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Abstract
The safety of a itlear PowerPlant (NPP)is verifiedby analyzing the system respons@sler normal
and accidental conditiong his is done by resorting toBestEstimate (BE) Thermahydraulic (TH)
code whose outcomes are compared to given safiegsholds enforced by regulatiofhis allows
identifying thdimit-state functiorthat sefaratesthefailure domain from the safe domain.
In practice, theTH model response is affected lycertainties (bothepistemic and aleatory), which
make the limistate function and the failure domaginobabilistic.
The present paper sets forth an innovaapproachto identify the failure domaitogether with the
safestplant operating conditionsThe approach reliesn the use of Reduced Order Models (ROMS)
andK-D Tree
The model failure boundaiig approximated by Support Vector Machines (SVats), hen,projected
onto the space of tleontrollable variablegi.e.,themodel inputs that can be manipulated by the plant
operator, such as reactor controbds position, feeev a t e rratétlrough the fant primary loops,
accumulatorwater temperature ahpressure, repair times, etc.). Thathest pointfrom the failure
boundaryis, then, computetly means of &-D Tree-based nearest neighbor algorithrthis point
representshe combination of input valuesrresponding tahe safesbperating conditions
Theapproachis shown tagive satisfactory results with reference @oe analytial exampleand one
real case study regarding thiReakCladding Temperature (PCTgached in a Boiling Water Reactor
(BWR) during a Sttion-Black-Out (SBO)simulatedusingRELAP53D.

Keywords: RiskIinformed Safety Margins Chacterization; Failure Boundary ReducedOrder
Models; Support Vector Machines:;: K Tree; Station Black Out Accident.



1. INTRODUCTION

The Riskinformed Safety Margins Characterization (RISMC) pathway of the Light Water
Reactors Sustainability (LWRS) program of the U.S. Department of EEXQ¥) [DOE,
2009 aims at developindecision making methods and tqdts use in the process lafensing
new nuclear technologies aedaluating existindNuclear Power Plants (NPP®)r lifetime

extension.

Thermaiydraulic (TH) =" Reuronic €odeof the nuclearsystem responsia normal and

accidental conditionsSpecific outputs areselected as safesignificant parameterand their
calculated values amompared with some threshold valuasorder tocheck that sufficient
safety margins arkept during accidnt[Gauvrilas et al., 2004

Traditionally, thissafety assessmeptocedure has been performed on a small set of Design
Basis Accidents (DBAs) and under tight conservative assumptionso.e¢hephenomena
dynamics described, physical models implemented, etc.) to protect against the uncdrtainties
the modehlnd its parameters.

In recenttimes, an extended andiore realistic approachas been undertakemcluding
Beyond Design Basis Accidents@BASs) and relyingon Best Estimate (BEjodesin which

more realistic assumptions are takenhe evaluation of the safety margirgd et al., 2010
Alvarenga et al., 2015]Under this settingan accurate and explicit treatment of the
uncertaintiesis required, in order to provide confidence that plant safety margins are not
actually reduceglZio et al., 2008Apostolakis, 1990Schuélleret al., 2008

Suchuncertainty quantification hashifted the concept of safety margimg a probabilistic
paradigm, wherebyhe code outcomesare treatedas Stochasticvariables Zio et al., 2008
Schuélleret al., 2008.

Mathematically a BETH codefor safety assessment may be seen as an ensemble of three

elements: ip set of equationsoded tadescribehesystem responsg an n-dimension&input

vector_ andiii) an o-dimensional output vect(.
Sochastvariabes? [, .. 1 ThenputvectoX conss the madel prameters and
representshe systemsrésponseln mathematicalvords, a BETH code can be seen as the

multidimensional and nehinear operatorm that maps the input vect. into the output

vectorl [Bourinet et al., 2071



v=n(X) M

In general, uncertainties affecting the model outcome may be due to: inherent stochastic
behavior of therocess described blye modelm (aleatory uncertainty), imperfect knowledge
about the model input variablex and lack of inbrmation on the underlying physical
phenomea (epistemic uncertainty)Apostolakis, 1990Mdaeller et al., 208; Helton et al.,

