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Abstract 

The safety of a Nuclear Power Plant (NPP) is verified by analyzing the system responses under normal 

and accidental conditions. This is done by resorting to a Best-Estimate (BE) Thermal-Hydraulic (TH) 

code, whose outcomes are compared to given safety thresholds enforced by regulation. This allows 

identifying the limit-state function that separates the failure domain from the safe domain. 

In practice, the TH model response is affected by uncertainties (both epistemic and aleatory), which 

make the limit-state function and the failure domain probabilistic. 

The present paper sets forth an innovative approach to identify the failure domain together with the 

safest plant operating conditions. The approach relies on the use of Reduced Order Models (ROMs) 

and K-D Tree. 

The model failure boundary is approximated by Support Vector Machines (SVMs) and, then, projected 

onto the space of the controllable variables (i.e., the model inputs that can be manipulated by the plant 

operator, such as reactor control-rods position, feed-water þow-rate through the plant primary loops, 

accumulator water temperature and pressure, repair times, etc.). The farthest point from the failure 

boundary is, then, computed by means of a K-D Tree-based nearest neighbor algorithm; this point 

represents the combination of input values corresponding to the safest operating conditions. 

The approach is shown to give satisfactory results with reference to one analytical example and one 

real case study regarding the Peak Cladding Temperature (PCT) reached in a Boiling Water Reactor 

(BWR) during a Station-Black-Out (SBO), simulated using RELAP5-3D. 

 

Keywords: Risk-Informed Safety Margins Characterization; Failure Boundary; Reduced-Order 

Models; Support Vector Machines; K-D Tree; Station Black Out Accident. 
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1. INTRODUCTION  

 

The Risk-Informed Safety Margins Characterization (RISMC) pathway of the Light Water 

Reactors Sustainability (LWRS) program of the U.S. Department of Energy (DOE) [DOE, 

2009] aims at developing decision making methods and tools, for use in the process of licensing 

new nuclear technologies and evaluating existing Nuclear Power Plants (NPPs) for lifetime 

extension. 

One key aspect is the safety assessment, which is performed based on the calculations by a 

Thermal-Hydraulic (TH) - neutronic code of the nuclear system response in normal and 

accidental conditions. Specific outputs are selected as safety-significant parameters and their 

calculated values are compared with some threshold values, in order to check that sufficient 

safety margins are kept during accident [Gavrilas et al., 2004]. 

Traditionally, this safety assessment procedure has been performed on a small set of Design 

Basis Accidents (DBAs) and under tight conservative assumptions (i.e., on the phenomena 

dynamics described, physical models implemented, etc.) to protect against the uncertainties in 

the model and its parameters. 

In recent times, an extended and more realistic approach has been undertaken, including 

Beyond Design Basis Accidents (BDBAs) and relying on Best Estimate (BE) codes, in which 

more realistic assumptions are taken in the evaluation of the safety margins [Zio et al., 2010; 

Alvarenga et al., 2015]. Under this setting, an accurate and explicit treatment of the 

uncertainties is required, in order to provide confidence that plant safety margins are not 

actually reduced [Zio et al., 2008; Apostolakis, 1990; Schuëller et al., 2008]. 

Such uncertainty quantification has shifted the concept of safety margins to a probabilistic 

paradigm, whereby the code outcomes are treated as stochastic variables [Zio et al., 2008; 

Schuëller et al., 2008]. 

Mathematically, a BE-TH code for safety assessment may be seen as an ensemble of three 

elements: i) a set of equations coded to describe the system response ii) an n-dimensional input 

vector of stochastic variables { }1 2
, , ,

n
X X X X=  and iii) an o-dimensional output vector of 

stochastic variables { }1 2
, , ,

o
Y Y Y Y= . The input vector X  consists of the model parameters and 

input variables that feed the coded equations to compute the model output vector Y  that 

represents the systems response. In mathematical words, a BE-TH code can be seen as the 

multidimensional and non-linear operator m  that maps the input vector X  into the output 

vector Y  [Bourinet et al., 2011]: 
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 ( )Y m X=  (1) 

 

In general, uncertainties affecting the model outcome may be due to: inherent stochastic 

behavior of the process described by the model m (aleatory uncertainty), imperfect knowledge 

about the model input variables X  and lack of information on the underlying physical 

phenomena (epistemic uncertainty) [Apostolakis, 1990; Möeller et al., 2008; Helton et al., 

2011]. Then, mathematically, the input vector X  is uncertain and, therefore, the output vector 

Y  is uncertain as well, with stochastic realizations (in the following, upper case letters are used 

to identify stochastic variables and lower case letters are used to identify their realizations, as 

usual): 

 

 ()1 2 1 2
{ , , , } ( , , , )

o n
y y y y m x m x x x= = =  (2) 

 

With reference to a plant accident scenario 
FE  (i.e., a sequence of events that can (or not) lead 

to system failure) and to a safety threshold yɔ of the vector yg  of safety thresholds, each one 

of these not to be exceeded by the respective safety parameter YYÍ , a limit -state function G  

can be defined as: 

 

 yy ɔXYɔXGG -== )(),(  (3) 

 

The model is in safe operating conditions when 0),( <yɔXG  and fails when 0),( >yɔXG . 

