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Using Efficient Path Profiling to Optimize Memory
Consumption of On-Chip Debugging for High-Level
Synthesis

PIETRO FEZZARDI, MARCO LATTUADA, and FABRIZIO FERRANDI, Politecnico di Milano

High-Level Synthesis (HLS) for FPGAs is attracting popularity and is increasingly used to handle complex
systems with multiple integrated components. To increase performance and efficiency, HLS flows now adopt
several advanced optimization techniques. Aggressive optimizations and system level integration can cause
the introduction of bugs that are only observable on-chip. Debugging support for circuits generated with HLS
is receiving a considerable attention. Among the data that can be collected on chip for debugging, one of
the most important is the state of the Finite State Machines (FSM) controlling the components of the circuit.
However, this usually requires a large amount of memory to trace the behavior during the execution. This
work proposes an approach that takes advantage of the HLS information and of the structure of the FSM to
compress control flow traces and to integrate optimized components for on-chip debugging. The generated
checkers analyze the FSM execution on-fly, automatically notifying when a bug is detected, localizing it and
providing data about its cause. The traces are compressed using a software profiling technique, called Efficient
Path Profiling (EPP), adapted for the debugging of hardware accelerators generated with HLS. With this
technique, the size of the memory used to store control flow traces can be reduced up to 2 orders of magnitude,
compared to state-of-the-art.
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1 INTRODUCTION
High-Level Synthesis (HLS) for Field Programmable Gate Arrays (FPGAs) aims at the automatic
generation of hardware designs from algorithmic descriptions, and is gaining popularity in various
fields of computing and electronic design. HLS is seen as a way to reach new fields of application
and to enlarge FPGA market, increasing designers’ productivity and reducing time-to-market. It is
also a key technology to abstract away the details of the Register Transfer Level (RTL) description,
bringing FPGAs to software engineers.
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The improvements and the optimizations introduced in the High-Level Synthesis methodologies
have increased the distance between the original high-level specification and the final RTL, reducing
their correlations. If a hardware accelerator exhibits misbehaviors, either in simulation or on-chip,
finding the cause can be cumbersome and time-consuming. This is even more critical for HLS-
generated circuits, where the generated hardware description is not intended to be human-readable.
Since more than 50% of the time spent on average in a project is for verification [10], debugging
support for HLS tools and for the generated designs is attracting great interest.
Debugging techniques for HLS can be divided in two groups, with intrinsic advantages and

weaknesses: I) techniques implemented on-chip; II) techniques based on simulation. On one hand,
simulation seamlessly provides full observability of the circuit during the entire execution, and it
does not require architectural modifications. On the other hand, in-circuit debugging is the only
way to capture interactions with other components of the system. In real world applications, designs
are usually composed of many components, which can be generated by means of HLS, provided
by third parties as Intellectual Property (IP) blocks, or hand-coded by the designer. IPs provided
by vendors may not have been tested for some corner cases of the end users, and hand-written
Hardware Description Language (HDL) descriptions may yield different results in simulation and
after synthesis [18] [20]. This scenario further complicates debugging when HLS is used for system
level design with integration of third parties IPs, and calls for a system level methodology to debug
HLS-generated systems directly on-chip. Many recent results have been pushing the limits of debug
capabilities for FPGAs and designs generated with HLS. To this end, one of the most important
data which must be collected during the on-chip execution is the state signal of all the Finite State
Machines (FSMs) of the circuits. Most of the existing approaches includes this in the extracted
traces [5], to infer some of the information to be provided to the users [8], or to decide how to trace
and analyze the bugs of the whole circuit [14].
This work presents a methodology for the integration of components for online automated

debugging of HLS-generated circuits. The main contributions are:

• The customization and optimization of the Efficient Path Profiling [2] to compress informa-
tion about FSM execution traces, minimizing their memory footprint on FPGA.

• The proposal of a HLS flow to generate control flow debugging components, exploiting the
enhanced Efficient Path Profiling, for automatic runtime bug detection on-chip.

The proposed flow generates a golden reference from the high-level source code along with the
HLS information and generates and inserts control flow checkers in the design. The on-chip control
flow checkers analyze the behavior of the design at runtime, notifying during execution if a bug
occurs and providing information on its sources. These characteristics are completed by automated
back-tracking of the detected bug to the original source code, using the data sent off-chip by the
checkers when a bug is detected.

In the following, Section 2 presents the related work, while Section 3 sets the background for the
work: Discrepancy Analysis HLS debug flow and Efficient Path Profiling [2]. Section 4 describes the
proposed methodology and debug flow, the modification of Efficient Path Profiling to target HLS
debugging, and how to optimize it to reduce memory usage. The results are discusses in Section 5.
Finally Section 6 closes and outlines possible future work.

2 RELATEDWORK
There are several different ongoing efforts to endow HLS frameworks with effective support for
debugging, both in academia and in industry [15] [24] [29]. In general, the proposed approaches
can be roughly divided into two main classes:
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(1) Approaches which use HLS information for automatic and efficient implementation of
debugging components, embedded in the designs to provide observability and to trace the
behavior of the circuits during execution.

(2) Approaches based on the instrumentation and execution of the Intermediate Representation
(IR) of the HLS compiler or of the original source code, which is used to generate a golden
reference for the behavior of the circuit. This golden reference is then used to check
automatically if the design is working properly at a functional level, and to report useful
source-level information to the users.

An example of the first type of approach has been proposed by Monson and Hutchings [21][23],
which use source level transformations to insert tracing logic (Event Observability Port and Buffers)
for the output signals of operations. The authors ported the methodology on-chip in [22], but only
focusing on Datapath operations, without detecting bugs involving control flow. Other approaches
instead are based on the tracing of the state signals of the FSMs performed directly on-chip. Goeders
and Wilton [12][13][14] generate a component aimed at managing debugging and at saving the
execution traces on FPGA. They show different techniques to reduce the memory usage necessary
to store the traces at runtime, and to support compiler optimizations. Their focus is on providing a
software-like debug framework, where users can manually inspect the traces after execution or
can suspend the hardware (HW) to analyze its state. They do not provide automated bug detection,
unlike the methodology proposed in this work. They also note that suspending the execution may
break interactions with other components of the system and potentially introduce other bugs.