20117. Then, mathematicallyhe input vectorx is uncertairand, thereforethe output vector

With reference to a plant accidesuenariok,. (i€l @ sequence of events that can (or not) lead
oyt o sty of e v, of ity s, ach s
of thesenot to be exceedey therespectivesafdy parameted . ¥, alimit-state functiort

can be defined as:

G =G(X,9,) =Y(X)- 9, (3)

The model is in safe operating conditions whe¢X,2,) <0 and fails whenG(X,9,) >0.
Then G(X,9,) separates the input variables spAdein a safe domains={ X: G X9) 4},
and a failure domainF ={ X :G(X,9,) >0} . The failure probability,i.e. the probability of

occurrence of the plant accident scendjois, then,given by:

where f (X) is the joint Probability Density Function (PDF) of -dnputvector X

[Cadini et al., 2014 The set of input valueX : G(X,9,) =0 defines the failure boundagy
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within the input space (i.eA"), for a given value of the safety threshalg Because the

P(E;) values are low for higheliablesystemgsuchasNPPg andtheBE-TH modelsof these
systemsare computationally expensiv@eselattercan bereplaced byrReducedOrder Models
(ROMs) to allow the estimation @F within a reasonable computational tifZéo et al., 2008
Chakraborty et al., 20]15Indeed, ROMs are designed to capture the dominantimesr
behavior of the BETH models based on a simplified mathematical representatimng] et al.,
2004.

In this wak, the model failure boundary- is appoximated by means & Support Vector
Machines (SVM)-based ROMBasudhar et al2008;Cortes et al., 19955uyon et al., 1993
that isembedded ira K-D Treebased nearest neighlmsearch algorithniBentley, 1975

Katayama et al., 200Maneewongvatana et al., 2Q@& determine the farthest point fropk

inside the input spacA": this point representshe optimal combination of the model input

values that results in the safest plant operating conditfarthest from the failure boundary)

with reference tsome given safety requiremts expressed by, . The main advantage of

adoptingSVMs lies in theirsuperiorability, with respect to othedROMs (such as Atrtificial
Neural Networks (ANNs) and simple linear regression mod#dsjlefine complexiecision
functions (i.e., hyperplanes) in a multidimensional space and exploit optimal separating
functions in order to decompose multiple classes of data [Basudhar et al..ZRO@8 al.,
2013. On the other handhe selection of th&-D Treealgorithm as searching algthm is
motivated by the fact that telps finding the nearest neighbsrfaster than other bruterce
searching approaches [Maneewongvatana et al., 2001]. It is worth pointing out thaDthe K
Tree algorithm does not requires the SVM to be embeddedrdtbér, this can be used as

searching algorithrdriven by any other RONbr thedefinition of UF .

Knowledge of the safest plant conditioni$ers practicalbenefitsas X is comprised of two

different types of inputxontrollableandnon-controllable[Mohsine et al., 2010]The former

identify the levers undecontrol ofthe plant operatomwhich can be manipulated increase

plant safety (i.e., reactor contrabds podiion, feedw a t e r-ratdgptlorough the plant primary

loops, accumulatewater temperature and pressure, repair times, eftereas the latter define

the random parameters that m@gdversely affect the model response by increasing the
likelihood of an acident (i.e., pipelines fricioh act or s, temper ature and

heatsink, breaksection equivalent diameter, failure times, et )this respect,tishould be

pointed out thatvere 9, not fia priorio known but rather, obeyin@ probability distribution



1‘Gy (9,) , the samenput vectorrealization x might imply failure, g(X,9,) >0, or success,
g(X,9,) <0 and, thus, thestochasticsafety thresholdG, shouldbe included in thenon

controllableinput variables subs@Banks et al., 2071so that the input spadk" is expanded

intoA ™.

