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Abstract: 15 

The oxidation of natural polysaccharides by TEMPO has become by now an “old chemical 16 

reaction” which led to numerous studies mainly conducted on cellulose. This regioselective 17 

oxidation of primary alcohol groups of neutral polysaccharides has generated a new class of 18 

polyuronides not identified before in nature, even if the discovery of enzymes promoting an 19 

analogous oxidation has been more recently reported. Around the same time, the scientific 20 

community discovered the surprising biological and techno-functional properties of these 21 

anionic macromolecules with a high potential of application in numerous industrial fields. The 22 

objective of this review is to establish the state of the art of TEMPO chemistry applied to 23 

polysaccharide oxidation, its history, the resulting products, their applications and the 24 

associated modifying enzymes.  25 

Keywords: TEMPO; Selective C-6 oxidation; TEMPO-enzyme systems; Polysaccharides, 26 

Laccase; nanofibers.  27 
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1. Introduction 28 

In 1984, Semmelhack et al. wrote «Recent studies have demonstrated the ability of 2,2,6,6-29 

tetramethylpiperidinyl-1-oxy (TEMPO) to mediate alcohol and amine oxidation by 30 

electrolysis, apparently via the nitrosonium ion” (Semmelhack, Schmid, Cortes, & Chou, 31 

1984). Even if this article is not the first dealing with oxidation of alcohols by TEMPO, 32 

Semmelhack et al. (1984) showed that selective oxidation of primary alcohol, in the presence 33 

of secondary ones, was feasible. The oxidation of primary alcohol groups of partially 34 

protected glycosides carbohydrates was then firstly published by Davis et al. (1993). These 35 

authors used TEMPO/hypochlorite/bromide in a dichloromethane/water two-phase system. 36 

This publication is probably at the origin of polysaccharide oxidation by TEMPO, later 37 

reported by de Nooy, Besemer, & van Bekkum (1994; 1995a). De Nooy et al. (1994) showed 38 

that only the hydroxymethyl groups of starch were oxidized, whereas the secondary hydroxyls 39 

remained unconverted. Their studies opened the way to a large number of publications and a 40 

research on science finder scholar in 2016 using “TEMPO” and the combination “TEMPO 41 

and Polysaccharide” found, respectively, 16251 and 277 (including 42 patents) references. 42 

Their evolution between 1990 and 2015 is given in Figure 1.  43 

44 
Figure 1. Number of references per year between 1990 and 2015 using the key words 45 

“TEMPO” and the combination “TEMPO and Polysaccharides”. 46 
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TEMPO is a secondary amine nitrogen oxide (i.e., a nitroxyl radical) in which an unpaired 47 

electron is delocalized between the N and O atoms. This cyclic nitroxyl radical is only one 48 

species in a redox series of compounds (hydroxylamine, nitrosonium ion, TEMPO) generated 49 

by electron transfer. Briefly, during the oxidation of polysaccharides the nitrosonium ion 50 

derived from TEMPO is reduced into hydroxylamine under weakly alkaline conditions. The 51 

nitrosonium ion reacts with the hydroxylamine to regenerate TEMPO and is itself 52 

continuously regenerated in the reaction mixture by a primary oxidant, which is generally 53 

sodium hypochlorite. According to this mechanism, primary alcohol oxidation occurs with a 54 

high degree of selectivity (Bragd, van Bekkum, & Besemer, 2004).  55 

The interest of the scientific community and of some companies for new polyuronides is 56 

motivated by their valuable properties (which range from antiflocculation to adhesion, 57 

gelation, thickening, complexation, as well as a high number of biological activities). 58 

However, natural polyuronides are often complex heteropolymers frequently including neutral 59 

sugars and/or non-carbohydrate groups in their structures as is the case for alginates, pectic 60 

compounds, glycosaminoglycans, and some polyglucuronic acids (Elboutachfaiti, Delattre, 61 

Petit, & Michaud, 2011a; Lee & Mooney, 2012; Pridz, 2015; Sundar Raj, Rubila, Jayabalan, 62 

& Ranganathan, 2012). Before the development of TEMPO chemistry applied to 63 

polysaccharides, the oxidation of neutral polysaccharides, such as cellulose or starch, was 64 

performed by chemical processes with low efficiency and specificity, based on pioneering 65 

methods using nitrogen dioxide (N2O4) or nitrite/nitrate in concentrated phosphoric acid 66 

(Maurer & Reiff, 1943; Painter, 1977; Painter, Cesaro, Delben, & Paoletti, 1985; Yackel & 67 

Kenyon, 1942). Nitrogen dioxide does not exist as a sole molecule but is in equilibrium with 68 

nitrite (N2O4  NO2). Oxidation of polysaccharides with nitrogen dioxide leads to the 69 

depolymerization of biopolymers as a side reaction. The use of polysaccharides dissolved in 70 

phosphoric acid and oxidized by nitrites/nitrates has limited this depolymerization (Painter, 71 



4 

1977; Painter et al., 1985). Moreover, recent developments of cellulose oxidation with 72 

nitrogen dioxide as oxidant in high-pressure CO2 have also improved and simplified the post-73 

oxidative salt-eliminating procedure after polysaccharide oxidation, even if the technique is 74 

not yet entirely satisfactory (Camy, Montanari, Rattaz, Vignon, & Condoret, 2009). It should 75 

be noticed that other methods for oxidation of monosaccharides using strong oxidants such as 76 

hypochlorite, periodate or nitric acid lead to full oxidation of all hydroxyls groups, including 77 

primary and secondary OH’s (Bragd et al., 2004). Milder reaction conditions with Pt/C, 78 

successfully applied to monosaccharides, have been disappointing when applied to 79 

polysaccharides (low oxidation yields) (Aspinall & Nicolson, 1960). In this context, the first 80 

oxidations of polysaccharides with TEMPO were very attractive, considering their high 81 

selectivity, short times, milder and well controlled reaction conditions. This method was 82 

firstly applied to soluble or partially soluble polysaccharides like amylodextrin, alternan, 83 

pullulan, inulin, starch, xanthan or galactomannan (Chang & Robyt, 1996; Delattre et al., 84 

2015; de Nooy et al., 1994; 1995a; de Nooy, Besemer, van Bekkum, van Dijk, & Smit, 1996; 85 

Pereira, Mahoney, & Edgar, 2014; Sierakowski, Milas, Desbrières, & Rinaudo, 2000; 86 

Tamura, Hirota, Saito, & Isogai, 2010) before being extended to water-insoluble biopolymers, 87 

such as chitin, chitosan, curdlan, amylose and cellulose in which the high crystallinity reduces 88 

the access of the oxidant to the hydroxyl functions (Delattre et al., 2009; Isogai & Kato, 1998; 89 

Meng, Fu, & Lucia, 2016; Muzzarelli et al., 2000; Pierre et al., 2013; Tamura, Wada, & 90 

Isogai, 2009). This reaction yielded soluble polysaccharides, like for substitution reactions of 91 

hydroxyl groups by carboxymethyl ether or sulfate ester groups. The new polyuronides 92 

obtained and notably oxidized cellulose have been successfully tested for their biological, 93 

rheological and physico-chemical properties (Delattre et al., 2009; Elboutachfaiti et al., 94 

2011b; Stilwell, Marks, Saferstein, & Wiseman, 1997; Zhang et al., 2010) in academic 95 

laboratories, often within collaborations with a few companies (Delattre et al., 2009). 96 
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However, and to the best of our knowledge, no  polyuronides derived from TEMPO oxidation 97 

had a real commercial development  with large scale production, even if oxidized cellulose 98 

was claimed to be a raw material for medical devices, e.g. absorbable hemostats, adhesion 99 

barriers, sutures, and tissue engineering. Indeed, issues of polysaccharide depolymerization 100 

were claimed. A competition between polyelectrolyte swelling and chain scission often takes 101 

place during the first hours of the oxidation reaction (Coseri, Bercea, Harabagiu, & Budtova, 102 

2016). Alternative approaches, such as the use of laccases with TEMPO, instead of the 103 

traditional TEMPO and NaBr/NaOCl chemistry were successfully tested, but not really 104 

further developed (Mathew & Adlercreutz, 2009). Some of the polysaccharidic structures 105 

obtained are very original and not described in literature prior to the introduction of TEMPO 106 

chemistry. Among them, β-(1,4)-polyglucuronic acid (also called glucuronan) have been 107 

investigated for their biodegradability and a new family of polysaccharide lyases called 108 

glucuronan lyases (EC 4.2.2.14) has been identified (Delattre et al., 2006b; Konno, Igarashi, 109 