Campbell et al. [5], instead, focus on Application Specific Integrated Circuits (ASICs) and adopt
an hybrid approach. They generate both a golden reference for the hardware execution from HLS
IR, and a set of components that are used to extract the equivalent execution traces from the circuit
(called hardware signature). The golden reference and the hardware signature are compared at the
end of the execution and bugs are automatically detected. Iskander et al. [19] propose a different
hybrid approach composed by two parts: a High-Level Validation and Low Level Debug. For the
High-Level Validation they run the golden reference software on a softcore on the FPGA, saving
the results and comparing them with the results obtained from the accelerators. The main intent of
this stage is to create a workflow that is easily embeddable in automated regression testing and unit
testing. The authors say that the memory and logic footprint of the High-Level Validation is high,
but they do not report data since they consider it acceptable for the scenario of unit testing. The
Low Level Debug, instead, uses partial reconfigurability to provide observability, insert breakpoints
and provide a software-like debugging experience.

Another trend in on-chip debugging is based on bringing ANSI-C assertions to HW [6] [16] [26],
adding assertion checker circuits. The FSM of the checker can be executed concurrently to the
controlled module [6] [16] or the synchronization can be directly performed by the FSM of the
accelerator itself [26]. Besides area overhead and modifications to the FSMs, the main problem of
such approach is that it can only check malfunctions foreseen by the developers. The assertion must
be manually inserted in the original C specification. This fails to spot bugs that are not checked with
assertions. Even when an assertion spots a wrong condition, the real root cause can be a previous
bug which is difficult to find. Finally, if the circuit happens to enter in a hanging state, the relevant
assertion trigger point may be never reached at all.
HLS of assertion checkers is also used for Runtime Verification. Selyunin et. al [27] use HLS to

generate runtime verification checkers in automotive chip design. Runtime Verification differs from
the automated bug detection proposed in this paper because it generates checkers for temporal
logic properties that must hold for all the possible executions of the circuit. Another difference
is that in runtime verification the properties to be checked must be specified in some way by the
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designer. This work, instead, automatically generates the checkers without requiring the designer to
specify the properties they have to check. The generated checkers are only capable of guaranteeing
equivalence between hardware and software execution on a fixed input. While this may seem a
limitation, the final goals of the two approaches are very different. Runtime verification checkers
guarantee that some properties hold during all the lifetime of the checked system, and they are even
embedded in final products. The proposed approach, instead, helps HLS developers to efficiently and
accurately find bugs, without the need of specifying temporal logic properties and automatically
backtracks bugs to the original source code.
Several other works adopt methodologies based on software instrumentation or simulation.

Campbell et al. [4] adapt their methodology to FPGA, but differently from [5] they rely on simulation
to generate the hardware signatures. For this reason the design runs unmodified and there are no
issues with on-chip memory usage. The same approach is adopted by Fezzardi et al. [8][9], who
define two complementary levels of the checks performed by their methodology: Control Flow
Level and Operation Level. They also say that their methodology should be applicable on-chip,
but in their work they still use simulation. Yang et al. [30][31] use the golden reference obtained
from the IR to insert instrumentation in the the RTL, but the whole debugging flow still relies on
simulation. However, unlike [4] and [8], the comparison between hardware and software is not
performed at the end of the execution, but directly by the RTL instrumentations during simulation.
The main limit of all these methods based on simulation is the impossibility of detecting post-

synthesis bugs. On the contrary, Calagar et al. [3] analyze automatically the discrepancies between
hardware and software, but they do it online, during the on-chip application execution. Their work
exploits both simulation and on-chip debugging. They do not generate the golden reference in
advance, but instead they use gdb server to analyze the software, the simulator APIs to analyze the
simulated RTL, and Altera SignalTap for in-circuit debugging. However, they do not support most
of the compiler optimizations performed during the HLS and the use of SignalTap causes a high
memory usage for the buffers used to collect the traces, as reported also in [21].

3 BACKGROUND

hardware software

HW trace SW tracecomparison

bug reports

simulation execution

IRHDL HLS

HLS
information

C

Fig. 1. Outline of the Discrepancy Analysis debug flow.

This section provides the background for the
methodology proposed in this paper. Specif-
ically, Section 3.1 describes the Discrepancy
Analysis debug flow used for offline debugging
of HLS-generated accelerators, and Section 3.2
presents the Efficient Path Profiling.

3.1 Discrepancy Analysis Debug Flow
As described in Section 2, one of the key ideas
for effective debug of HLS-generated designs
consists of extracting from the high-level spec-
ification a golden reference for the behavior
of the circuit, that is then used to automati-
cally find bugs in the generated accelerators.
This method, used for example in [4] [9] [30],
is often referred as Discrepancy Analysis [3] [8]. Figure 1 depicts an example of workflow for
Discrepancy Analysis (DA) similar to what is described in [4] and in [8]. The original high-level
specification, typically written in C, is the input of the HLS. The HLS then produces two outputs:
the HDL of the circuit (on the left), and some form of executable instrumented IR (on the right). This
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is usually possible thanks to Just-In-Time compilers that are able to execute the IR, or by printing
back the source code with instrumentation after HLS optimizations. The simulation of HDL then
generates the HW traces while the execution of the IR generates the SW traces, which represent
the golden reference for correct execution. Finally the comparison of traces is performed com-
pletely automatically, detecting the bugs that are reported associating them with the corresponding
high-level source code.

Several small variations of this flow can be found in literature. In [3] the comparison is executed
on-fly during hardware and software executions. The main other flavor of DA (used for example
in [31]) uses the SW traces with HLS information to create debugging components to be embedded
in the design. These components are executed in simulation along with the rest of the design to
automatically find bugs.