Once thecontrollablevariables arédentified we canproject thefailure boundaryF on the
controllablev ar i abl es space so as to draw ndthei r st
incipient plant failurehat dependsn the occurred accideandthenon-controllablevariables
Therest of thigpgper is organized as followSection2 illustrategheapplication of SVMs for

the failure boundargstimationSection 3 shows the approach used to idetitdgystensafest
operating conditiondn Section 4the proposed approach &pplied toan analyticaexample

used aproof of conceptaindin Section 5t is tested ora Loss of Offsite Power (LOOP) case
followed bya Station Black Ou{SBO) accidentin a Boiling Water Reactor (BWRyhose

behavior is simulated by a RELAFR® BE-TH code In Section 6 conclusions are drawn.

2. FAILURE BOUNDARY ESTIMATION

As alreadysaid simulations for the safety assessment of NPPs are computationally expensive
due to the small values &f(E.) . As onlylimited computing resources agenerallyavailable,

the investigation of an exhaustive setsohulation outcomesaccountingfor all normal and
accidental plant conditionss impractical For this reason, thiwork exploits a combination of

two ROMs to minimize the computational timasedto identify UF with sufficient accuracy

(aslater defined in terms gfersistencg

i. a Physical ROM (HROM): a SVM regresses the physical mogssponse ofhe BE-
TH code(see Appendix A for more detaits ) SVMs)

ii. aBoolean ROM (BROM): a SVM classifies the-ROM outputs as belonging either
to the safe ofailure domainfor the identification offF . It is worth mentioning that the
B-ROM is not builtdirectly on the physical model responses of thelBEcode but on
the RROM responses as this allows speedipgthe BROM evaluations by making

G smoother and easier to handle.

We adoptan adaptive sampling algorithfRabiti et al.,20144 for the approximationof the



model failure boundarylF: i) N, model responses are obtairfedm the originalBE-TH

simulations, ii) &-ROM is built tocapture the general BEH model behaviariii) a few new
input values are sampled and the-BH responsgare predicted by the-ROM, iv) a BROM

is built to classify the fROM outputs as failure or success, iii) new samples are selected based
on the B-ROM constructed, vthe B-ROM is iteratively updatedbasedon the P-ROM
responses to the new sampled pointttil PF is identified. This iterative algorithm allows
focusng sample®n risksensitive regions of thaput spaceso thatthe number of expensive
trials needed to localize the boungless reduced

The strategy heby describedo estimatelF is implemented irthe RAVEN codewithin a
projectdevelopedy the Idaho National Laboratory (INL) undbetNuclear Energy Advanced
Modding and Simulation (NEAMS) and Light Water Reactor Sustainabili(yWRS)
programso provide software toolfor the enforcement dhe Risk Informed Safety Margins
Characterization (RISMQonceptual framework supportedtine U.S Department of Energy
(DOE) [Rabiti et al., 2014]. In more detail, he iterative algorithm is comprisedof the

following steps(without loss of generality, we consider a random safety thresBpdahd a

single model outpuy ):

1. at the x=1 iteration, a limited number n, of  points
(%0 %> % 9,)®, (%, %> 1 %,,9,)?,> , (%, %,> ,X,,2,)™ is sampledrom the A"
input spacehrough a brutdorce approach (i.e., Monte Carlo, grid, stratified sampling,
etc.) The samplech, points are, in principlenore than (andifferent from) the set of
input values that have generated tieavailable BETH model responses;

2. ateacls-th iterationtheP-ROM (previously trained on thal, available BETH model
responsess employedo predict y®,y® > |y which reproducéhe BETH code
response y®, y? >y to the set ofn, sampled points