Habu, Samejima, & Isogai, 2009). This surprising result could suggest the existence of a 110 

putative source of this polyglucuronic acid in nature, which could explain the conservation of 111 

these enzymes in fungal genomes. The present review provides insights into TEMPO 112 

chemistry applied to oxidation of polysaccharides, their physico-chemical and biological 113 

properties, as well as their biodegradability. 114 

 115 

2. TEMPO Chemistry: methodology and reaction mechanisms 116 

In chemical organic synthesis, the stable tetraalkylnitroxyl radical TEMPO was well 117 

described as an efficient oxidation catalyst of choice, mainly used for the industrial oxidation 118 

of organometallic, sulfide and, in particular, of alcohols to generate carbonyl compounds 119 

(Ciriminna & Pagliaro, 2010; Vogler & Studer, 2008). Historically, one of the first 120 

descriptions of alcoholic compound oxidation using TEMPO derivatives was reported by 121 
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Golubev, Rozantsev, & Neiman (1966). In their study, these authors have shown the 122 

possibility to produce high yields of acetaldehyde by treatment of ethanol with oxoammonium 123 

chloride salt (Figure 2A). Afterward, Cella, Kelley & Kenehan (1975) developed a chemical 124 

synthesis strategy to generate carboxylic acid compounds via oxidation of alcohols by a 125 

reaction with meta-chloroperbenzoic acid (mCPBA) in the presence of 2,2,6,6-126 

tetramethylpiperidine used as catalyst (Figure 2B). As reported by the authors, mCPBA first 127 

oxidized the 2,2,6,6-tetramethylpiperidine to produce the stable radical TEMPO, which was 128 

directly oxidized to an oxoammonium cation derivative. The latter was considered as the 129 

primary oxidant for the conversion of alcohol to carboxylic acid. In later years, Anelli, Banfi, 130 

Montanari & Quici (1987) described the oxidation of primary alcohols in the presence of 4-131 

methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-MeO-TEMPO) as catalyst to efficiently 132 

generate aldehydes or carboxylic acids by using a water/dichloromethane biphasic system 133 

under alkaline conditions in  the presence of potassium bromide, sodium hypochlorite and 134 

sodium bicarbonate (Figure 2C). A few years later, Anelli, Banfi, Montanari & Quici (1989) 135 

have proposed another strategy for the oxidation of diols using oxammonium salts as reagent. 136 

Indeed, these authors were the first to report a specific oxidation of 1,5-pentanediol and 1,4-137 

butanediol by using a system of TEMPO with sodium hypochlorite and sodium bromide in a 138 

water/dichloromethane biphasic system. These reactions were carried out in aqueous 139 

NaOCl/dichloromethane at 10-15 °C under basic conditions (pH 9.3), in the presence of 140 

TEMPO (0.01 mol.L-1 equiv) and potassium bromide (0.10 mol.L-1 equiv). Thus far, the 141 

method using TEMPO catalyst has become one of the better described chemical approaches to 142 

easily convert primary and secondary alcohol groups to ketones, aldehydes and carboxylic 143 

compounds (Figure 2D) (Adam, Saha-Moller & Ganeshpure, 2001; Bobbitt & Flores, 1988; 144 

Caron, Dugger, Ruggeri, Ragan, & Brown Ripin, 2006; Ciriminna & Pagliaro, 2010; 145 

Elboutachfaiti et al., 2011; Sheldon, 2007; Sheldon, 2013; Sheldon & Arenas, 2004; Vogler & 146 
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Studer, 2008). Initially described as a highly selective oxidation of primary alcohol groups, in 147 

particular for monosaccharides (de Nooy et al., 1994), De Nooy et al. (1996) pointed out some 148 

issues on pullulan with some oxidations of secondary alcohols to ketones. More recently, Su 149 

et al. (2013) suspected the oxidation of other hydroxyl groups than the one in C6 position in 150 

agarose units. In the same way, secondary reactions were also observed on carrageenan, 151 

caused by a specific overoxidation of 3,6-anhydrogalactose (Cosenza, Navarro, Pujol, & 152 

Damonte, & Stortz, 2015). As commonly proposed in the literature (Adam et al., 2001; 153 

Bobbitt & Flores, 1988; Cella et al., 1975; Elboutachfaiti et al., 2011; Sheldon, 2013), alcohol 154 

oxidation reaction by using oxoammonium salt is performed with a catalytic mechanism 155 

which allows the in situ generation of oxoammonium derivatives by one-electron oxidation of 156 

nitroxide compounds, such as TEMPO, either by using an electrochemical process or by 157 

adding an oxidant such as mCPBA or hypochlorite derivatives. Oxidation can be carried out 158 

in: (i) biphasic media systems, (ii) an organic solvent and, (iii) aqueous media (Ciriminna & 159 

Pagliaro, 2010; Sheldon, 2007; Vogler & Studer, 2008). It was clearly confirmed that the 160 

oxoammonium ion generated by oxidation of TEMPO with an oxidant such as sodium 161 

hypochlorite at low temperatures (0-4 °C) and under basic conditions (pH 9-12) could 162 

regioselectively oxidize several alcohols and polyalcohols (Bailey, Bobbitt & Wiberg, 2007; 163 

Ciriminna & Pagliaro, 2010). Some authors have investigated the effect of pH onto the 164 

chemoselective oxidation of alcohol using oxoammonium derivatives, such as TEMPO. As 165 

observed by Bailey et al. (2007), under alkaline condition, secondary alcohols are much more 166 

slowly oxidized than primary ones, while under acidic and/or neutral conditions, the opposite 167 

phenomenon occurs. Semmelkack, Schmid & Cortes (1986) and Bailey et al. (2007) proposed 168 

that under alkaline conditions the oxidation of alcoholic compounds using TEMPO is initiated 169 

by the specific formation of a reactive complex as presented in Figure 2E.  This reactive 170 

complex could be formed by nucleophilic attack of the alcoholate anion (RO-) on: (i) oxygen 171 
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atom or (ii) nitrogen atom from the newly generated 2,2,6,6-tetramethylpiperidine-1-172 

oxoammonium cation. Finally, an intramolecular proton transfer gives an intermediate 173 

complex leading to the formation of carbonyl compound (from alcohol oxidation) and 174 

hydroxylamine derivative (from TEMPO).  175 
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 176 
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Figure 2. Examples of alcoholic compounds oxidation strategies using TEMPO and derivatives. (A) Oxidation of ethanol onto acetaldehyde 177 

using 4-hydroxy-2,2,6,6-tetramethyl-1-oxopiperidin-1-ium (1) (adapted from Golubev et al., 1966); (B) oxidation of (3,5-dimethoxyphenyl)-178 

methanol onto 3,5-dimethoxybenzoic acid using 2,2,6,6-tetramethylpiperidine (2) and m-chloroperbenzoic acid (adapted from Cella et al., 1975); 179 

(C) general oxidation of alcohol onto carboxylic acid using Water/CH2Cl2 biphasic system and 4-methoxy-TEMPO/NaOCl/KBr/NaHCO3 (3) 180 

(adapted from Anelli et al., 1987); (D) examples of syntheses of ketones, aldehydes and carboxylic acid compounds by using TEMPO (adapted 181 

from Caron et al., 2006; Ciriminna & Pagliaro, 2010) and, (E) Alcohol oxidation mechanism under alkaline media using TEMPO (adapted from 182 

Semmelkack, Schmid & Cortes, 1986; Bailey et al., 2007). 183 

 184 

 185 
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As well-established by Adam et al. (2001), the use of non-metal oxidation catalysts, such as 186 

TEMPO and its derivatives, have gained increasing  interest for several  reasons: (i) several of 187 

such catalysts derivatives are commercially available at  low cost, (ii) these catalysts are user-188 

friendly under aqueous system reaction conditions, (iii) these catalysts can react with all 189 

common oxidizing agents, such as peracids, sodium hypochlorite, mCPBA acid or 190 

monoperoxysulfate to produce oxoammonium salt and finally, (iv) these catalysts are very 191 

resistant to auto-oxidation. Consequently, TEMPO radical and all its derivatives are generally 192 

used as highly regio-selective oxidation reagents in industrial field for the specific synthesis 193 

of: chemical, cosmetics, pharmaceuticals, fragrances, flavors, etc. (Ciriminna & Pagliaro, 194 