3.2 Efficient Path Profiling

BB1 cond = a > 0;
if(in1)

BB2 target = a;
else

BB3 target = init();
BB4 while(target != current && iter < 10){
BB5 iter++;

if(current < target)
BB6 current = pow(current,2);

else;
BB7 current *= coeff;
BB8 temp[iter] = current;

}
BB9 return current;

Fig. 2. Example of source code to be synthesized. Basic
Blocks identifiers are displayed on the left.

Tracing the control flow of designs generated
withHLS corresponds to observing the state sig-
nals of the FSMs, since they are typically built
starting from Control Flow Graphs (CFGs) [1],
which in turn represent the structure of the
high-level specifications. Every node of a CFG
is called Basic Block (BB) and it contains a list
of instructions that are executed sequentially
in software. The edges describe the branches
and the loops. In this way, the CFG statically
represents all the possible paths of execution of
the software at runtime. The dynamic informa-
tion about executed paths can be collected by
means of a software profiling technique called
Efficient Path Profiling (EPP) [2]. EPP is typi-
cally used to collect runtime information about
paths in a Control Flow Graph, but in Section 4
it will be adapted to hardware.
Intuitively, a path is a sequence of Basic Blocks executed consecutively. Since one specific

execution of a function is a sequence of Basic Blocks, it can be efficiently described by means
of a path. However, if the Control Flow Graph of a function contains at least one uncountable
loop, the number of possible paths which can be executed is potentially infinite, since the loop can
be repeated an arbitrary number of times. To overcome this issue, the set of paths which can be
extracted from a Control Flow Graph must be restricted, so that the execution trace of a function
is described by means of a sequence of paths. Ball and Laurus, in their seminal paper on EPP [2],
proposed a possible restriction to the paths which can be extracted from a Control Flow Graph and
an efficient technique to compute and compress information about them.

Figure 2 shows the source of the example used in the rest of this Section to describe the Efficient
Path Profiling. The corresponding CFG is shown in Figure 3. The function contains a loop [28]
composed of the Basic Blocks ⟨BB4, BB5, BB6, BB7, BB8⟩. The only feedback edge (i.e., the edge
which closes a cyclic path with origin in the BBEntry, see [28]) is ⟨BB8, BB4⟩.

The paths considered valid by Ball and Laurus are all the acyclic paths BBi ,. . . ,BBj such that:

(1) BBi is the BBEntry of the Control Flow Graph or the target of a feedback edge;
(2) BBj is the BBExit of the Control Flow Graph or the source of a feedback edge.
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Fig. 3. The Control Flow Graph of the example in
Figure 2. The dashed edge is the only feedback edge.
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Fig. 4. The Path Graph of the example in Figure 2.
The dotted edges are the additional auxiliary edges.

Id Path

0 BBEntry BB1 BB2 BB4 BB5 BB6 BB8 (BBExit )
1 BBEntry BB1 BB2 BB4 BB5 BB7 BB8 (BBExit )
2 BBEntry BB1 BB2 BB4 BB9 BBExit
3 BBEntry BB1 BB3 BB4 BB5 BB6 BB8 (BBExit )
4 BBEntry BB1 BB3 BB4 BB5 BB7 BB8 (BBExit )
5 BBEntry BB1 BB3 BB4 BB9 BBExit
6 (BBEntry) BB4 BB5 BB6 BB8
7 (BBEntry) BB4 BB5 BB7 BB8
8 (BBEntry) BB4 BB9 BBExit

Table 1. Valid paths of the Control Flow Graph in Figure 3.

This is modeled by building a modified version of the Control Flow Graph: the Path Graph.
The changes to apply to the CFG are: add an auxiliary edge from BBEntry to the target of each
feedback edge; add an auxiliary edge from the source of each feedback edge to BBExit ; remove all
the feedback edges. The valid paths of the CFG correspond to the paths from BBEntry to BBExit
in the Path Graph. The Path Graph derived from the Control Flow Graph in Figure 3 is shown in
Figure 4. Dotted edges are the added auxiliary edges.

Let N be the number of paths in the Path Graph, Efficient Path Profiling uses the number from 0
to N − 1 to identify them. It also associates a weightWi, j (also called edge increment) to each edge
⟨BBi , BBj ⟩, so that the identifier of a path is equal to the sum of the weights of the edges which
compose it. In Figure 4 the edges are labeled with the weights computed with EPP. According to
these weights, each path is associated with an identifier from 0 to 8. Table 1 lists the identifiers
for the valid paths in Figure 4. As an example, the execution trace ⟨BBEntry, BB1, BB2, BB4, BB5,
BB6, BB8, BB4, BB9, BBExit⟩ can be compressed in the sequence of paths ⟨0, 8⟩ without loss of
information. For the details of how path identifiers and edge weights are computed see [2].

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: July 2017.



Using EPP to Optimize Memory Consumption of On-Chip Debugging for HLS 1:7

Host Computer
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generation of
control flow checkers
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control flow checkers

High-Level Synthesis Flow

On-Chip Execution
Real-Time Checking

Automated Bug Detection

Backtrack to
Source Code

bug
reports

Fig. 5. Modified Discrepancy Analysis flow for on-chip debugging.

In adopting this technique, there are three advantages that are relevant for this work:
(1) the number of bits necessary to represent paths is minimal;
(2) at every point in the execution, the information about the currently executed path is

represented by a single integer (i.e., it can be put in a register);
(3) to update the counter used to store the currently executed path it is only required to

increment a local variable by the weight of the last traversed edge.

4 USING EPP WITH ON-CHIP DISCREPANCY ANALYSIS TO IMPROVE HLS
DEBUGGING

This work aims at adapting a Discrepancy Analysis flow to debug HLS-generated hardware on
FPGA, while reducing the memory usage. In particular, the focus is on control flow, i.e. on the
state of the FSMs that control the generated hardware. In this respect, the proposed approach is
applicable to all the HLS flows that generate functional modules composed of a Finite State Machine
and a Datapath. It may not be applicable to other models, like HLS of streaming computations.
This section describes in detail the different aspects of the methodology. Section 4.1 explains how
the Discrepancy Analysis debug flow is modified to generate the debugging components, and to
integrate them in the design. Section 4.2 describes how the reference traces for the generated design
are computed starting from software execution. Section 4.3 shows how Efficient Path Profiling is
adapted to the debugging of FSMs generated with HLS. Section 4.4 illustrates how to guarantee
that the first bug is correctly identified on-chip, while Section 4.5 sketches the functionalities of the
control flow checkers. Section 4.6 discusses how to compress the execution traces to reduce the
memory usage.

