapunov-Floquet theory. The 
proposed controller featured a set of time-varying feedback gained to guide the deputy spacecraft 
toward the rendezvous with the chief satellite. 

However, generating closed-loop feedback trajectories that are rooted in optimal control theory 
is not an easy task. Recently, generalized Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) feed-
back guidance8 and its robustified version known as Optimal Sliding Guidance9 have been devel-
oped and applied for both planetary landing and general space guidance. The ZEM/ZEV feedback 
guidance has been studied extensively and can be found in the literature for intercept, rendezvous, 
terminal guidance and landing applications. Such analytical closed-loop guidance has been origi-
nally conceived by Battin10 who devised an energy optimal, feedback acceleration command for 
powered planetary descent. Ebrahimi et al.11 introduced the ZEV concept, as a partner for the well-
known ZEM and integrated it with a sliding surface for missile guidance with fixed-time propulsive 
maneuvers. Furfaro et al.12 extended the idea to the problem of lunar landing guidance and set the 
basis for the theoretical development of a robust closed-loop algorithm for precision landing. 
ZEM/ZEM feedback guidance is attractive because of its analytical simplicity as well as potential 
for quasi-optimal fuel performance for constant gravitational field. When robustified by a time-
dependent sliding term, the resulting OSG can be proven to be Globally Finite-Time Stable (GFTS) 
in spite of perturbation with known upper bound9. 

More recently, ZEM/ZEV feedback algorithm has been explored as possible closed-loop guid-
ance algorithm for relative motion guidance13. More specifically, we studied the guided relative 
motion of two spacecraft for which one of them is executing an autonomous rendezvous via the 
ZEM/ZEV feedback guidance as well as its robustifed OSG counterpart. Starting from the classical 
Clohessy-Wiltshire (CW) model, Furfaro et al.13 analyzed the ability of the ZEM/ZEV feedback 
guidance to execute closed-loop maneuvers as well as its ability to correct disturbances for preci-
sion guidance. Comparison with numerically-based, open-loop, fuel efficient solution provided an 
assessment of the algorithm in terms of accuracy and fuel efficiency. It was demonstrated that 
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whereas the algorithm is very accurate in terms of targeting a desired final position and velocity, it 
performs sub-optimally in terms of fuel consumption. The theoretical optimal guidance gains and 
the computed time-to-go did not yield good fuel performance. A parametric study demonstrated 
that such parameters can be changed to achieve better fuel-efficiency, although quasi-optimality 
was never achieved. Most of the problem is related to the fact that the ZEM/ZEV algorithm was 
derived under fairly strict conditions, that assumed that the gravitational field is constant or at most 
time-dependent9. In relative motion, such assumption is violated as the mathematical model com-
prises a “generalized” gravitational field 𝒈(𝒓, 𝒗) that includes spatially and velocity varying terms. 

In this paper, we explore a way-point guidance approach as a method to improve fuel perfor-
mances of the original ZEM/ZEV closed-loop algorithm. More specifically, we devised and tested 
an algorithm that selects a set of intermediate target points on the way to the final target point and 
employs the ZEM/ZEV feedback algorithm to  sequentially target the intermediate states until the 
final target is achieved. The problem of how many intermediate target points, its position and ve-
locity as well as the time-of-flight between points is approached using a set of local and global 
optimization methods. Here, the ZEM/ZEV analytical solution has been  embedded in both genetic 
and particle swarm optimization routines to optimize intermediate states and time of flight. Results 
are compared with numerically computed open-loop solutions and demonstrate that quasi-optimal-
ity is achievable with a limited number of way-points. Importantly, the way-point method is imple-
mented to demonstrate that feasible solutions can be computed for case where constraints are im-
posed to implement collision-avoidance, i.e. avoid the so-called keep-out zones. Finally, the results 
show that the waypoint-based ZEM/ZEV feedback guidance is able to execute not only precise but 
also quasi-optimal  rendezvous maneuvers  in perturbed working conditions. 