2010; Elboutachfaiti et al., 2011). Ciriminna & Pagliaro published a very interesting review 195 

about why and how processes using TEMPO-mediated oxidation have become one of the 196 

main tools in industrial organic syntheses. As a consequence, it is important to mention that in 197 

TEMPO chemistry, the regioselective oxidation of polysaccharides was described since the 198 

nineties for the generation of new techno-functional and bioactive anionic polysaccharides.  199 

 200 

3. TEMPO oxidation of polysaccharides 201 

For the last two decades, TEMPO has been in use in sugar chemistry. Much attention has 202 

been given to the selective oxidation of hydroxyl groups of carbohydrate to generate carboxyl 203 

and/or aldehyde groups. Yet, few papers deal with fundamental and chemical understanding 204 

for using TEMPO on polysaccharides and even fewer address recent advances (oxidation 205 

performance, etc.) on its use. Current studies are aimed at creating, modulating or improving 206 

the physico-chemical and/or biological properties of various native polysaccharides (Figure 207 

3). 208 

 209 

 210 
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 211 

Figure 3. Document search results since 2000 on Scopus website using specific keywords 212 

association “TEMPO” and “oxidation” and a variable one. 213 
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TEMPO oxidation process were demonstrated to offer clear advantages comparing to 215 

enzymatic or metal-catalyzed oxidation (Bragd et al., 2004) such as (i) high reaction rate, (ii) 216 

high conversion ratio, (iii) high selectivity, (iv) partial decrease of molecular weight of 217 

polysaccharides during the process (if controlled), (v) low cost as co-oxidant.  218 

A broad range of polyuronic analogues can be formed from their corresponding native 219 

polysaccharides via a reactive aldehyde-intermediate which is present at low concentration 220 

throughout the oxidation reaction (de Nooy, Besemer & van Bekkum, 1995b). As previously 221 

explained (see part 2.), the nitrosonium salt, as the active oxidizing species, must be 222 

regenerated in situ. Different systems of suitable primary oxidants have been described in the 223 

literature and sodium hypochlorite showed very good results (Figure 4), especially in the 224 

presence of catalytic amounts of sodium bromide (Bragd et al., 2002; 2004). Additives such 225 
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as KBr or NaBr are used to boost the rate of oxidation reaction (Tavernier, Delattre, Petit, & 226 

Michaud, 2008).  227 
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Figure 4. TEMPO-mediated oxidation of glycans to generate their corresponding 231 

polyuronates with NaOCl/NaBr system, adapted from Elboutachfaiti et al. (2011a). 232 

 233 

Alternative oxidation systems have also been reported in the review of Bragd et al. (2004) 234 

such as manganese dioxide, copper salt with bipyridine complex, silver catalysts with sodium 235 

peroxodisulfate and peracetic acid (Bragd et al., 2002). Overall, TEMPO assisted oxidation in 236 

aqueous systems of cold water-soluble polysaccharides (such as xanthan, pullulan, 237 

galactomannan) compared to cold-water-insoluble systems (such as chitin, chitosan, 238 

amylopectin) gave better results in terms of oxidation degree or final molecular weight (Bragd 239 

et al., 2004). Table 1 gives a large overview of recent TEMPO-mediated oxidation of 240 

carbohydrates using different oxidant systems and their polyuronic analogues.   241 
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Table 1. Some TEMPO-mediated oxidations of various polysaccharides since the 2000s. 242

Substrate TEMPO System Yield 
(%) pH T(°C) Oxidation 

ratio (%) 

Molecular weight 
(kDa) 

References Initial Final 

Agarose NaOCl/NaBr - 10.5 rt(3) 30 - 4 Su et al. (2013) 

Carrageenan NaOCl/NaBr 80-90 9.4-10.5 0 - 
215 

460 

93-65 

167-16 
Cosenza, Navarro, Pujol, Damonte, & Stortz (2015)

Cellulose 

NaOCl/NaBr 

NaOCl/NaBr 

NaOCl/NaBr 

4-acetamide-TEMPO/NaClO/NaClO2 

EM(1) 4-acetamide-TEMPO/NaClO/NaClO2 

NaOCl/NaBr 

4-acetamide-TEMPO/NaClO/NaClO2 

LMS(2)/TEMPO or 4-amino TEMPO 

NaOCl/NaBr 

Sono-assisted TEMPO NaOCl/NaBr 

78-91 

98 

41-51 

41-71 

91-98 

- 

- 

- 

- 

67-99 

10.5 

10.5 

10.5 

3.5-6.8 

6.8 

10 

6.3 

7 

10 

10 

rt 

rt 

4 

40-60 

rt 

rt 

40 

30 

25 

30 

54-76 

>23 

65 

73-84 

>60 

- 

- 

- 

>80 

>60 

>80 

137 

- 

122 

54 

11.7 

11.7 

- 

- 

- 

<37 

78.1 

- 

>40 

>18 

11 

na(4) 

46.8 

- 

- 

Saito, & Isogai (2004) 

Saito, Yanagisawa, & Isogai (2005) 

Delattre et al. (2006a) 

Hirota, Tamura, Saito, & Isogai et al. (2009) 

Isogai, Saito & Isogai (2010) 

Hiraoki, Fukuzumi, Ono, Saito, & Isogai (2014) 

Hiraoki, Fukuzumi, Ono, Saito, & Isogai (2014) 

Jaušovec, Vogrinčič & Kokol (2015) 

Meng, Fu & Lucia (2016) 

Rohaizu, & Wanrosli (2017) 

Chitin/chitosan 

NaOCl/NaBr 

NaOCl/NaBr 

NaOCl/NaBr 

NaOCl/NaBr 

NaOCl/NaBr 

NaOCl/NaBr 

>90 

50-95 

- 

2 

34-74 

13.7 

10.8 

10.75 

10.8 

10.8 

10.8 

10.75 

rt 

<5 

30 

5/rt 

rt 

5 

- 

- 

25-100 

- 

>40 

40 

- 

- 

- 

400-165 

- 

98 

<10 

3200-26 

- 

- 

- 

2.1-1.2 

Muzzarelli, Muzzarelli, Cosani, & Terbojevich (1999) 

Kato, Kaminaga, Matsuo, & Isogai (2004) 

Yoo et al. (2005) 

Bordenave, Grelier & Coma (2008) 

Huang et al. (2013) 

Pierre et al. (2013) 

Crude material 

Cashew gum  

Wood cellulose 

 

NaOCl/NaBr 

NaOCl/NaBr/NaClO2 

 

96 

- 

 

9.3 

4.8 

 

5 

rt 

 

68 

- 

 

- 

502 

 

- 

374 

 

Cunha, Maciel, Sierakowski, de Paula, & Feitosa (2007) 

Hiraoki, Fukuzumi, Ono, Saito, & Isogai (2014) 



 

15 

Curdlan 

NaOCl/NaBr 

EM 4-acetamide-TEMPO/NaClO/NaClO2 

4-acetamide-TEMPO/NaClO/NaClO2 

80 

91-92 

90 

11 

6.8 

4.7 

4 

rt 

35 

25-100 

>90 

95 

560 

1100 

1100 

500 

268 

197 

Delattre et al. (2009) 

Isogai, Saito & Isogai (2010) 

Tamura et al. (2010) 

Galactomannan 

NaOCl/NaBr 

LMS 

LMS and/or NaOCl/NaBr 

LMS 

NaOCl/NaBr 

>92 

- 

- 

- 

- 

9.3 

4-7.5 

7/9.3 

7 

9.3 

3 

30-70 

35/0 

35 

5 

38-66 

- 

- 

- 

0-100 

1330 

- 

2425-1016 

- 

270-240 

800 

- 

- 

- 

200-46 

Sierakowski, Milas, Desbrières, & Rinaudo (2000) 

Lavazza et al. (2011) 

Merlini et al. (2015) 

Rossi et al. (2016) 

Sakakibara, Sierakowski, Lucyszyn, & de Freitas (2016) 

Gellan 
NaOCl/NaBr 

NaOCl/NaBr 

>89 

89-95 

10 

10 

rt 

4 

22.5-100 

22.5-100 

512 

- 

19.4 

- 

Elboutachfaiti et al. (2010) 