4.1 Modified Discrepancy Analysis Flow for On-Chip Debugging for HLS
For this work, the Discrepancy Analysis debug flow shown in Figure 1 has been modified to run
on-chip. The new flow is depicted in Figure 5. The portion on top with the blue background runs
on the host computer, while the portion below with the green background executes directly on the
FPGA. The High-Level Synthesis flow, enclosed in the dashed box, has been extended to use the
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software traces to generate dedicated components, called control flow checkers, that perform the
control flow checks on-chip.

A customized instance of control flow checker is integrated alongside the FSM of every functional
module. This enables a fine-grained customization of the checkers, to use the smallest number of
bits necessary for every function. The optimal number of bits and the dimension of the necessary
memory depend also on the software reference trace. Since all these factors can be evaluated on
the IR before the generation of the checkers, it is possible to explore the optimal values of the
parameters for every checker before synthesis, as explained in Section 4.6. Control flow checkers
contain memories that are initialized with the expected control flow trace, computed from software
with the modified version of Efficient Path Profiling (see Section 4.2). This is one of the differences
between previous works and the methodology proposed here: the debugging logic is not used to
memorize information on the HW execution, but to compare it in real-time with a golden reference.
Others have adopted this strategy [4][31] relying on simulation instead of debugging on-chip. In
this work, the debugging components are integrated in the design by the HLS engine and then
synthesized and executed on FPGA. As soon as a checker detects a mismatch between the expected
execution and the real behavior, it notifies it to the host. Only a limited amount of information is
exchanged: a unique identifier of the checker instance (that is uniquely determined during HLS and
embedded in every checker), and the offset in the trace execution where the mismatch happens.

With this approach, the quality of debugging is at least as good as with simulation-based checkers.
This means that all the control flow bugs detected with simulation are also visible with the hardware
checkers, while with on-chip debugging it is potentially possible to detect post-synthesis bugs and
mismatches that come from problems introduced by system integration. The proposed methodology
allows to reduce the memory necessary for the traces while providing two advantages: (1) improving
visibility of the bugs that only arise on-chip; (2) helping designers to automatically backtrack bugs
to the original source code. The first point is an advantage compared to approaches that only
rely on simulation [4] [31]. The second is not possible with other approaches that focus only on
providing architectural support for the collection of the traces [12], leaving the burden of their
manual analysis entirely to users.

4.2 EPP for Hardware Trace Generation
The main idea for the design of the checkers is to keep the reference traces small, in order to
minimize the memory usage. To this end, Efficient Path Profiling must be adapted to work on FSMs.
The advantage of EPP is that a single path represents a list of Basic Blocks. In most cases, storing a
path identifier is cheaper than storing the list of identifiers of BBs that compose that same path. To
use EPP on Finite State Machines it is necessary to rely on information extracted from the HLS
process. During HLS, the Control Flow Graph of the original source code is translated into a FSM.
The precise scheduling of the single operations is not really relevant here, because the focus is on
control flow. What is important is that during the HLS every BB is mapped onto a consecutive list
of states in the FSM, like depicted in Figure 6. This mapping is calledM in the following and it has
some useful properties.

• For every Basic Block BBi in the CFG, there is one and only one ordered sequence of
connected states in the FSM such thatM(BBi ) = ⟨Si,1, . . . , Si,n⟩.

• As a consequence, for every given path on the Control Flow Graph p = ⟨BBi , . . . ,BBj ⟩, it
exists one and only one path on the FSM p ′ = M(p) = ⟨M(BBi ), . . . ,M(BBj )⟩.

This intuitively means that the CFG and the FSM have the same branch structures. Thanks to
these properties and to the algorithm used in EPP for path numbering and edge weight computation,
EPP can be used without modifications also on the Finite State Machine. This guarantees that the
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Fig. 6. Two Path Graphs obtained applying Efficient Path Profiling respectively to the Control Flow Graph
of Figure 3, and to its associated Finite State Machine. Notice the similarities between the graphs, and the
equivalence of the edge increments.

algorithms on the CFG and on the FSM calculate the same identifiers for every path p and for the
associated path p ′ = M(p). Finally, in the CFG the edges with weightW , 0 are only the outgoing
edges from BB with branches. This means that for every Basic Block BBi the edges on the FSM
that are internal toM(BBi ) will always have weight 0.

All these properties make possible to compute the expected list of paths identifiers for the hard-
ware simply starting from software execution. EPP is used on the CFG of the software, instrumented
to print the list of identifiers of the traversed paths, that can be directly used as a golden reference
trace for the generated hardware.

4.3 EPP for Finite State Machines
In Sections 3.2 and 4.2 the discussion is focused on Path Graphs, computation of the edge weights for
EPP on FSMs, and how to generate the golden reference from software. However, during the actual
execution, the hardware follows the Finite State Machine, not the Path Graph. Feedback edges, that
were excluded by the computation of the increments, can be taken during execution. In [2], Ball
and Laurus select a minimal set of edges in the Control Flow Graph and add instrumentations to
increment and reset the EPP counter along the edges, including feedback edges. In FSMs, the edges
model the state transitions. For effective debugging, the structure of the FSM generated by HLS
cannot be altered adding new states or transitions. For this reason increments, resets and checks
must be scheduled in the existing states. In the following, the discussion is simplified describing
the instrumentations as if they were actually inserted in the FSM. However, bear in mind that they
are actually isolated from the FSM and completely encapsulated in the checker component. The
FSM only exposes its current and next state to the checker as explained in Section 4.5.
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To understand where to insert instrumentations in the FSM, it is useful to make a comparison
with software. In software, ensuring that the current execution matches the expected path means
ensuring that the path up to that point is correct. To do this, it is enough to check that the counter
used to accumulate edge weights matches the identifier of the expected path. Ideally, to have a
strong guarantee it would be necessary to check this condition at every cycle, but in practice
this is not necessary. Indeed, the only places where the execution path may diverge from the
expected are branches and feedback edges. Given that path identifiers are unique, it is enough to
check that the current path is correct only on feedback edges and upon the termination of the
execution of a function. In hardware, this means that the checks must be performed in states that are
destination of feedback edges, and in final states of the FSM (i.e., states representing the termination
of the execution of the associated function). In software the path counter can be checked after the
termination of the function and before returning control to the caller. In hardware, instead, the
check is anticipated to the final state itself. This is possible thanks to the fact that a final state of a
FSM has no outgoing edge, which means that the last increment on the EPP counter is computed
in the previous cycle and its final value is already available.
Feedback edges have to be treated separately. The reason is that the EPP counter is reset on