 
 

RELATIVE MOTION GUIDANCE MODEL 

 
The relative motion of a deputy spacecraft with respect to the chief satellite is generally de-

scribed in the Local-Vertical Local-Horizontal (LVLH) coordinate frame. The LVLH frame is at-
tached to the chief satellite. In the usual representation of the LVLH coordinate frame,  𝑥 is directed 
as the chief satellite radial direction, 𝑧 is oriented in the direction of the chief’s angular momentum 
(orbital), and 𝑦 is consequently oriented such that the LVLH frame is right orthogonal and right-
handed. Within this framework, the 𝑥 − 𝑦 coordinates describe the deputy in-plane motion and the 
𝑧 coordinate describes the out-of-plane motion. For highly eccentric orbits, the equations of relative 
motion can be described using a linearized model, also known as Linearized Equations of Relative 
Motion (LERM): 

 

𝑥 − 2𝑓𝑦 − 𝑓" + 2 2
34

𝑥 − 𝑓𝑦 = 𝑎78 + 𝑎98	   (1) 

𝑦 + 2𝑓𝑥 + 𝑓𝑥 − 𝑓" − 2 2
34

𝑦 = 𝑎7; + 𝑎9;    (2) 

𝑧 + 2
34
𝑧 = 𝑎7< + 𝑎9<    (3) 

 

where 𝑓 is the true anomaly of the chief orbit, 𝜇 is the gravitational parameter of the central 
body, 𝑟 is the orbital radius of the chief, 𝑎78, 𝑎7;, 𝑎7< are the components in the LVLH framework 
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of acceleration command (feedback) and 𝑎98, 𝑎9;, 𝑎9< are the components of the perturbing accel-
eration. The latter may include higher-order terms not considered in the linear dynamics and addi-
tional modelled perturbing acceleration different than the two-body Newtonian term (e.g. higher-
order gravitational harmonics, solar radiation pressure, third-body perturbation, etc.). The equa-
tions can be rewritten in a more compact form using a state-space formulation: 

 

𝒓 = 𝒗     (4) 

𝒗 =

𝑓" + 2 2
34

𝑓 0

−𝑓 𝑓" − 2 2
34

𝟎

0 0 − 2
34

𝒓 +
0 2𝑓 0

−2𝑓 0 0
0 0 0

𝒗 + 𝒂7 + 𝒂9 (5) 

 

Here, we set 𝒓 = 𝑥, 𝑦, 𝑧 B, 𝒗 = 𝑥, 𝑦, 𝑧 B, 𝒂7 = 𝑎78, 𝑎7;, 𝑎7<
B

and 𝒂9 = 𝑎98, 𝑎9;, 𝑎9<
B

. 
The CW equations are customarily obtained by setting the chief eccentricity equal to zero, resulting 
in the following: 

 

 

𝑥 − 2𝑛𝑦 − 3𝑛"𝑥 = 𝑎78 + 𝑎98	    (6) 

𝑦 + 2𝑛𝑥 = 𝑎7; + 𝑎9;     (7) 

𝑧 + 3𝑛"𝑧 = 𝑎7< + 𝑎9<     (8) 

 

or 

 

𝒓 = 𝒗       (9) 

𝒗 =
3𝑛" 0 0
0 0 0
0 0 −𝑛"

𝒓 +
0 2𝑛 0

−2𝑛 0 0
0 0 0

𝒗 + 𝒂7 + 𝒂9. (10) 

 

 

GENERALIZED ZEM/ZEV: THEORETICAL ALGORITHM 

The ZEM/ZEV feedback guidance algorithm has its roots in optimal control theory. The way-
point-based  feedback guidance is determined analytically by finding the acceleration command 
that satisfies the unconstrained energy-optimal control problem in a constant (or time-varying) 
gravitational field and assuming no perturbation is acting on the spacecraft. The following defini-
tions hold true: 

 

Definition 1: We define Zero-Effort-Miss (ZEM) as the distance (vector) the spacecraft misses 
the target if no acceleration command is executed after time 𝑡. Formally: 
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𝒁𝑬𝑴 𝑡 = 𝒓J − 𝒓 𝑡J , 𝒂7 𝜏 = 𝟎, 𝜏 ∈ 𝑡, 𝑡J 		   (11) 