Elboutachfaiti et al. (2011) 

Glucomannan 
NaOCl/NaBr 

NaOCl/NaBr 

- 

- 

10 

10 

rt 

rt 

15-80 

30-80 

- 

2000-500 

- 

153-131 

Chen et al. (2014) 

Chen et al. (2016) 

Inulin 
4-AcNH-TEMPO/oxone/NaBr 

4-AcNH-TEMPO/peracetate/NaBr 

- 

- 

8.2 

8.2 

<5 

<5 

60 

80 
na na 

Bragd, Besemer, & van Bekkum (2002)

Bragd, Besemer, & van Bekkum (2002)

Hyaluronan NaOCl/NaBr - 10.2 0 31-71 1350 780-510 Jiang, Drouet, Milas, & Rinaudo (2000) 

Mannan NaOCl/NaBr - 10 2 24-28 62.3-44.3 na Ďurana, Lacík, Paulovičová, & Bystrický (2006) 
Polyuronan NaOCl/NaBr >60 10.8 rt 20-75 - - Muzzarelli et al. (2000) 

Pullulan 

4-AcNH-TEMPO/oxone/NaBr 

4-acetamide-TEMPO/NaClO/NaClO2 

NaOCl/NaBr 

NaOCl/NaBr 

- 

90 

95 

- 

8.2 

4.7 

9.4 

10 

<5 

35 

2 

- 

85 

8 

- 

10-100 

na 

- 

450 

220 

na 

- 

- 

182-28 

Bragd, Besemer, & van Bekkum (2002)

Tamura et al. (2010) 

Pereira, Mahoney, & Edgar (2014) 

Spatareanu et al. (2014) 

Starch/Dextrin 

4-AcNH-TEMPO/oxone/NaBr 

4-AcNH-TEMPO/peracetate/NaBr 

EM 4-acetamide-TEMPO/NaClO/NaClO2 

4-acetamide-TEMPO/NaClO/NaClO2 

- 

- 

91-92 

83 

7.5-9 

8.2 

6.8 

4.7 

5-15 

<5 

rt 

35 

60-90 

85 

 

>39.3 

na 

na 

60 

- 

na 

na 

53.9 

- 

Bragd, Besemer, & van Bekkum (2002)

Bragd, Besemer, & van Bekkum (2002)

Isogai, Saito & Isogai (2010) 

Tamura et al. (2010) 

Xanthan NaOCl/NaBr >90 10 4 98 1910 585 Delattre et al. (2015) 
(1) EM: ElectroMediated, (2) LMS: Laccase-Mediator System, (3) rt: room temperature, (4) na: not accurate. 243

244
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Cellulose and cellulose (nano)fibers are probably the most studied polysaccharides for 245 

TEMPO oxidation, especially by the well-known Isogai’s team from Japan (Isogai, Saito, & 246 

Isogai, 2010). In many papers, unavoidable depolymerizations of CelloUronic Acids (CUA) 247 

by a β-elimination mechanism have been observed in a pH range from 9 to 12. Delattre, 248 

Michaud, Elboutachfaiti, Courtois, & Courtois (2006a) obtained oligo-CUA from TEMPO 249 

oxidation of cellulose and purified their products by size-exclusion chromatography. Some 250 

authors proposed alternative routes to reduce β-elimination by using 4-acetamido-251 

TEMPO/NaClO/NaClO2 system at pH 4-7 (Hiraoki, Fukuzumi, Ono, Saito, & Isogai, 2014; 252 

Hirota, Tamura, Saito, & Isogai, 2009) or TEMPO electromediated oxidation (Isogai et al. 253 

2010). In the latter paper, the authors were able to keep the original fibrous and morphology 254 

of CUA fibers. These same authors extended the same procedure to curdlan and 255 

amylodextrins, obtaining impressive degrees of oxidation, higher than 90%. Today, cracking 256 

wood is still a challenge especially for the valorization of byproducts/wastes from 257 

papermaking and wood industries. Preparing TEMPO-Oxidized Cellulose NanoFibers 258 

(TOCNFs) for the creation of new bio-based applications is one possible solution to address 259 

this challenge. Wood cellulose material can be easily converted to individual micro- and 260 

nanofibers of different lengths, sizes and diameters. These characteristics are involved in 261 

TEMPO chemistry and can lead to various TOCNFs (Isogai, Saito, & Fukuzumi, 2011). 262 

Recently, Meng et al. (2016) also highlighted the role of heteropolysaccharides in developing 263 

TOCNFs by using four fibers resources, i.e. bleached Kraft pulps of softwood, pine and 264 

eucalyptus hardwood and non-woods varieties such as bamboo and bagasse. Due to the 265 

presence of xylans which limit the chemical accessibility of cellulose, the formation of 266 

carboxylate groups was reduced. Galactoglucomannans were also involved in the 267 

consumption of NaClO, limiting the oxidation of TOCNFs. 268 
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Regiospecifically carboxylated chitins have been of primary interest as they mimic 269 

glycosaminoglycan (GAG) structures and can present interesting properties such as 270 

neuroprotection, wound healing or for cosmetic applications (DeAngelis, 2012). 6-oxychitins 271 

and 6-oxychitosans have thus been investigated in many papers, in terms of TEMPO 272 

oxidation reactions as well as for their biological properties. Muzzarelli, Muzzarelli, Cosani, 273 

& Terbojevich (1999) produced anionic derivatives fully soluble in a wide pH range from 274 

lobster, crab and fungal chitins with very good yields. In the same way, Huang et al. (2013) 275 

prepared 6-carboxy-β-chitin derivatives from squid pens with oxidation degrees up to 75%. 276 

Increasing NaOCl amounts (mmol/g chitin) allowed them to enhance the conversion on C6 277 

position into carboxylates.  Pierre et al. (2013) performed one-pot oxidation of chitosan with 278 

TEMPO-NaOCl-NaBr system and obtained yields close to 14% (w/w), consistent with 279 

previous reports in the literature for chitosan and β-chitin. The carboxylate content of their 280 

derivatives was 40%. These authors also highlighted a strong depolymerization phenomenon 281 

of the molecular weight of chitosan, from DP (Degree of Polymerization) 593 to 12 and 7 for 282 

their derivatives. Bordenave, Grelier, & Coma (2008) also described low products yields and 283 

drastic decreases of the polymer molecular weight. Yoo et al. (2005) sequentially oxidized 284 

chitosan samples from 25 to 100% under specific TEMPO conditions. In this paper, a drop in 285 

solubility of 6-oxychitosans was observed for the highest degrees of oxidation, due to 286 

aggregation among the derivatives by charge-charge interactions. Hyaluronan, scleroglucan, 287 

mannan and galactomannan have also been used for TEMPO-oxidation to provide novel GAG 288 

polymers (Elboutachfaiti et al., 2011). Ďurana, Lacík, Paulovičová, & Bystrický (2006) have 289 

thus functionalized mannans from four pathogenic yeasts, i.e. Candida albican, Candida 290 

tropicalis, Candida glabrata and Candida parapsilosis, using various oxidation systems 291 

including TEMPO-NaOCl-NaBr and studied their immunological properties. In 2000, 292 

Sierakowski et al. successfully described TEMPO oxidation of galactomannans extracted 293 
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from the seeds of Leucaema leucocephala. Sakakibara, Sierakowski, Lucyszyn, & de Freitas 294 

(2016) highlighted the role of chain flexibility during the TEMPO-mediated oxidation of guar 295 

and locust bean galactomannans. Mannose (Man) units were preferentially oxidized because 296 

of the reduced availability of HO-6 groups on Galactose (Gal) side chains. Indeed, the authors 297 

observed hydrogen bonding involving the Man HO-3 group and the HO-6 and HO-2 groups 298 

of the vicinal Gal unit, but also the increase in the galactosyl side chain induced a lowering in 299 

the chain extension, as already described by Petkowicz, Reicher, & Mazeau (1998). β-300 

Elimination process was also better onto locust bean galactomannan which is less ramified 301 

than guar galactomannan. In the last fifteen years, others authors have investigated oxidation 302 

of galactomannans, mostly to create new bio-based materials. The interesting part here is 303 

probably the use of TEMPO system assisted by laccase to generate oxidized derivatives 304 

(Lavazza et al., 2011; Merlini, Boccia, Mendichi, & Galante, 2015; Rossi et al., 2016). Most 305 

of the classical primary oxidants used for TEMPO oxidation produce large amounts of salts. 306 