feedback edges to the value of the weight of the auxiliary edge connecting the entry state to the
destination state of the feedback edge. At the same time, the checker must ensure that the path
before taking the edge was correct, in the first state after the feedback edge. In order to do so, the
path identifier before the feedback edge must be registered, and the check must be deferred to the
following clock cycle.

4.4 Detection of the First Mismatch
One of the goals of DA is to automatically detect the first mismatch between hardware and
software execution. With simulation this property is easy to achieve: the simulated design executes
concurrently, but the debugger can analyze the whole traces and determine the first mismatch. To
keep this property on hardware it is necessary that checkers can spot a mismatch with a latency
of a single cycle. This is one of the subtle differences between EPP for software and for hardware.
The main reason is that software runs sequentially, and only a single function is in execution
at any given time. Thus, if a mismatch is detected it is clearly the first. This is not necessarily
true on concurrent hardware when multiple FSMs execute concurrently, which happens quite
often in HLS-generated accelerators. The reason is that function calls are modeled with concurrent
communicating FSMs. An handshaking mechanism between caller and callee allows the caller to
wait in an idle state until completion of the callee.

Consider for example the FSM in Figure 6, and suppose that a call to another function is scheduled
in state S2. The additional idle state is not depicted here to avoid to overcrowd the picture. The
function call is executed conditionally, only if a certain branch is taken. Assume now that the
expected path identifier calculated with EPP is ⟨5⟩, meaning that the expected states executed
by the FSM are ⟨S1, S3, S4, S9⟩. In this situation, according to what explained in Section 4.3, the
control flow checker would wait to check the execution path until state S9, because no feedback
edge is taken. However, if the control flow diverges earlier and it takes the wrong branch from
S1, this would result in the execution of S2 instead of S3, triggering the function call scheduled in
S2. Given that the called function was not expected to execute, its associated control flow checker
would detect a failure, but the root cause is actually a failure in the caller. In this scenario, if the
checks are limited to what described in Section 4.3, the detection of the first bug and the automatic
identification of the cause would be wrong.
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This problem can be circumvented by ensuring that the running execution path is always checked
in all the states with function calls. Doing this makes possible to catch control flow mismatches
in the current scope before passing control to other FSMs. The mismatch is hence detected in the
proper location in all the cases. If the mismatch is detected in the caller, this means that the path
has diverged before the call and the current EPP counter can be used to identify the origin of the
divergence. If the mismatch is detected by the callee, instead, it is guaranteed that the caller control
flow was correct until the call, ensuring that any mismatch detected by the checker in the callee is
actually located in that FSM.

4.5 Architecture of the Control Flow Checkers
A dedicated instance of control flow checker is created for the FSM of every function. All the
functionalities described in Section 4.3, Section 4.4, and Section 4.6 are implemented as a single
component. The checker is separated from the FSM, which is not altered by the instrumentation.
The only signals used by the checker are the input and output signal of the state register of the
FSM. They are called respectively next_state and present_state in the following and they drive
all the operations of the checker. However, directly using the next_state signal may have timing
implications, because it is likely to place the checker on a potential critical path. To avoid problems
the inputs of the checker are registered, so that all the operations of the checker are executed with
a delay of one cycle. This does not prevent the methodology to correctly identify the first fault,
because all the checkers are subject to this delay, guaranteeing that the first mismatch notified
outside is correct.

Every checker contains a read-only memory, called trace memory, initialized with the expected
EPP trace. It is a single port memory, accessedwith constant fixed alignment and a registered address:
cur_off. The value in the trace memory at cur_off is next entry in the EPP trace, containing the
identifier of the next expected path. This identifier is also stored in a register called prev_trace,
used to check feedback edges that are delayed by one cycle as described in Section 4.3. A second
read-only memory, called increments memory, contains the edge increments and is addressed using
the union of present_state and next_state. The value of the edge increment read from this
memory is added at every cycle to a register holding the current EPP counter accumulator. This
EPP counter is compared directly with the value in the trace memory at offset cur_off, for states
that end a path. The value of EPP counter is also reset to 0 on feedback edges, after recording it for
the delayed check with the mechanism described in Section 4.3. The stored value is compared in
the next cycle with the value of prev_trace. This completes the checking mechanism.

It is worth to notice that theoretically the dimension of the increments memory would be quadratic
with the number of the states of the FSM. However, this memory contains very sparse data, since
present_state and next_state can only represent valid transitions of the FSM. In addition, even on
valid edges, most of the increments computed by EPP are zero, because only states before branch
instructions have outgoing edges with weights , 0. Hence, the number of increments stored in
this memory is actually

∑
s ∈FSM (out_degree(s) − 1), where the out_degree of a state is the number

of outgoing edges. The term of this summation are actually zero for every state s with only one
outgoing edge. Practically, this means that the synthesis tool will optimize it and will implement it
using combinational logic instead of Block RAM (BRAM).