 

Definition 2: We define Zero-Effort-Velocity (ZEV) as the velocity (vector) the spacecraft 
misses the target velocity if no acceleration command is executed after time 𝑡. Formally: 

 

𝒁𝑬𝑽 𝑡 = 𝒗J − 𝒗 𝑡J , 𝒂7 𝜏 = 𝟎, 𝜏 ∈ 𝑡, 𝑡J 		   (12) 

 

With ZEM and ZEM formally defined, one can formally solve the following energy optimal 
guidance problem: 

(Energy Optimal Guidance Problem): find the acceleration command 𝒂7  as function of 𝒁𝑬𝑴 
and 𝒁𝑬𝑽 that minimizes the energy-optimal cost (quadratic control effort): 

 

𝐽 𝒂7 = 𝒂7(𝜏)B𝒂7(𝜏)𝑑𝜏
PQ
P      (13) 

 

Subject to the dynamical equations of motion as physical constraints  

 

𝒓 = 𝒗      (14) 

𝒗 = 𝒈 𝑡 + 𝒂7	     (15) 

 

with initial conditions at time 𝑡 𝒓 𝑡 , 𝒗(𝑡) and final conditions 𝒓J, 𝒗J.  

Here, the acceleration command is assumed to be unbounded, that is, no constraints in the ac-
celeration (thrust) magnitude is enforced. The problem can be solved by a straightforward applica-
tion of the Pontryagin’s Minimum Principle (PMP) to determine a set of necessary conditions for 
the existence of an optimal solution. For this specific case, the resulting Two-Point Boundary Value 
Problem (TPBVP) has an analytical solution. Indeed the acceleration command can be expressed 
as linear function of 𝒁𝑬𝑴(𝑡) and 𝒁𝑬𝑽(𝑡) and 𝑡RS as follows: 

 

𝒂7 =
TU
PVWX

𝒁𝑬𝑴 𝑡 +	 TY
PVW

𝒁𝑬𝑽(𝑡)    (16) 

 

Here, the optimal guidance gains are found to be 𝑘[ = 6 and 𝑘] = −2. Following D’Souza1 or 
Guo2, an alternative formulation of the generalized ZEM/ZEV guidance algorithm can be deter-
mined: 

 

𝒂7 = − ^
PVWX

𝒓 𝑡 − 𝒓𝒇 − 	 𝟒
PVW

𝒗 𝑡 − 𝒗𝒇 − 𝒈    (17) 
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The two formulations of the guidance algorithm are perfectly equivalent only in the case of 
constant gravitational field. The time-to-go is determined by applying the transversality condition 
𝐻 𝑡J = 0. The later generally results in a quartic equation that yields only one feasible positive 
solution14. 

 

WAYPOINT OPTIMIZATION FORMULATION FOR ZEM/ZEV GUIDANCE IN 
RELATIVE MOTION 

 

As demonstrated by Furfaro et al.13, the ZEM/ZEV feedback algorithm can be employed to 
accurately execute closed-loop guidance in relative motion. However, a comparison between closed 
loop trajectories and fuel-optimal open-loop solutions in relative motion, show that the algorithm 
is very sub-optimal. The reason is due to the fact that the natural dynamics (both linear and linear-
ized) comprises terms that critically depend on position and velocity. One way to overcome the 
problem is to introduce a set of waypoints. The latter may generate arcs of intermediate closed-
loop trajectories where the spacecraft move in a dynamical fields with natural accelerations varying 
only mildly. In such a situation, the assumption of constant gravitational acceleration is only weakly 
violated. The position of the waypoints can be determined via an optimization approach.  Here, we 
are interested in determining a set of states (position and velocity) that can be sequentially targeted 
by the ZEM/ZEV algorithm with the deputy spacecraft on the way to the rendezvous point. The 
goal is to determine both the position of the states and the time of flight between waypoints. The 
optimization problem formulation can be summarized in the following way: 