Greener chemical reactions should been looked for improving life cycle assessment (LCA) of 307 

the generated oxidized derivatives. Indeed, the use of strong secondary oxidants limits the 308 

application of TEMPO on carbohydrates. Many studies are aimed at finding environmentally 309 

friendly methods, especially for regenerating the oxidant. For example, Lemoine et al. (2000) 310 

studied sono-catalysed (500 kHz) TEMPO-mediated oxidation of sucrose without the addition 311 

of sodium bromide. Isogai et al. (2010) also developed a TEMPO electro-mediated oxidation 312 

of curdlan, amylodextrin and regenerated cellulose. Overall, attention should be paid to 313 

electrochemical, but also to immobilized-TEMPO oxidations as reviewed by Bragd et al. 314 

(2004). Enzyme-based TEMPO systems exploiting oxidative enzymes are another suitable 315 

alternative to salt-based TEMPO-oxidative systems. Enzymes-assisted TEMPO oxidation 316 

allows the regeneration in situ of nitrosonium salt where only oxygen (in the case of laccase) 317 
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or hydrogen peroxide (with peroxydase) is the final electron acceptor in the course of the 318 

reaction (Figure 5).  319 
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Figure 5. Mechanisms of glycan oxidation by TEMPO/laccase/O2 or 322 

TEMPO/peroxydase/H2O2 systems, adapted from Bragd, van Bekkum & Besemer (2004). 323 

 324 

Laccase (EC 1.10.3.2.), which belongs to the oxyreductase family, could be a good candidate 325 

to optimize green chemical synthesis of oxidized compounds with only water as by-product 326 

(Marzorati, Danieli, Haltrich & Riva, 2005). The efficiency of the system TEMPO/laccase 327 
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from Trametes pubescens/O2 was tested with mono- and disaccharides but also cellulose 328 

derivatives. Mathew & Adlercreutz (2009) performed similar experiments by using TEMPO 329 

combined with laccase to oxidize granular potato starch under mild and environmentally 330 

friendly conditions. Other enzymes-assisted oxidations have been reported on polysaccharides 331 

such as (i) starch and cellulose suspensions (Viikari, Buchert, & Kruus, 1999a; Viikari et al., 332 

1999b), (ii) cellulose, starch and pullulan (Jaschiski, Gunnars, Besemer, & Bragd, 2001; 333 

Jetten, van den Dool, van Hartingsveldt, & van Wandelen, 2000), (iii) cellulose nanofibers 334 

(Jaušovec, Vogrinčič, & Kokol, 2015) or galactomannan (Campia et al., 2017; Lavazza et al., 335 

2011; Merlini et al., 2015; Rossi et al., 2016). According to the latter authors, the use of 336 

laccase from T. versicolor allowed a ten-fold increase in viscosity of the oxidized solution, 337 

changing the rheological profile from a viscous behavior to an elastic gel (Lavazza et al., 338 

2011). The formation of new inter-chain hemiacetalic bonds between carbonyl and hydroxyl 339 

groups should be involved in this modification. Merlini et al. (2015) obtained the same kind 340 

of results on galactomannans extracted from the seeds of various leguminous plants, e. g. 341 

Ceratonia siliqua, Cyamopsis tetragonolobus or Trigonella foenum-graecum. The freeze-342 

drying of the hydrogels obtained following this procedure led to highly water-insoluble and 343 

mechanically reinforced polysaccharide aerogels (Rossi et al., 2016). These materials are 344 

capable to uptake aqueous or organic solvents over 20 times their own weight, and to absorb 345 

and release active biomolecules, suggesting their possible use as safe delivery systems. 346 

Coseri and co-authors reported that N-hydroxyphthalimide (NHPI)  and other nonpersistent 347 

nitroxyl radical precursors, were suitable catalysts for the selective oxidation of cellulose 348 

fibers promoted by the NaClO/NaBr system (Biliuta, Fras, Strnad, Harabagiu, Coseri, 2010; 349 

Coseri, Nistor, Fras, Strnad, Harabagiu, & Simionescu, 2009).  350 

The proposed mechanism implies the formation of the corresponding phthalimide-N-oxyl 351 

(PINO) radical (Recupero & Punta, 2007; Melone & Punta, 2013). The latter is oxidized to 352 
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the corresponding N-oxammonium cation, which in turn is responsible for the oxidation of the 353 

C6 alcoholic function. By a comparison on the effect of TEMPO and PINO radicals on 354 

cellulose oxidation, the NHPI oxidation mediator resulted to afford the highest conversion in 355 

carboxylic groups and to better preserve the morphology and the molecular weight of the 356 

starting material (Biluita et al. 2013). 357 

 358 

4. TEMPO-mediated oxidized polysaccharides: For what purpose? 359 

4.1. Uses and applications of TOCNFs 360 

Due to their specific mechanical, chemical, and physical properties, TOCNFs have found, in 361 

the last decade, more sophisticated applications compared to other polysaccharides, in fields 362 

ranging from biomedicine to energy, to sensing, as well as to environmental remediation 363 

(Isogai et al., 2011). 364 

Nanofibrils obtained by this oxidative procedure can be either used as additives for specific 365 

formulations, or nanostructured in films, hydrogels, and aerogels for advanced applications, 366 

with or without the addition of cross-linkers.  367 

The reasons for this significant versatility is mainly laid on a direct consequence of the 368 

oxidative process, which implies a selective introduction of carboxylic functionalities in the 369 

backbone of the polysaccharide. Carboxylic groups play at least three different roles. They 370 

favor the defibrillation of cellulose at basic pH, by electrostatic repulsion of the negatively 371 

charged cellulose chains. Moreover, carboxylic groups can be involved in the cross-linking 372 

process of the fibrils, either by promoting the formation of intermolecular hydrogen bonding 373 

with other polysaccharide chains, or by favoring the formation of composites via ionic-374 

electrostatic interactions or the formation of covalent bonds.  375 

Finally, carboxylic moieties can also represent ideal hooks for further grafting of the 376 

carbohydrate with active molecules, widening the chemical and physical properties of the 377 
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material. In this context, Orelma et al. (2016) have recently reported the preparation of 378 

photoreactive nanocellulosic films via a four step protocol, i.e. i) TEMPO-mediated 379 

oxidation; ii) grafting with amino-benzophenone, by promoting the formation of amide bonds 380 

between the carboxylic functions of the fibrils and the amino groups of the aromatic 381 

compound; iii) defibrillation using high pressure fluidization; iv) cross-linking by activating 382 

free-radical reactions with UV radiation. The final materials show enhanced mechanical 383 

properties. In this section we present an admittedly partial selection of recently reported 384 

original applications of TOCNFs. 385 

4.1.1. Direct use of TOCNFs 386 

The use of TOCNFs as green additives is mainly associated to the possibility of modulating 387 

the final mechanical properties of the material.  388 

The addition of TOCNFs in adhesives guarantees, for example, a reinforcement for 389 

waterborne polyurethane coatings on wood, also improving the pencil hardness of the coating 390 

(Cheng, Wen, An, Zhu, & Ni, 2016). However, this is at the expense of the surface roughness 391 

and adhesion strength of the coating to the wood surface, which are both negatively affected.  392 

TOCNFs derived from bacterial cellulose are also valuable, safe, and biodegradable 393 

alternatives to standard surfactants for the stabilization of oil/water interface in emulsions. 394 

Their enhanced efficiency, compared to the corresponding non-oxidized fibrils, is probably 395 

due both to the lower size of TOCNFs and to their increased hydrophilicity, with a consequent 396 

lower contact angle (Jia, 2016). This study highlights how the long-term stability of the 397 

emulsions derives from an optimal compromise among different factors, namely the fibril 398 

dosage, size and wettability. 399 

The chemical-physical properties of TOCNFs have also suggested their use for the design of 400 

high-performance batteries. They are candidates to be ideal binders for flexible Li-ion 401 

batteries in future flexible electronic devices, playing an important role in the fabrication of 402 
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electrodes by holding together active and conductive materials together (Lu, Behm, 403 