What remains is the notification mechanism, by means of which the checker notifies to the outer
world when it finds a mismatch. The checker detects if the mismatch is related to the current state
or to a delayed check on a feedback edge. If both kinds of mismatches are detected in the same cycle,
the mismatch related to the delayed check is notified, because it actually happened in the previous
cycle. After the selection, the checker writes on output signals the following three data: a bit
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asserting that a fault was detected, an identifier determined at design time that uniquely identifies
the hardware scope where it was detected, and the offset in the EPP trace where that happened.
Using this information, the debugger running on the host machine can unroll the execution traces,
map them on the CFG and the FSM, and backtrack the fault to the original source code using HLS
information.
It is possible to estimate the area required for a checker in terms of BRAMs and logic. Let

trace_nbits be loд2(PathMax), where PathMax is the largest path identifier computed by EPP for
the checked FSM, and off_nbits be loд2(trace_len), where trace_len is the length of the golden
reference trace for the checker.

The main contribution to area on FPGA is given by the BRAMs used for the traces. The number
of required memory bits for the trace is checker_mem_bits = trace_len × trace_nbits . This value
can be used to compute the total number NRAM of BRAMs that will be used on FPGA, but the result
depends on the size of thememories available on the specific target platform, and on the total number
of checkers that are added to the design. To give a worst case estimation it has to be assumed that
every trace needs its own BRAM, hence NRAM =

∑
checkers (ceil(checker_n_bits/BRAM_size)). If

the traces are small and the available BRAMs are true dual port memories, the actual number could
be lower because two traces can be stored on a single memory block. This strictly depends on the
device and on how the memories are inferred by the synthesis tools.

For what concerns the combinational logic necessary for the checker, the actual area occupied on
FPGA depends on the target device and on the results of technology mapping and place-and-route.
However, this is the list of elementary components necessary for the checker: 3 registers with
width of trace_nbits ; 1 adder with width of trace_nbits ; 1 register and 1 incrementer with width of
off_nbits; 2 comparators with width of trace_nbits . The state machine of the checker is very simple:
the state register is only one bit. In addition, there are some bitwise logic gates and a off_nbits wide
multiplexer for the notifier. What cannot be estimated is the area of the increments memory because
it is tightly dependent on the structure of the checked FSM and on the sparsity of transitions. The
same holds for frequency estimation, because the critical paths use the registered inputs of the
checker and the increments memory to compute the new curr_off that is then used to address
the trace memory. Anyways, the critical path is mainly dominated by the memory latency, so the
maximum clock frequency for a checker is not far from the BRAM maximum frequency.

4.6 Optimization of Memory Usage
The strategy of adapting EPP for debugging of FSMs explained in Section 4.2 already shows
advantages compared to the state-of-the-art (see Section 5 for a detailed discussion). This is a
consequence of the fact that previous approaches [12] typically encoded control flow traces as list
of states, and then focused on their compression. EPP, instead, represents an entire path with a
single identifier. Hence, a single entry in an EPP-encoded trace already represents a compressed
list of states without loss of information. This is enough to give better baseline memory usage in
most cases (see discussion in Section 5), but there are some situations where this is not necessarily
true. This happens when the FSM contains a large number of branches and loops, in proportion
to the number of states. In such situations two situations can occur: 1) the total number of valid
paths computed by EPP is high, possibly higher than the number of states; 2) the number of times
each loop is executed is also high. When both these circumstances are true, the result is that every
single entry in the EPP trace is large (because of the large number of possible paths) and every
entry is repeated multiple times in the trace (because of the large number of loop iterations).
In these cases, storing the traces as lists of states can be more efficient than EPP. The reason

is that if the number of states is smaller than the number of paths they can be represented with
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fewer bits. This is especially useful if the bodies of the loops are composed of short lists of states,
because a short list of states may be stored in fewer bits than a single path. This advantage is less
significant if the bodies of the loops are long list of states. However, Goeders et al. [12] show a
simple strategy that can be used to compress traces of states specifically in this case. They notice
that in the inner loop body the FSM typically traverses a list of states with consecutive identifiers.
So they add a fixed numberm of metadata bits to every trace entry. These bits are used to store
the number of consecutive cycles for which the FSM state simply increases by one. This allows to
compress a serial list of states, representing each loop iteration in a single packed entry of the state
trace with metadata. This strategy cannot be used with EPP, because it already encodes an iteration
of a loop in a single entry in the trace. Instead, with EPP the metadata can be used more effectively
to compress multiple consecutive iterations, as explained later in this Section. In [12] the actual
size of the metadata is determined with profiling and is fixed for all the FSMs. This approach has a
limitation: it directly depends on the encoding of the state signal and the ordering of the states.
If the state signal is one-hot encoded, every entry in the state trace is very large and it may need
to be re-encoded in a smaller format to reduce the traces. Moreover, to support the compression
scheme described in [12] it may be necessary to change the state enumeration. These operations
are not necessary with EPP encoding.

EPP does not suffer of this drawback, because the edge increments are not dependent on the FSM
encoding or ordering. However, the problem of compression of multiple iterations of loops with
high path weights is still relevant. A loop iteration is represented by a single entry in the EPP trace.
Hence, multiple iterations of the same loop are lists of repeated entries, each one representing
an iteration. A simple way to compress this kind of traces is to append a fixed number of bits
containing metadata to every trace entry. For every entry in the EPP trace, the value of the metadata
represents the number of times the path is repeated after the first time. In this way, every entry in
the EPP trace can represent up to 2k iterations of the same path, where k is the number of bits used
for the metadata. Moreover, the optimal value for k can be determined before the generation of the
control flow checker. This is a consequence of the fact that the proposed approach aims at finding
bugs arising from a predefined input sequence. In this way, once the uncompressed reference
traces are generated starting from software, the compression ratio is evaluated as a function of k to
generate the control flow checker with the best value for k to minimize memory footprint. This
process is performed separately for each checker, so that the optimal value for k is computed for
each FSM, depending on its intrinsic characteristics and on the specific trace that must be checked.
With this procedure, it is possible to greatly reduce the memory usage on FPGA as discussed in
Section 5.

5 EXPERIMENTAL RESULTS
To evaluate the methodology, an implementation has been integrated in PandA 0.9.4 [7], an open
source, publicly available framework for High-Level Synthesis developed at Politecnico di Milano.
Two main changes have been applied to the framework:

(1) Efficient Path Profiling has been integrated in the generator of software executable code to
generate the SW trace.