 

𝐹𝑖𝑛𝑑	𝑿∗	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝐽∗	 = 	𝑚𝑖𝑛	𝐽 𝑿∗  

𝐽 = −	𝑚 𝑡j, 𝑋 + 	 𝐴 ∗ 𝑟 𝑡Jm − 𝑟m "

nopq

mrs

+ 𝐵 ∗ 𝒗 𝑡Jm − 𝒗m "
+

nopq

mrs

 

+	𝐴 ∗ 𝒓 𝑡junpv − 𝒓junpv + 𝐵 ∗ 𝒗 𝑡junpv − 𝒗junpv  

 

𝑿	 = 	 𝑡s	𝑡" … 	𝑡nopqxs	𝒓s	𝒓"	𝒓nopq	𝒗s	𝒗" … 	𝒗nopq	  

𝑳𝑩 ≤ 𝑿 ≤ 𝑯𝑩 

(18) 

 

It is important to stress that the number of waypoints 𝑁𝑊𝐴𝑌 is a constant (or parameter) of the 
problem. As a consequence, the optimal waypoints parameterization is correlated to a specific num-
ber of waypoints. The number of variables involved in the optimization problem is related to the 
number of waypoint through the following relations 

 

𝑛𝑣𝑎𝑟 = 7 ∗ 𝑁𝑊𝐴𝑌 + 1 (19) 
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The number 7 comes from the sum of the three position and the three velocity components of 
each waypoint plus the time needed to reach the waypoint itself. The “+1” is instead associated 
with the time needed to reach the very final target, whose position and velocity are not optimization 
parameters, but are constants.  As for any optimization problem, a performance index to be mini-
mized and the design variables vector have been defined in Eq. (18). They are denoted respectively 
with 𝐽 and 𝑋. Notice that the basic objective function is set to −	𝑚 𝑡j, 𝑋 , i.e. we are minimizing 
the negative of the final mass (equivalent to maximize the final mass of the spacecraft). Moreover, 
in order to guarantee the targeting of each waypoint and the very final point some Penalty terms 
are added to the basic objective function. This allows to assign a higher score (and so to penalize) 
the waypoints parameterizations in which the position and velocity errors at each waypoint or at 
the final one are high. It is straightforward that although the final target in terms of velocity and 
position is constant, the final penalty term depends on the waypoint parameterization. 

The optimization problem is solved for a variety of constrained and unconstrained relative mo-
tion scenarios, using a hybrid combination of particle swarm optimization (global optimizer) and 
sequential quadratic programming (Local optimizer).Here, the goal is to conduct a comprehensive 
parametric study of the fuel performance of the waypoint-based ZEM/ZEV  feedback guidance as 
function of number of selected waypoints. 

 

RESULTS 

An initial analysis of the fuel consumption and accuracy performance of the proposed algorithm is 
evaluated as function of the number of waypoints. Here, we employ the particle swarm optimization 
technique to search for the number of waypoints that minimize the fuel consumption when targeted 
sequentially by the ZEM/ZEV guidance algorithm. The following scenario is considered. It is as-
sumed that the chief satellite is in an initial circular orbit at an altitude of 7500	𝑘𝑚. The deputy 
satellite is located in an initial relative position 𝒓 0 = 7047𝑚, 5136𝑚, 5013𝑚 B in the LVLH 

coordinate frame. The initial relative velocity is 𝒗 0 = −2.4	 �
�
, −13.7 �

�
, 4.08 �

�

B
. The deputy 

satellite is driven by the generalized ZEM/ZEV feedback algorithm to rendezvous with the chief 
satellite, i.e. the target point is the origin of the LVLH coordinate system to be achieved with zero 
terminal velocity. The deputy spacecraft is assumed to have a mass of 2000𝑘𝑔, exhibiting a pro-
pulsion system with specific impulse of 𝐼�9 = 204	𝑠 and maximum thrust of 16	𝑁. In this case, the 
fuel-optimal solution is shown to provide a final mass of 1991.6	𝑘𝑔. The goal is to study the fuel 
consumption as function of the number of best waypoints as determined by the optimizer. 