Leijonmarck, Lindbergh, & Cornell, 2016). While there are several examples reporting the 404 

use of non-oxidized cellulose nanofibrils for this purpose, TOCNFs show the advantage of 405 

preventing common aggregation of fibrils, usually due to formation of hydrogen bonds 406 

between hydroxyl groups. 407 

Moreover, TOCNFs have also been used as starting materials for the production, by thermal 408 

carbonization, of hard carbon anodes in Na-ion batteries (Shen et al., 2015). The experiments 409 

emphasized how the pretreatment with the oxidation protocol could affect the porosity of the 410 

final carbon, significantly decreasing the specific surface area of the resulting material, if 411 

compared to that obtained starting from pristine wood fibrils (126 m2 g-1 versus 586 m2 g-1, 412 

respectively). The low surface area carbon resulted in a higher initial Coulombic efficiency, 413 

when used as an anode for Na-ion batteries. 414 

Finally, TOCNFs can also behave as efficient nanocarriers for bioactive molecules reversibly 415 

immobilized on fibrils by electrostatic interaction (Weishaupt et al., 2015) 416 

4.1.2. Self-assembled TOCNFs 417 

Self-assembled nanostructured materials derived from milky suspensions of TOCNFs can be 418 

obtained in different forms, such as films, powders, and aerogels, by simply varying the 419 

methods applied to achieve the final purpose (air-, spray-, freeze-, or supercritically-drying) 420 

(Jiang & Hsieh, 2013a; Jiang & Hsieh, 2013b; Peng, Gardner, & Han, 2012). Self-assembling 421 

is also highly affected by the protonation degree of the carboxylic groups, with a consequent 422 

different behavior in the interaction with solvents as a function of their polarity (Jiang & 423 

Hsieh, 2016). 424 

Air-drying of fully protonated TOCNFs leads to formation of films due to the interfibrillar 425 

hydrogen bonding. These films show high oxygen and hydrogen permeability and low water 426 

adsorption (Fukuzumi, Fujisawa, Saito, & Isogai, 2013; Fujisawa, Okita, Fukuzumi, Saito, & 427 
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Isogai, 2011). Moreover, the preliminary immobilization of proteins via classical coupling 428 

chemistry (N-hydroxysuccinimide/1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide) (EDA) 429 

provides films with enhanced and specific bioactivity (Arola, Tammelin, Setälä, Tullila, & 430 

Linder, 2012; Orelma, Johansson, Filpponen, Rojas, & Laine, 2012). 431 

The alternative approach of freeze-drying, for the treatment of TOCNFs aqueous suspensions, 432 

leads to the formation of highly porous aerogels. Among the several possible applications, 433 

these scaffolds can be considered ideal templates for further coating, in order to confer to the 434 

material new specific properties. In this context, we have reported a simple protocol to obtain 435 

hybrid organic-ceramic aerogels by simply mixing TOCNFs aqueous hydrogels with 436 

TiO2/SiO2 sols, followed by freeze-drying of the resulting mixture (Melone et al., 2013). 437 

Calcination of the obtained material, and further heating up to 800 °C, led to formation of 438 

ceramic aerogels with a high specific surface area, capable of combining a high adsorption 439 

efficiency for organic molecules with photocatalytic activity under UV radiation (Figure 6a). 440 

Thanks to this property, the system was successfully tested in the photo-degradation of 441 

Methylene blue and Rhodamine B dyes, as representative examples of organic pollutants. 442 

More recently, Panzella et al. (2016) have verified the possibility to conduct a surface 443 

functionalization of TOCNF aerogels by ammonia induced solid state eumelanin coating, via 444 

polymerization of 5,6-dihydroxyindole (DHI), previously deposited from an organic solution. 445 

The new all-natural aerogel biomaterial, whose porosity was not affected by the coating 446 

treatment, showed a potent antioxidant activity, an enhanced adsorption capacity towards 447 

organic dyes, and an interesting hydrophobic behavior (Figure 6b). 448 

4.1.3. TOCNF composites 449 

The formulation of TOCNF in composites probably represents the favorite route, followed by 450 

research groups operating in this field, to provide advanced high-performing materials.  451 



 

25 

The presence of negatively charged carboxylates on the backbone of cellulose nano- and 452 

micro-fibrils suggested the possibility of preparing microgels and nanogels by ionic-ionic 453 

interactions with cations (Masruchin, Park, Causin, & Um, 2015). The trivalent Al3+ provided 454 

the strongest ionic cross-linking, promoting the formation of hydrogels which, if compared 455 

with those obtained in the presence of cations with lower valency, were characterized by 456 

higher stiffness, compressive strength, surface area, and porosity, and a tighter network 457 

structure. Nevertheless, the highly porous structure in these nanogels negatively affected the 458 

drug-delivery profile from the matrix. 459 

Within the same field of inorganic/organic interactions, TOCNF/molybdenum sulfide 460 

composites, prepared by a hydrothermal method, were proposed as non-enzymatic sensors for 461 

the electrocatalytic determination of nitrides via their oxidation in water (Wang et al., 2016). 462 

Above all others, hybrid organic composites provide the most versatility in the design of new 463 

materials with enhanced properties. Transparent and printable films can be obtained by 464 

mixing the negatively charged TOCNFs with single-walled carbon nanotubes (Koga et al., 465 

2013) or with carbon dots, directly obtained by TOCNFs via heating in microwave oven in 466 

the presence of 4,7,10-trioxa-1,13-tridecanediamine (Jiang, Zhao, Feng, Fang, & Shi L., 467 

2016). In the first case, the resulting flexible material exhibits highly conductive properties, 468 

suggesting the possibility to substitute classical polymers with TOCNFs for the design of 469 

electrical devices, while the latter hybrid film has a strong blue luminescence under ultraviolet 470 

excitation. 471 

Thermally responsive hydrogels (Wei et al., 2016) and aerogels (Zhang et al., 2016) have 472 

been obtained by incorporating TOCNFs in poly(N-isopropylacrylamide) matrices. The 473 

addition of the oxidized nanofibrils allows to improve their mechanical properties, giving the 474 

materials exceptionally high compressive strength. 475 
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The presence of carboxylic groups on the backbone structure also suggested the possibility of 476 

an efficient ionic/ionic interaction and/or cross-linking with poly-amine polymers. For 477 

example, the incorporation of TOCNF’s into a chitosan matrix has encouraged the 478 

development of completely biobased, flexible, and transparent films for potential applications 479 

in food packaging (Soni, Hassan, Shilling, & Mahmoud, 2016). 480 

In this context, Melone et al. (2015) have recently reported a thermal route for the production 481 

of TOCNFs/branched-polyethyleneimine (bPEI) aerogels, following a freeze-drying protocol. 482 

Further heating of the resulting nanostructured materials in oven at 102 °C, favored the high 483 

reticulation (cross-linking) into sponge-like, water stable aerogels, by formation of amide 484 

bonds between the carboxylic and the amine moieties. The new materials resulted to be highly 485 

efficient adsorbent units for water remediation of heavy metals and phenolic derivatives 486 

(Figure 6c). The properties of the aerogels could be also modified by selective 487 

functionalization on the amino groups of the cross-linker. As an example, the cross-linking of 488 

TOCNFs with bPEI previously functionalized with pNO2-phenyl urea units led to the 489 

formation of aerogels which behaved as heterogeneous sensor for fluoride anions in DMSO 490 

solution (Melone, Bonafede, Tushi, Punta, & Cametti, 2015) (Figure 6d). More recently, 491 

cross-linking of TOCNFs with bPEI for Cu(II) removal was also obtained following a 492 

chemical route, by reacting the two polymers in the presence of glutaraldehyde (Zhang, Zang, 493 

Shi, Yu, & Sheng, 2016). 494 

 495 
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 496 

 497 

Figure 6. Significant examples of TOCNF-based aerogels. a) Ceramic aerogels for pollutant 498 

photodegradation; b) Eumelanin coated sorbent aerogels; c) bPEI-TOCNF sorbent aerogels 499 

for environmental remediation; d) Functionalized bPEI-TOCNF sorbent aerogels for sensing. 500 

 501 

 502 

 503 

 504 
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4.2. Other applications of oxidized oligo- and polysaccharides 505 

Even if TOCNFs are still probably the most exciting derivatives from TEMPO oxidation of 506 

cellulose, this chemistry obviously gave birth to other oligo- and polysaccharides with high 507 

potential in pharmaceutic, cosmetic, (etc.) applications. Table 2 gives a non-exhaustive 508 

overview of other physico-chemical and biological properties of generated polyelectrolytes 509 

from TEMPO chemistry. Obviously, such parameters as the toxicity and biocompatibility are 510 

of first interest especially in pharmaceuticals. 511 

 512 
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Table 2. Other generated polyelectrolytes from TEMPO chemistry of polysaccharides and their physico-chemical and biological properties. 513

Native polysaccharide TEMPO-mediated oxidized derivative Properties References 

Agarose Oxidized agarose  
(and grafting dopamine). 
 