3. a Boolean functionz=2z(x,X,,> ,X,,9,) is evaluatedon each pairof points

(Xl’x2’> 7Xn’oy’y)(1)a(X17X2:> Xn’oy’y)(Z)a> ,(Xl,X2,> ,Xn,Oy’y)(n")Z

£l G, %% 9,)< 0

_"[‘1, G (X, % e s % py)zc (5)

z=2ZAX%, %,..., %,Oy)



4. aB-ROM is trainedon then, pointsand used tpredict Z®,7? > ,7", e.g., the
Boolean responses of z(x,X,,> ,x,,9,) on a new set of n, input values
(X, %> ,Xn,:)y)(l),(Xl,Xz,> ,><n,0y)(2),> (X %> ,&,Oy)("g) that are sampled on a

regular Cartesian grid in the input space;
5. the failuredomain F is definedby the set ofinput valuesresulting ina B.ROM

responsez(x,%,,> ,X,,9,) =- 1. This allows identifying the failure boundap§ as
the set of input values(x,%,,> ,%,,9,) ¢, (%, %> ,%,,9,)2,> that determine the
transition of Z(x,, X,,> , X,,9,) from-1to +1;

6. among points (X, %> ,%,,9,)%. (%, %> ,%,,9,),> , the farthest one from
(% %:> %, 9,), (% %> 1 %,9,) P>, (%, %,,> ,%,,9,)™ is added to they, training

data and ta algorithm is resumed at StepB¥ so doingthe BROM is retrained on a
new pointin the most risksensitive region of the input space .(ilmounday between
system safe and system failyrevhich is the farthest from the current training data;

7. apersistenceralue ¢’ is computed for eacfi-th point of pF :
a¥ =[z0) - 7V (6)

If all @Y’ areequal to0 (i.e., any of theyF points have changgdor a pre-defined

numberof consecutive iterations) new input points are added to the training set to

explore farther regions of the input space frigimandb) the process iesumedat Step
2.

When a preadefinedpersistenceequiremenis met the algorithm stops angF is obtained as
the set of inpupoints of the BROM failuredomain(Z(x, X,,> ,X,,9,) =- 1) and safelomain

(Z(x,%,,> ,%,,9,) =1), that determine the transition @{x,, X,,> ,X,,9,) from-1to+1.

3. SAFEST OPERATING CONDITIONS IDENTIFICATION

In the most general caseomemodel input variables areontrollable (i.e., X;, X,,> , X,),



while some others are n@te., X.;, X,.,,> , X,,). Thecontrollableandnon-controllableinput

spaces ard * and A™ 9", respectivelyandthe G, has been included in timn-controllable

inputspace aswithout loss of generalitywe consider the model safety threshold as a random
variable
The herein proposea@pproach for the safest operating conditions identificatemuiresin

input:

i. the set ofn+1-dimensionalpointsof YF (that can beestimatedasin Section 2 by
resorting to a ROM and a BROM, that in this case have been chosen to be SVMs for

regression and classification, respectiyely

ii. thedistributionsof the model input variables (i.efy (X)), fx, (X,),> , fy (X)), fg (3,)).

In particular,the available information onlF (shown in Figurel for n=2 controllable
variables where dots are safe pointg £1) and stars aréailure points (Z=-1) is, then,
manipulated within aK-D Tree algorithm Bentley, 1975 Katayama et al., 2000;

Maneewongvatana et al., 2QQasfollows, for a n+1=3-dimensional problem withy = 2
controllable( X,, X,) andn- q+1=1 non-controllable(G,) variables.

