Probing the effect of bone microstructure via 3D-printing

Flavia Libonati1,2, Grace Gu2, Leon Dimas1, Zhao Qin2, Laura Vergani1, Markus Buehler2
1 Department of Mechanical Engineering, Politecnico di Milano, Italy
2 Department of Civil & Environmental Engineering, MIT
flavia.libonati@polimi.it

Motivation

The hierarchical structure leads to a unique combination of mechanical properties (e.g. stiffness, strength and toughness) [2-4].

Focus on microscale toughening mechanisms

- Implement the main microscale toughening mechanism in de novo composites, by replicating the microstructural features involved in the process

Objectives

- Obtain an increase in toughness
- Achieve an optimal strength-toughness balance

Methods

Biomimetic approach adopted: materials design, manufacturing and testing

- Biomimetic approach adopted: materials design, manufacturing and testing
- Material selection: materials with markedly contrasting properties
- Testing of base materials
- Role of the osteon-like reinforcement:
 - Reduce the stress concentration at crack tips
 - Promote a nonlinear crack path
 - Cause the formation of stress-induced microvoids (i.e. dissipation mechanisms)
- Successful design:
 - Mimic the fundamental bone microscale toughening mechanisms
 - Increase in toughness with respect to the base materials (7-15 times)

- Use dual jet material technology to print composites, whose reinforcement and matrix are a mixture of the two base materials
- Find the optimal combination of the base material and the optimal reinforcement/matrix stiffness ratio to get the largest amplification in toughness and the best toughness-strength balance
- Build numerical models, able to predict the behavior, to be used for future design
- Print composites with random osteon distribution

Results

- Failure modes for all the composite topologies
 - Crack branching
 - Crack deflection
 - Fiber bridging
 - Unrecracked ligament bridging

- Optimal combination of mechanical properties: increase in toughness and strain; good strength and stiffness performance

- 15 times higher than the soft material and 7 times higher than the stiff one
- Composites with stiff matrix show the largest amplification in toughness (these cases are similar to the bone one, where the matrix is stiffer due to a higher degree of mineralization)
- The best performance is given by the Est composite type (elliptical inclusion-stiff matrix)

Remarks and future work

- Osteons mimicked as circular-elliptical inclusions
- Osteon vol. fraction (i.e. 60 %) equal to that of cortical bone [5]

- Osteons mimicked as circular-elliptical inclusions
- Osteon vol. fraction (i.e. 60 %) equal to that of cortical bone [5]

References

Acknowledgements

We acknowledge support from "Progetto Roca" – MISTI Global seed funds. MUB, GG, LD and ZQ acknowledge support from NIH SU01EB016422 and BASF-NORA.
We would like to thank the technicians, Luca Signorelli and Lorenzo Giusti (from Politecnico di Milano), for their help with experimental testing.