Generally, any heuristic global optimization technique evaluates the objective function selecting 
the candidate optimal design variables in a larger search space, with a certain criterion. No initial 
candidate solutions are provided as input to the function; in this way and the initialization is deter-
mined randomly with a uniform distribution inside a limited but specified set. Moreover, some 
lower and upper bounds are applied to the design variables, i.e. the waypoint parameters.  

 

𝐿𝐵Pm�� ≤ 𝑡� ≤ 𝐻𝐵Pm�� 

−𝑙𝑖𝑚9S� ≤ 𝒓m ≤ +𝑙𝑖𝑚9S� 

−𝑙𝑖𝑚��� ≤ 𝒗m ≤ +𝑙𝑖𝑚��� 

𝑖 = 1, …𝑁𝑊𝐴𝑌											𝑗 = 1, 𝑁𝑊𝐴𝑌 + 1 

(20) 
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The values of limits are reported in Table 1. 

 

𝒍𝒊𝒎𝒑𝒐𝒔[𝒎] 𝒍𝒊𝒎𝒗𝒆𝒍[𝒎/𝒔] 𝑳𝑩𝒕𝒊𝒎𝒆[𝒔] 𝑯𝑩𝒕𝒊𝒎𝒆[𝒔] 

8000 8 1000 8000 

 
Table 1: Lower and upper bounds of the design variables for the Global Optimization 

 

The waypoint position search space in this case can be represented with a cube centered in the 
origin with a side of 16	𝑘𝑚 . 

 
Figure 2: Waypoint position search space of the Global Optimization 

The trend of the optimal performances corresponding to the different number of waypoints is 
shown in Figure 3. 
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Figure 3: Global optimization performances results with respect to the number of waypoints with CWH 

 

The best (fuel-optimal) solution corresponds to the case with three (3) waypoints. Accuracy and 
fuel consumption performance are reported in Table 2. 

Table 2: Best Result of the Global optimization with CWH 

𝑵°	𝒘𝒂𝒚𝒑 𝑭𝑴[𝒌𝒈] 𝑨𝑪𝑪𝑷[𝒎] 𝑨𝑪𝑪𝑽[𝒎/𝒔] 𝑭𝑻[𝒔] 

3 1990,8 2,20e-09 1,02e-05 6217,7 

 

Figure 4 shows the histories of the waypoint-based, guided spacecraft position and velocity. 
Figure 5 shows the histories of thrust, mass and acceleration command. Figure 6 shows the trajec-
tory in the relative LHLV coordinate frame. 
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Figure 5: Acceleration command components, Mass and Thrust module history of the best parameterization 

obtained with the Global Optimization(CWH) 

(a) (b) 

Figure 4: Position and velocity history along the three coordinates of the best parameterization with ob-
tained with the Global Optimization(CWH) 

(a) (b) 
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Figure 6: Position trajectory of the best parameterization obtained with the Global Optimization(CWH) 

In order to emphasize the improvement obtained with the outcome of the Global Optimization, 
the results found with the different control strategy and waypoints parameters assignment are re-
ported in Figure 7. 

 

 

Figure 7: Performance results comparison for unconstrained position trajectory with CWH 
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The overall fuel performance for the various cases is reported in Figure 8.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

Constrained Way-point Optimization 

Most studies assume that the deputy satellite may access any region of the configuration space. 
However, many scenarios of recent orbital maneuvers involve operations in the proximity of large 
scale structures, such as a space station. In these case, accidental contact of the flight objects could 
lead to dangerous situations. Consequently, one of the essential requirements for rendezvous oper-
ations is the ability to execute a maneuver which avoid the collision before an eventual docking 
procedure. Moreover, such scenarios may include additional constraints such as obstructions which 
are fixed or moving in the neighborhood of the target. Such obstructions may be other spacecraft, 
station keeping near the target itself or a nonphysical volume, such as an antenna radiation beam. 