In general terms, the-B Tree algorithm is a spagrartitioning data structure for organizing
points in a KDimensional spee[Bentley, 1975 The K-D tree is a binary tree structure which
recursively partitions the input space along the axes that divide it into nested orthotropic
regions into which data points are filed. This is done to address the computational inefficiencies
of the bruteforce Nearst Neighborhood approaches and to reduce the required number of
distance calculations by efficiently encoding aggregate distance information for the sample (the
basic idea is, indeed, that if point A is very distant from point B, and point B is verytalose
point C, then, A is distant from C without calculating the distance between A and C). The
construction of a KD tree is very fast: because partitioning is performed only along the axes,
no D-dimensional distances need to be computed. Rather, wheD)gp@nt is assigned to a

node of the tree, the two coordinates are chosen, alternatively, and their medians are calculated
to define horizontal or vertical lines, that, recursively, define areas containing other data that
are classified in the left and hgbranches thereby departing that are, respectively, on the left
and right of the point corresponding to that node in tBespaceFigure2 shows an intuitive

2-D tree construction for thidentification of the nearest safe point to any ofdbailabk safe
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Figure 1: failure boundarqu for N =2 controllable input variables (dots are safe poin £1) and stars
are failure points € = - 1)).
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The proposed approach can bensnarized as follows:
1. One set of valuegi.e., X7, x?,> ,xV, X2 > ,x® x? > o o? > ) is sampledor each

input variablefrom itsPDF (i.e., fy (%), fx, (%.),> , fx (X)), fg (3,));

2. the sampledvaluesof the controllablevariables(i.e., X", x? > ,x",x? >  x x® > )

are usedto build a g-dimensional gridhereafter callectontrollable grid, whereasthe

sampled values of the noncontrollable variables (i.e.,
X x> ), X, x> gl gl? > ) areused to builda n-g+1-dimensional

grid (hereafter callesion-controllable grig (shown inFigure3 for n=2 and q = 2);

Yy A
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Figure 3: on the left side, & = 2-dimensional controllable grid; on the right sideja- q+1=1-
dimensional norcontrollable grid.

3. an exhaustive list of pairwiseombinations (X,%,,> ,X;, X1 X542:> 1 %,,9,) of the
controllableandnon-controllable coordinatess built;

4. for eachpoint (X;,X,,> , Xy, (Xga1s Xqe2:> 1 X,,9,)") belonging to the set of entries
(X% 3 Xy Xqa10 Xge2™ 5%, 9,) , Which isdefined bythe same -th set ofnon-controllable
variables (X1, X400 X ,2)¥) a K-D Treebased nearest neighbor algorithm is
employed to identifgthe closest point(x,,X,,> , X, X410, X442:> » %,,9,) ¢ Of PF (Figure4)
for which Z((X, %,,> X Xga1: Xge20™ 2 %:9,) ) =1

5. the projection d on the controllable input space (i.e.A?) of the Euclidean distance

between (X,%,> X, X1 X2 1%,9,)  and (X, %,> X, Xyuqs Xgear™ 1% 9) e iS
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computedFigureb);
6. thefarthest pointX; * (X, %> ,X; | (Xqeps Xgu2:> 1 %,,9,)Y”) in the safe domaifi from the

y-th projection of fF on A? is identified, which is the point such they =max{d} In
other words >‘<y is the safestpoint of the controllableinput spacdor they-th setof non
controllablevalues (Xy.i, X;2:> +%,,9,)%”;

7. to each>_<; oneprobability vaIuePy* is associated, whids computeds the product of all

thenon-controllablevariables marginal densities:
B = P(X s = X P(X = X2 & (X, =X P(G =) ™)

8. theabsolutesafestposition X* can becomputed as one of the following quantities:

I. mean:
X=4R & ®)
v
ii. median:
X 1% 1 P(Xgy <X, X <x80,> X, <x¥),G <)) =05 (9)
iii. Uth percentile:
K% P (X <X X SXEL> X, <X, G <o) = 2 (10)

As it is easy to see, bothean and mediaaf the >_<y population aresolutions based on the

most probable behaviarf the non-controllablevariables, whereas théth percentile defines
a more or less riskriented solution depending @h and on whahon-controllablevariables

are actuallyconsidered.
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Figure 5: projected Euclidean distandk between entry poinfX,, X,, Oy) 1 (11,8) and its nearest neighbor
(%, %,9,),¢ * (0,39) on the controllable variables space.