O
COOH

OH

OH

O
O

O

O

OH n  

 Cytocompatibility 
 Promotion of cell-adhesiveness Su et al. (2013) 

κ, ι - carrageenan Oxidized carrageenan. 
 

O
O

O

OH

O O
COOH

OH

OSO3
-

n  

 Antiviral activity (HSV(1)-1, HSV-2). Cosenza et al. (2015) 

Cellulose 
Cellulose nanofiber 

Celluronic acid (CUA), TOCNFs. 
 

O O

COOH

OH
OH

n 

 See part 4.1. 
 Biodegradability, 
 Filmogenic properties. 

Delattre et al. (2006a) 
Zhao, Zhang, Lindström, & Jiebing (2015) 
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Chitin 
Chitosan 

Chituronic acid, 6-carboxy β-chitin,  
C-6 oxidized chitosan. 
 

O O

COOH

NH
OH

COCH3

O O

COOH

NH
OH

COCH3 n 

 Absorption capacity, 
 Aggregation, 
 Antimicrobial activity, 
 Antioxidant, 
 Antiparasite activity, 
 Apoptosis inhibitory activity, 
 Bile acid-binding capacity, 
 Biodegradability by soil 
microorganisms, 
 Chelating and sorption properties, 
 Drug delivery system, 
 Filmogenic properties, 
 Moisture retention, 
 Modulation of cell functioning, 
 Tissue engineering. 
 

Muzzarelli et al. (1999) 
Kato et al. (2004) 
Yoo et al. (2005) 
Mouryza et al. (2010) 
Muzzarelli, Greco, Busilacchi, Sollazzo, & Gigante (2012) 
Huang et al. (2013) 
Pierre et al. (2013) 

Curdlan β-1,3-polyglucuronic acid sodium salt,  
Functionalized β-1,3-polyglucuronic acid 
(sulphation/acetylation steps). 
 

O O

COONa

OH

OH

n                       

 Adipocyte differenciation, 
 Healing process (predicted by TA(2)), 
 Lipid storage, 
 Metabolism of lipids (predicted by 
TA(2)), 

 Viscosities and viscoelastic properties. 

Tamura et al. (2010) 
Delattre et al. (2012a) 
Delattre et al. (2012b) 
 

Galactomannan Oxidized galactomannan. 
 

O O

CH2 OH

OH

O

O

COOH

OH

OH

OH

n 

 Absorption behavior  
 Aerogel, 
 Biodegradability, 
 Emulsion stabilizer, 
 Thickener,  
 Versatile delivery system,  
 Viscosifier. 
 

Sierakowski, Freitas, Fujimoto & Petri (2002) 
Lavazza et al. (2011) 
Merlini et al. (2015) 
Rossi et al. (2016) 
Campia et al. (2017) 
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Gellan Rhamnoglucuronic acid (Ulvan-like polymer). 
 

O O

COOH

OH
OH

O
O

COOH

OH
OH

O O

COOH

OH

OH
O

O

OH OH

CH3
n

 
 

 Antioxidant. Elboutachfaiti et al. (2011b) 

Glucan 
Maltodextrin 

Polyglucuronan. 
 

O
COONa

OH
n

O

 

 Enhanced strength of paper sheet, 
 Sequestring capacity. 

Thaburet, Merbouh, Ibert, Marsais, & Queguiner (2001) 
Song, & Hubbe (2014) 

Glucomannan (Konjac) 
Mannan 

Mannuronan. 
 

n

O
O

HOOC OH

O
OH

O
HOOC OH

OH

 
 

 Controlled delivery system, 
 Material for capsules/spheres 
preparation, 

 Microspheres, 
 Immunological properties. 

Ďurana, Lacík, Paulovičová, & Bystrický (2006) 
Chen et al. (2014) 
Lu et al. (2015) 
Chen et al. (2016) 
Shi et al. (2017) 
 

Pullulan Oxidized pullulan, oxypullulan 
Functionalized oxidized pullulan 
 

O

O

COOH

OH
OH

O

O

COOH

OH
OH

O

O

CH2

OH
OH

OH

n  

 Injectable hydrogel to prevent tissue 
adhesion, 

 Reducing and capping agents,  
 Rheological behavior, 
 Surfactant properties. 

Pereira et al. (2014) 
Spatareanu et al. (2014) 
Coseri et al. (2015) 
Bang, Lee, Ko, Kim, & Kwon (2016) 
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Starch Oxidized starch 
Functionalized oxidized starch 
 

n

O

O

COOH

OH
OH

O

O

COOH

OH
OH

O

O

COOH

OH
OH

O

OOH
OH

O

O

HOOC

OH
OH

O

O

COOH

OH
OH

x

 
 

 Controlled delivery system, 
 Hydrogels and microgels, 
 Microspheres. 
 

Li et al. (2009) 
Li et al. (2010) 
Li, Zhang, van Leeuwen, Cohen Stuart, & Kleijn (2011)
Wang et al. (2015) 

Xanthan Xanthuronan 
 

O
NaOOC

O

OH
OH

O
COONa

OH
OH

O O

COONa

OH
O O

O
NaOOC OH

OH
OH

O
NaOOC

OH

O OH

n

 
 

 Antioxidant,  
 Highly resistant derivative to enzymes 
degradation. 

Delattre et al. (2015) 

(1) HSV: Herpes Simplex Virus, (2) TA: Transcriptomic Analysis. 514
515
516
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5. Biodegradation and enzymes involved 517 

Since the early 2000s, the biodegradability of TEMPO-mediated oxidized polysaccharides has 518 

been investigated by different approaches based on (i) the use of various enzymatic 519 

treatments, (ii) the screening of microorganism strains able to grow on oxidized 520 

polysaccharides as sole carbon source and (iii) the identification from these strains of 521 

enzymes involved in the oxidized substrate degradation. Although several polysaccharides 522 

have been successfully obtained by TEMPO-mediated oxidation (For review see Bragd et al., 523 

2004), the actual knowledge of their biodegradability and the involved enzymatic mechanisms 524 

remain as of today restricted to few polyglucuronates among which celluronate (Kato et al., 525 

2002), 6-oxichitin or chituronic acid (Kato, Kaminaga, Matsuo & Isogai, 2004, 2005), 526 

amyluronate (Kato et al., 2005), C6-oxidized chitosan (Pierre et al., 2013) and oxidized 527 

curdlan (Watanabe, Habu & Isogai, 2013). 528 

Susceptibility of celluronic acid sodium salt (celluronate) produced from cellulose oxidation 529 

to biodegradation was first investigated using different enzymatic cocktails (Kato et al., 2002) 530 

among which the cellulase complex Onozuka R-10 (EC 3.2.1.4), a commercial crude 531 

cellulase, has been shown to efficiently decrease the DP (40 times lower after incubation for 532 

40 days) of celluronic acid, involving β-(1,4)-polyglucuronase enzymatic activity and 533 

excluding action of CelloBioHydrolase I (CBH I) (EC 3.2.1.91) and EndoGlucanase II (EGII) 534 

(EC 3.2.1.4). The same authors highlighted the higher biodegradability of celluronate using 535 

microorganisms in soil samples collected from natural environment, compared to 536 

CarboxylMethyl Cellulose (CMC) and amyluronic acid (Kato et al., 2005). Thorough 537 

investigations carried out on the bacterial soil Brevundimonas sp. SH203, led to the 538 

purification and characterization of two CellUronate Lyase (CUL) (EC 4.2.2.14), CUL-I and 539 

CUL-II involved in the β-1,4-linked polyglucuronate degradation (Konno, Habu, Iihashi, & 540 

Isogai, 2008; Konno, Habu, Maeda, Azuma, & Isogai, 2006). CUL-I and CUL-II were 541 
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identified as monomeric proteins with a molecular mass of 37 kDa and 56 kDa, respectively, 542 

showing high substrate-specificity for celluronate. The authors also observed a relatively 543 

weak activity for amyluronate and alginate for CUL-I. While CUL-I was demonstrated to 544 

depolymerize celluronate endolytically by β-elimination to dimeric and monomeric uronates 545 

via oligo-celluronate intermediates production, CUL-II was shown to act like an exo-type 546 

lyase exhibiting a higher activity on satured and unsatured celluronate dimeric substrates than 547 

on celluronate polymers. These observations suggest a synergistic action of CUL-I and CUL-548 