In this section we report the case where a quasi-optimal waypoint-based ZEM/ZEV closed-loop 
solution is sought via constrained optimization. The problem consists of forcing the path of the 
spacecraft inside the same cone but outside a sphere placed between the departure and destination 
points. Here, it is necessary to introduce in the optimization problem formulation, a constraint 
which involves the entire position trajectory and not only the waypoints positions. The new non-
linear constraints can be expressed considering the Cartesian Equation of the cone and the sphere 
in the space in the following way: 

 

𝑀§,93S9 = 9,2	𝑘𝑔 

𝑀¨,93S9 = 11,9	𝑘𝑔 

𝑀",93S9 = 12,3	𝑘𝑔 

𝑀s,93S9 = 28	𝑘𝑔 

𝑀©,93S9 = 8,43	𝑘𝑔 

è CL	without	WPs	

è CL	with	WPs	on	OP	trajectory	

è CL	with	WPs	optimized	locally	

è CL	with	WPs	optimized	globally	

è Optimal	OP	trajectory	

Figure 8: Propellant mass consumed for each guidance strategy. Here, we report details of the closed-loop guidance 
with WayPoints (WP) optimized via Particle Swarm Optimization  
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𝑟	8(𝑡)"

𝑎" +
𝑟;(𝑡)"

𝑏" −
𝑟	<(𝑡)"

𝑐" < 0			 
 
−(𝑟	8(𝑡) − 𝑥¬)" − (𝑟	;(𝑡) − 𝑦¬)"−(𝑟	­(𝑡) − 𝑧¬)" 	+	𝑅" < 0		 

0 < 𝑡 < 𝑡junpv			 (21)	

 

The “Constraint function” represents an input of the particle swarm algorithm. In the search of 
the optimal parameterization, the evaluation of a candidate value of design variables is performed 
computing the cost function and checking the constraint separately. In order to increase the com-
putational efficiency, the formulation of the optimization problem can be modified transforming 
the explicit nonlinear constraint in a penalty term in the cost function definition. In this way the 
integration of the dynamical model differential equations is performed only once in the evaluation 
of the cost function. The new optimization problem formulation can be summarized as follows: 

 

𝐽 = −	𝑚 𝑡j, 𝑋 + 	 𝐴 ∗ 𝑟 𝑡Jm − 𝑟m "

nopq

mrs

+ 𝐵 ∗ 𝒗 𝑡Jm − 𝒗m "
+

nopq

mrs

 

+	𝐴 ∗ 𝒓 𝑡junpv − 𝒓junpv + 𝐵 ∗ 𝒗 𝑡junpv − 𝒗junpv +	

+	𝐶 ∗ 	𝑇𝑟𝑎𝑗_𝐶𝑜𝑛𝑠𝑡𝑟(𝑥, 𝑦, 𝑧)	

𝑟m	8"

𝑎" +
𝑟m	;"

𝑏" −
𝑟m	<"

𝑐" < 0			, 		𝑖 = 1,… ,𝑁𝑊𝐴𝑌	

−(𝑟m	8 − 𝑥¬)" − (𝑟m	; − 𝑦¬)"−(𝑟m	< − 𝑧¬)"	 + 	𝑅" < 0			, 		𝑖 = 1,… ,𝑁𝑊𝐴𝑌	

(22)	

The new term 𝐶 ∗ 	𝑇𝑟𝑎𝑗_𝐶𝑜𝑛𝑠𝑡𝑟(𝑥, 𝑦, 𝑧) allows to penalize the waypoint parameterization 
whose position trajectory does not satisfy the constraint. The penalization value is defined through 
the function 	𝑇𝑟𝑎𝑗_𝐶𝑜𝑛𝑠𝑡𝑟(𝑥, 𝑦, 𝑧) which takes as input the position coordinates at every time in-
stants and gives as output the number of points in the space located inside the sphere or outside the 
cone.Moreover, with the purpose of guaranteeing an appreciable distance between the satellite po-
sition trajectory and the spherical surface, a certain tolerance value is added in the Cartesian equa-
tion of the sphere.    