(2) The Finite State Machine generator has been extended to create the hardware checkers to
be coupled with the FSMs.

The methodology flow have been verified on the CHStone benchmarks [17], a suite composed
of 12 C programs, explicitly collected for representing all the possible scenarios which have to be
addressed by an High-Level Synthesis tool. The benchmarks have been translated in Verilog with
the default configuration of the PandA framework targeting a Stratix V device (5SGXEA7N2F45C1)
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Benchmark RAW SoA EPP EOPT

adpcm 121553 53328 86760 40977
aes 18130 6648 2982 2406
bf 657402 203654 126658 46560

dfadd 1866 1480 598 324
dfdiv 5676 4428 3972 1194
dfmul 768 627 187 66
dfsin 193748 118629 107336 52086
gsm 25044 13508 21227 3429
jpeg 3692568 1753039 1270590 499085
mips 22904 18918 6336 6130

mpeg2 21274 12690 10443 252
sha 649508 315424 252715 51926

Table 2. The memory usage (bits) for storing the compressed execution traces.

from Intel (former Altera) with target frequency of 200MHz, using Quartus Prime Standard Edition
17.0 for synthesis.

Section 5.1 discusses the reduction of memory footprint obtained with optimized EPP, Section 5.2
shows the overhead introduced by the checkers, and Section 5.3 outlines the limits of the approach.

5.1 Memory Usage
The results of the following compression schemes were computed for each CHStone benchmark, to
measure the effectiveness of EPP with respect to state-of-the-art FSM trace compression techniques:
RAW : no compression, i.e., traces are described by means of the list of the traversed states encoded

with the smallest number of bits.
SoA: the list of the traversed states is compressed with the technique presented in [12].
EPP : the list of the traversed states is encoded with the Efficient Path Profiling as described in

Sections 4.2 and 4.3.
EOPT : the execution traces are encoded with EPP and then compressed with the technique de-

scribed in Section 4.6.
Note that the results obtained with the SoA technique depend on the encoding of the states. The

states of the FSM produced by PandA are binary encoded and the states are numbered according to
a depth first visit which increases the opportunities of compression of the technique used in SoA. In
their work, the authors [12] identify the optimal number of metadata bits to use for compression,
which is 6 for their implementation. Since the optimal value depends on the structure and the
encoding of the FSM, the fixed number of bits identified in [12] have not been used here. Instead,
for a fair comparison, the optimal size of the metadata was recomputed for every single function
also for SoA, otherwise the results would be too biased in favor of the approach presented here.
Table 2 reports the results obtained with each technique on each benchmark. Figure 7 reports

the same data normalized with respect to the non-compressed trace. The red line marks the RAW
results, which represents the baseline.
The results show that SoA compresses better the benchmarks which are characterized by data

dominated computation (aes, blowfish, jpeg, mpeg2, sha), while it does not provide significant
benefits on the control dominated benchmarks (adpcm, dfadd, dfdiv, dfmul, dfsin, gsm,mips). Indeed,
the latter type of benchmarks has Control Flow Graphs (and so also Finite State Machines) with
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Fig. 7. Memory usage normalized with respect to RAW.

very large number of branches. This means that the number of transitions between states with
consecutive encoding is limited, hampering the compression mechanism. On the other hand, EPP
can compress very well data dominated traces, as well as some of the control dominated benchmarks
as expected: dfadd, dfmul, mips. In general, the results of EPP are in most cases already better than
the compressed state-based traces of SoA. However, on some control dominated benchmarks (like
in dfdiv and dfsin) the benefits are only limited, and on others (like in adpcm and gsm) there are
even significant penalties with respect to SoA. This is mainly due to the execution trace of loops
without internal branches. In this type of loops all the states will be encoded with consecutive
values, giving a great advantage to the compression algorithm used in SoA. SoA uses s +m bits to
store information about the execution of one iteration of the loop where s is the number of bits of
the state encoding andm is the optimal number of bits used to store metadata. EPP on the contrary
uses p bits to store information about the execution of the same iteration, where p is loд2(PathMax)
and PathMax is the largest path identifier computed by Efficient Path Profiling. If the function
containing the loop is characterized by a significant number of branches, the number of paths is
significantly larger than the number of states, p ≫ s +m. If one of more loops without internal
branches are repeated a significant number of times, the overall size of the trace compressed by EPP
can be larger than SoA. This issue arises also in compressing dfdiv and dfsin, even if their source
code does not explicitly contain any loops with such characteristics. In this case indeed, the loop
executed a significant number of times and which does not contain any internal conditional branch
is the loop included in the Finite State Machine of the module implementing the integer division.
The results about EOPT show that the compression of the EPP traces described in Section 4.6

is effectively able to overcome this issue: the sizes of the compressed traces of adpcm, blowfish,
dfdiv, dfsin, gsm, jpeg, mpeg2, and sha are significantly reduced with respect to EPP. However, the
optimization introduced by EOPT provides benefits not only for the benchmarks characterized
by loops without internal branches. If the execution trace is characterized by the consecutive
repetitions of the same path inside a loop (even if it contains multiple branches), EOPT can further
compress the execution trace. For this reason, a significant improvement is also noticeable in the
compression of the traces for dfmul.
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Frequency (MHz) Area (ALMs) Power (mW)
#chk nochk chk nochk chk nochk chk

adpcm 1 220.89 213.63 5378 5716 218.22 230.14
aes 5 218.25 216.87 2238 2652 86.96 101.22

blowfish 2 214.32 221.52 1831 2040 106.30 119.26
dfadd 1 237.13 238.83 2421 2497 49.46 54.44
dfdiv 2 228.99 228.41 1879 2031 44.23 56.87
dfmul 1 219.88 219.72 904 993 32.01 36.57
dfsin 3 220.69 205.34 7990 8494 190.79 198.09
gsm 2 217.96 221.38 2316 2717 139.36 153.22
jpeg 6 214.41 209.86 9213 10264 369.47 429.61
mips 1 250.94 223.16 1016 1036 48.32 50.89

mpeg2 4 224.31 223.26 1224 1573 41.09 53.82
sha 2 256.48 221.43 1584 1820 75.22 85.78

Table 3. Synthesis results after place and route. Columns nochk and chk refer to the circuit without and with
control flow checkers.