12



4. PROOF OF CONCEPT USING AN ANALYTICAL EXAMPLE

4.1 Analytical Model Description

The proposedpproachs tested on an analytical modal, whosemathematical expression is

given as:
Y = rn(xr Xz) =8)(12 - (Xl - 3) sz +2)2 - (Xl - 1)3 (11)

where inputsX; (j =12) are independent random variables obeying two truncated normal
distributions: X, i [- 1010~N,(24), X,i [- 1010~N,(0,6.25. The model limitstate

function G can be written as:
G=G(X,G)=Y- G =8X{- (X;- JAX,+2)*- (X,-D°- G (12)

where the model safety threshold is distributed as a truncated normal variable

Gl [- 500,2500]~ N, (500,2500) and the  model  failure  boundary s
WF ={( X, X5,G) :G(X;, X,,G) =0} .

4.2 Failure Boundary Estimation

The methodological stepdescribed in Section 2avebeen appliedo model m to obtain the

estimateyF of the failure boundaryyhere:

1. an initial training set of n, =11025 input points
(%, %,9)®, (%, %,9,)? > (x,%,9,)™ is sampled on a regular Cartesian grid
[- 10:1:102 [- 10:1:103 [- 500:125: 2504;

2. then,aP-ROM should be trained to reproduitee modelm responses/®, y@ > |y
to the input set of points(X,%,,3,)”, (%, %,,9,)? > ,(x,%,2,)™ . However, in this

particular analytical example considerethe model m of Eqg. (11) and the

13



corresponding limit state functida of Eq. (12)areknown,so thatwe resort directly to

Eq. (11) to compute/®, y@ >y instead of training the-ROM,; in other words,

simulation data are directly used through Eq. (12) with a sampled safetyyitait
identify the set of inputs«{, x2,..Xa| 9y) that are on the limit surface;

3. a B-ROM, i.e., an SVM-Classifieris trained on the availablset of norinearly

alr -r|’0
separable data with: i) &aussian kernel Ke(fn,f)zexpi”Tug, where
(5) =

F = (X0 %> X X Xgi2r™ +%0,9,), 0¢ 1 ¢ ny,is one of then, training pointsand

f is the test point to be classifiedlzesonging to théailure orsafe domainii) alarge

value ofparameterb =10 (to assignhigh influence to each trainingpint 7, ); iii) a

relatively low value othe misclassification cost =10 (whichensures smoothness of
the decisiorfunction[Maneewongvatana et al., 20Basudhar et al., 200&ortes et

al., 1995;Guyon et al., 1993 (seeAppendix Afor more details on SVH);

4. thepersistence requiremenn @Y is set equal t80.

The BROM estimats the failure boundaryF asshown in Figures (wherg for clarity, only
points (><1,><2,0y)i pl;: Z(%,%,,9,) =1 are shown): it is clear thaf (dots)well approximates

the actual failure boundany (continuous grid)
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Figure 6: plot of the estimateqnlz (i.e., dots) and of the actual failure bounda}ﬂ; (i.e., continuougrid) for
the analytical modeh considered.

For the case of interest, inpus (j =12) are considered the modedntrollable variables
and G, is the only noncontrollable variable. Accordingly, thecontrollable and non
controllableinput spaces arp 10102 [- 1010 and[- 5002504, respectively.

The modehbsolutesafest operating conditior® will be given as pairwise combinations of
X, and X, values (i.e., points in theontrollable space- 10102 [- 101d]), while f; (3,)
will be exploited to assign ﬁ’y probability value to eactelative safest operating condition

>_<; (as shown in detail ine€gtions 3 Steps from 2 to)7

4.3 Safest Operating Conditions Identification

In order to identify the safest operating conditiofisof the systemwvhose behavior is modeled
by m, the approach proposed in Section 3 has beé@raenl on the failure boundanyF
estimated in Section 2.

The controllable and non-controllable grids are built on a Cartesian grid (i.e.,
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