II in complete degradation of celluronate to monomer residues (Konno et al., 2008). Besides, 549 

a Glucuronan Lyase (GL) (29 kDa) (EC 4.2.2.14), isolated from Trichoderma strain GL2, was 550 

also described for its ability to depolymerize oxidized cellulose in an endolytic manner to 551 

generate dimeric and trimeric oligosaccharides (Delattre et al., 2006a; Konno et al., 2008).  552 

Although amyluronate constitutes an artificial homopolymer (α-1,4-linked polyglucuronate) 553 

obtained from starch C6-oxidation, it was found to be biodegradable with a degradation rate 554 

lower than celluronate (Kato et al., 2005). Two AmylUronate Hydrolase (AUH) (EC 555 

3.2.1.139) designated as AUH-I and AUH-II have been isolated from Paenibacillus sp. 556 

(Iihashi, Nagayama, Habu, Konno, & Isogai, 2009). AUH-I, a 115 kDa protein, was shown to 557 

be highly specific for amyluronate and inert on starch and CMC substrates. The degradation 558 

of amyluronate by AUH-I led to glucuronate as main product, indicating an exolytic activity 559 

and leading to classify AUH-I as α-glucuronidase. AUH-II protein is still for its part under 560 

investigation, but preliminary studies suggested an endolytic activity of AUH-II.  561 

Recent works by Watanabe et al. (2013) allowed selecting Paenibaccillus sp. Strain EH621 562 

growing on TEMPO-mediated oxidized curdlan as sole carbon source. A total carbon 563 

reduction (~60%) in culture supernatant was obtained within 3 days, indicating the production 564 

of enzyme degrading β-(1,3)-polyglucuronates. Analyses of degradation products led the 565 

authors to conclude that  endolytic and probably exolytic enzymes were involved in oxidized 566 
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curdlan depolymerization, with a substrate-specificity restricted to β-(1,3)-polyglucuronates 567 

(Watanabe et al., 2013). 568 

The knowledge of chituronic acid biodegradability is restricted to the studies carried out by 569 

Kato et al. (2004, 2005), in which the degree of biodegradation of chituronic acid was shown 570 

to be close to that of celluluronate and chitin with degree of N-acetylation of 91%. More 571 

recently, the biodegradation of C6-oxidized chitosan was shown to be partially effective using 572 

various enzymes, already known for their hydrolytic activities on chitosan (Pierre et al., 573 

2013). Notably, Glucanex®, composed of cellulose (EC 3.2.1.4), β-glucanase (EC 3.2.1.6) 574 

and chitinase (EC 3.2.1.14), and enzymatic mix from T. reesei (EMTR), including chitinase, 575 

cellulase and probably a C6-oxichitosanase, led to higher depolymerization level with a final 576 

hydrolysis yield close to 20.3% and 36.4%, while pectinase activity (EC 3.2.1.15) present in 577 

Macerozyme R-10® showed lower but significant activity. Surprisingly, Glucanex® and 578 

EMTR activities on degradation might not involve cellulase as shown by the relatively low 579 

level of depolymerization obtained with endo and exo-cellulase mixture (Celluclast®) (EC 580 

3.2.1.4).  581 

Galactomannans are high molecular weight polysaccharides found mostly in the seeds of 582 

leguminous plants. Among the different approaches to galactomannans oxidation reported in 583 

the literature (Delagrave et al., 2001, 2002; Hall & Yalpani, 1980; Mikkonnen et al., 2014; 584 

Parikka et al., 2010, 2012), the use of TEMPO mediated oxidation or Laccase-Mediator 585 

System (LMS)-TEMPO system was shown to selectively oxidize primary hydroxyl groups of 586 

Guar Gum (GG) as reported in part 3 (Lavazza et al., 2011; Sakakibara et al., 2016; 587 

Sierakowski, Freitas, Fujimoto, & Petri, 2002; Sierakowski et al., 2000; Souza, Lucyszyn, 588 

Ferraz, & Sierakowski, 2011). The biodegradability of oxidized galactomannan by LMS was 589 

investigated for two galactomannans, GG and FenuGreek (FG) for which it has been observed 590 

a significant sensitivity to β-mannanase (130 mU/gGM) (EC 3.2.1.78) as demonstrated for both 591 
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oxidized GG and FG by a gradual loss of gel viscosity (Merlini et al., 2015; Rossi et al., 592 

2016). Although depolymerization kinetics estimated by the measure of viscosity decrease 593 

during β-mannanase treatment, appeared different between native and oxidized GG and FG, 594 

the viscosity reached a similar value after 24h ( 200 mPa) indicating the capacity of oxidized 595 

galactomannan to be biodegraded with various kinetics depending of their source.     596 

Others TEMPO-mediated oxidized polysaccharides, such as xanthan and xyloglucan, were 597 

also analysed for their biodegradability (Delattre et al., 2015; Takeda et al., 2008), but in both 598 

cases, xanthuronate and oxidized-xyloglycan were demonstrated to be highly resistant to 599 

enzymatic hydrolysis, in particular to classical commercial cellulases (Macerozyme R-10®, 600 

Celluclast®), hyaluronidase (EC 3.2.1.35) and alginate lyase (EC 4.2.2.3) for xanthuronate, 601 

and to endo-(1,4)-β-glucanase (EC 3.2.1.4) concerning oxidized-xyloglycan.  602 

Overall, the need to understand enzymatic mechanisms involved in oxidized polysaccharides 603 

degradation is stimulated by the high potential for valorization and applications of by-604 

products (i.e. oliguronates) in pharmaceutical, cosmetic and non food industries. The 605 

biodegradability of TEMPO-mediated oxidized polysaccharides was clearly demonstrated for 606 

few polysaccharides (celluronate, amyluronates, C6-oxidized chitosan and chituronic acid) 607 

and for some of them involved enzymes belonging to glucuronate lyases and hydrolases. A 608 

better knowledge of enzymes involved in C6-oxidized polysaccharides degradation remain 609 

essential and could contribute to the development of performing molecular tools, notably by 610 

engineering genetics, able to produce valorizing oliguronates. 611 

6. Conclusion 612 

The oxidation of polysaccharides using TEMPO chemistry have been abundantly published 613 

since the nineties and results have clearly led to a significant increase of knowledge on the 614 

biological and physico-chemical properties of polyuronides, mostly on oxidized celluloses. 615 

However, several publications offer very optimistic and sometimes utopian conclusions. 616 
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Starting with the first work of de Nooy (1994), no real industrial developments on a large 617 

scale have materialized on TEMPO oxidized polysaccharides, in spite of numerous filed 618 

patents. The main reason for this relatively meager industrial success is probably the same as 619 

for other natural polysaccharides from various sources (microorganisms, terrestrial plants and 620 

macroalgae). The costs and technologies required for their production can hardly compete 621 

with some natural or modified polysaccharides with low production costs and already well 622 

positioned in their market. The main issue for oxidized polysaccharides is to find a free 623 

technological and high value niche. In this context, it will be very difficult for TEMPO 624 

oxidized celluloses to compete with some cellulosic derivatives such as carboxymethyl 625 

cellulose, hydroxyethyl cellulose and others. The example of low commercial success of the 626 

bacterial glucuronan from a Sinorhizobium meliloti strain (Elboutachfaiti et al., 2011) 627 

perfectly supports this proposition. Firstly published in 1993, the bacterial oxidized cellulose 628 

called glucuronan only found applications in the cosmetic field for its biological property 629 

despite its interesting rheological behavior. This pessimistic interpretation could easily change 630 

for the better in the future considering the current developments of oxidized cellulose in the 631 

material field, the potential of TEMPO oxidized polygalactomannan as delivery system of 632 

actives, but also the identification of the biodegradability of TEMPO oxidized 633 

polysaccharides. The biodegradability leads to a fundamental question about the role of these 634 

enzymes in nature, indicating the presence of natural polyuronides, maybe not yet discovered, 635 

and/or the existence of substrates having structural analogies with TEMPO oxidized 636 

polysaccharides. 637 
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