5.2 Overhead of the Tracing Logic
Table 3 reports the synthesis results obtained with Quartus Prime [11] after place-and-route phase
for the accelerators produced by the PandA High-Level Synthesis flow, with and without the
addition of checkers proposed in this paper. For each benchmark, the table reports the number of
checkers, the obtained maximum frequency, the area overhead in terms of Adaptive Logic Modules
(ALMs) and the dynamic power consumption.

The first thing to notice is that the number of checkers, reported in the column #chk, varies
across benchmarks. Given that a checker is generated for every checked FSM, the actual number
corresponds to the number of functions for which PandA generates a FSM and that are actually
executed in the reference trace. The second interesting information is that the variation of achieved
clock frequency when the checkers are integrated in the design is not significant. There are cases,
like sha anmips, where it decreases of about 30 MHz, but they are also the cases where the achieved
frequency without checkers was much higher than the target of 200 MHz. Despite that for these
benchmarks the introduction of the checkers changes the critical paths of the circuit, the newly
added paths do not introduce any timing violation since there is a significant margin between their
delays and the required clock period. In other cases, like blowfish and gsm, the frequency even
increases of a few MHz. In all the cases the circuits with and without checkers meet the target
frequency of 200 MHz.

Results about area overhead are reported in terms of ALMs, which are the basic building blocks of
the Stratix FPGA. Every ALM has 8 inputs and it consists of combinational logic and four registers.
It can be configured to implement various combinations of two functions with different number
of inputs, as described in [25]. The introduced overhead in terms of ALMs is correlated with the
number of checkers instantiated in every benchmark. This can be inferred by the fact that jpeg, the
benchmark with the highest number of checkers, also exhibits the largest ALM increase (+1051),
while three out of the four benchmarks with only one checker (dfmul, dfadd, mips) are also those
with the lowest ALM increase (+89, +76, +20, respectively). Clearly, these values have a different
impact in percentage on each benchmark, because their sizes are very different, but the data are
concordant with the fact that the main architecture of every checker is the same across benchmark.
The only difference is represented by the number of bits necessary for the trace and the increments
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memory as described in Section 4.5. This difference is also the main cause of noise in the correlation
between area and number of checkers. An example of this effect is that adpcm, which has only
one checker, shows an ALM increase of +338, while mpeg2, with 4 checkers only increases of +349
ALMs.

Finally, the last two columns in Table 3 report the dynamic power consumption of the benchmarks,
with and without checkers. The static power dissipation is not reported because it is always equal
to 1515 mW ± 2 mW across all the tests, with and without checkers. The estimation are obtained
with the Quartus Prime PowerPlay Power Analyzer, after place-and-route. Given that the accuracy
of the tool is ± 20% from silicon according to the documentation, it is difficult to deduce an exact
equation to estimate power dissipation before synthesis. However, from the data it is possible
to see that there are three main contributions to the increase of power consumption caused by
the checkers: the size of the memory used for the traces, the increased switching activity that is
measured when the compression is more aggressive, and again the number of the checkers. The
effect of the number of the checkers and the memory used for the traces is evident in jpeg, which
has the highest number of checkers and the largest number of memories, and shows a rise of
60.14 mW. The significance of the increased switching activity due to compression can be seen on
mpeg2. This is the case where the EOPT shows the highest compression rate, and from the table it
is possible to see that the dynamic power consumption increases by 12.73 mW (30%) even with the
insertion of a single checker. In other cases these effects are not evident.

5.3 Limitations of the Proposed Approach
The proposed approach still presents limitations. The most evident is that it is restricted only to the
control flow. While this can be important in some benchmarks, it is often not enough to pinpoint
the root cause of a bug and its impact in terms of memory footprint could be negligible compared
to memory for data. However, control flow plays a strategic role in debugging, because it helps
to locate bugs and to give directions on which data are relevant for debugging. Compression for
data traces is beyond the scope of this work, because EPP is not well suited for data compression.
It certainly deserves more investigation and it could be interesting to integrate control flow with
methodologies to debug single operations.
Another issue is the implicit assumption that the software testbench used for the generation

of the golden reference perfectly mimics the actual behavior on FPGA. This is not necessarily
true with asynchronous inputs that might affect the control flow. If these inputs occur at different
times in software and in hardware, the checkers report false positives. To tackle this issue the
methodology could be integrated with in-circuit assertions.
Finally, some control flow information may not be encoded directly into the FSM structure,

due to architectural optimizations performed during HLS. In this case, the granularity of the
checks performed by the approach is restricted to what is visible at the FSM level. It may by worth
considering how to handle this kind of control flow information encoded into data. They could be
handled like data as soon as a similar approach to compress data traces is developed. However, this
problem is out of the scope of this work.

6 CONCLUSION AND FUTUREWORK
This work describes a methodology for improving the debug support for circuits generated with
High-Level Synthesis. It is composed of two main contributions: an adaptation of a software
profiling technique called Efficient Path Profiling to target Finite State Machines, and a modification
of the HLS flow to generate control flow checkers that run on chip and automatically detect bugs
with respect to a reference execution trace. The results reported in Section 5 show that using EPP it
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is possible to greatly reduce the memory footprint of the debugging components compared to the
state-of-the-art. This is possible without altering the structure of the checked FSM, with minimal
frequency implications and with reasonably low area and power overhead. The whole flow can be
integrated with existing techniques for automated bug detection.

The main limitations of the approach, described in Section 5.3, also represent possible directions
for future improvements: investigation of compression techniques for debugging data traces;
integration with in-circuit assertions to improve support for detection of timing-dependent bugs;
extension of the methodology to include control flow dependent information that is not directly
encoded in the FSM. These improvements would further reduce the memory usage and improve
the debugging capabilities of the methodology.
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