−(𝑟m	8 − 𝑥¬)" − (𝑟m	; − 𝑦¬)"−(𝑟m	< − 𝑧¬)"	 + 	(𝑅 + 𝑡𝑜𝑙)"			, 		𝑖 = 1,… ,𝑁𝑊𝐴𝑌	 (23)	

 

The upper and lower bounds associated to the design variable are kept equal to the previous 
problem. Also in this case the optimization problem is solved considering a number of waypoint 
varying from 1 to 5 and with two values of tolerance. The results are summarized in figure 9 
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Figure 9: Fuel performance results with the position trajectory inside a cone and outside a sphere as func-

tion of the number of waypoints and tolerances. 

For each value of tolerance, the best performance is detected in terms of fuel consumption. The 
resulting data and the corresponding position trajectory are reported in table 3 and 4 for the 50𝑚 
and 150𝑚, respectively: 

 
Table 3: Best Result Position trajectory inside a cone and outside a sphere case  with tolerance of 50 m 

𝑵°	𝒘𝒂𝒚𝒑 𝑭𝑴[𝑲𝒈] 𝑨𝑪𝑪𝑷[𝒎] 𝑨𝑪𝑪𝑽[𝒎/𝒔] 𝑭𝑻[𝒔] 

2 1988,8 6,23e-08 1,61e-05 3004,0 

 
Table 4:  Best Result Position trajectory inside a cone and outside a sphere case with tolerance of 150 m 

𝑵°	𝒘𝒂𝒚𝒑 𝑭𝑴[𝑲𝒈] 𝑨𝑪𝑪𝑷[𝒎] 𝑨𝑪𝑪𝑽[𝒎/𝒔] FT[s] 

3 1986,6 5,76e-08 7,75e-06 4474,7 
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Figure 10: Best state trajectory inside a cone and outside the sphere with tolerance of 50 m. 

 

	

Figure 11: Best state trajectory inside a cone and outside the sphere with tolerance of 150 m. 
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Figure 10 and 11 show the resulting optimized way-point trajectory. As expected, passing from 
a tolerance of 50 m to a tolerance of 150 m, the distance between the position trajectory and the 
spherical surface grows. Furthermore, the results show that by increasing the tolerance, the perfor-
mances in terms of fuel consumption decrease for all number of waypoint. This is due to the fact 
that the constraint, in the second case, forces the trajectory in a stronger way with respect to the 
previous one. The requirement of avoiding the sphere, beside remaining inside the cone, leads to a 
higher propellant consumption. In conclusion, we demonstrate that the Waypoint based ZEM/ZEV 
guidance can be adopted also in the collision avoidance field.  Even though a comparison with an 
optimal open loop trajectory is not provided, the performances concerning the fuel expenditure and 
position and velocity accuracy can be considered acceptable. 

 

CONCLUSIONS 

A waypoint-based ZEM/ZEV closed-loop algorithm for relative motion guidance has been pre-
sented. The proposed approach was motivated by the fact that previous studies showed that optimal 
control theory can yield a simple and easy to mechanize feedback guidance algorithm that is energy 
optimal for the unconstrained motion of the spacecraft in a constant or time-dependent gravitational 
field. For a more general gravity field encountered in applications such as relative motion guidance, 
the ZEM/ZEV scheme yields accurate closed-loop trajectories that are generally heavily sub-opti-
mal. An optimized waypoint-based scheme is developed and tested to show that quasi-optimal per-
formances can be achieved by sequentially targeting intermediate points. We presented a study 
where the performances of the waypoint-based ZEM/ZEV algorithm are analyzed as function of 
the number of the targeted waypoints, waypoint states and intermediate time-of-flight. It is shown 
that when compared to numerically generated fuel-efficient optimal trajectories, quasi optimal per-
formances can be achieved. The optimization approach can be modified to include additional state 
constraints and generate closed-loop trajectories that keep the guided relative motion trajectories 
in safe zone while avoided prescribed keep-out zones. 
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