Then, ),( yɔXG  separates the input variables space 
nÁ  in a safe domain, { : ( , ) 0},

y
S X G Xɔ= <  

and a failure domain, }0),(:{ >= yɔXGXF . The failure probability, i.e. the probability of 

occurrence of the plant accident scenario 
FE  is, then, given by: 

 

 
( , ) 0

( ) ( ( , ) 0) ( )
y

F y XG X ɔ
P E P G Xɔ f x dx

>
= > =ñ  (4) 

 

where )(xf
X

 is the joint Probability Density Function (PDF) of the stochastic input vector X  

[Cadini et al., 2014]. The set of input values 0),(: =yɔXGX  defines the failure boundary Fµ  
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within the input space (i.e., 
nÁ ), for a given value of the safety threshold yɔ. Because the 

)( FEP  values are low for high-reliable systems (such as NPPs) and the BE-TH models of these 

systems are computationally expensive, these latter can be replaced by Reduced Order Models 

(ROMs) to allow the estimation of Fµ  within a reasonable computational time [Zio et al., 2008; 

Chakraborty et al., 2015]. Indeed, ROMs are designed to capture the dominant non-linear 

behavior of the BE-TH models based on a simplified mathematical representation [Lucia et al., 

2004]. 

In this work, the model failure boundary Fµ  is approximated by means of a Support Vector 

Machines (SVM)-based ROM [Basudhar et al., 2008; Cortes et al., 1995; Guyon et al., 1993] 

that is embedded in a K-D Tree-based nearest neighbors search algorithm [Bentley, 1975; 

Katayama et al., 2000; Maneewongvatana et al., 2001] to determine the farthest point from Fµ  

inside the input space 
nÁ : this point represents the optimal combination of the model input 

values that results in the safest plant operating conditions (farthest from the failure boundary) 

with reference to some given safety requirements expressed by yɔ. The main advantage of 

adopting SVMs lies in their superior ability, with respect to other ROMs (such as Artificial 

Neural Networks (ANNs) and simple linear regression models), to define complex decision 

functions (i.e., hyper-planes) in a multidimensional space and exploit optimal separating 

functions in order to decompose multiple classes of data [Basudhar et al., 2008; Zio et al., 

2012]. On the other hand, the selection of the K-D Tree algorithm as searching algorithm is 

motivated by the fact that it helps finding the nearest neighbors faster than other brute-force 

searching approaches [Maneewongvatana et al., 2001]. It is worth pointing out that the K-D 

Tree algorithm does not requires the SVM to be embedded, but, rather, this can be used as 

searching algorithm driven by any other ROM for the definition of Fµ . 

Knowledge of the safest plant conditions offers practical benefits as X  is comprised of two 

different types of inputs: controllable and non-controllable [Mohsine et al., 2010]. The former 

identify the levers under control of the plant operator, which can be manipulated to increase 

plant safety (i.e., reactor control-rods position, feed-water þow-rate through the plant primary 

loops, accumulator-water temperature and pressure, repair times, etc.), whereas the latter define 

the random parameters that may (adversely) affect the model response by increasing the 

likelihood of an accident (i.e., pipelines friction factors, temperature and pressure of the ýnal 

heat-sink, break section equivalent diameter, failure times, etc.). In this respect, it should be 

pointed out that were yɔ not ña prioriò known but, rather, obeying a probability distribution
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)( yɔf
yG

, the same input vector realization x  might imply failure, 0),( >yɔxg , or success, 

0),( <yɔxg  and, thus, the stochastic safety threshold yG should be included in the non-

controllable input variables subset [Banks et al., 2011] so that the input space 
nÁ  is expanded 

into
1+Án
. 

Once the controllable variables are identified, we can project the failure boundary Fµ  on the 

controllable variables space so as to draw ñfirst principlesò guidelines for counteracting the 

incipient plant failure that depends on the occurred accident and the non-controllable variables. 

The rest of this paper is organized as follows. Section 2 illustrates the application of SVMs for 

the failure boundary estimation. Section 3 shows the approach used to identify the system safest 

operating conditions. In Section 4, the proposed approach is applied to an analytical example 

used as proof of concept and in Section 5 it is tested on a Loss of Offsite Power (LOOP) case 

followed by a Station Black Out (SBO) accident in a Boiling Water Reactor (BWR), whose 

behavior is simulated by a RELAP5-3D BE-TH code. In Section 6 conclusions are drawn. 

 

2. FAILURE BOUNDARY ESTIMATION  

 

As already said, simulations for the safety assessment of NPPs are computationally expensive 

due to the small values of )( FEP . As only limited computing resources are generally available, 

the investigation of an exhaustive set of simulation outcomes, accounting for all normal and 

accidental plant conditions, is impractical. For this reason, this work exploits a combination of 

two ROMs to minimize the computational time used to identify Fµ  with sufficient accuracy 

(as later defined in terms of persistence): 

 

i.  a Physical ROM (P-ROM): a SVM regresses the physical model response of the BE-

TH code (see Appendix A for more details on SVMs); 

ii.  a Boolean ROM (B-ROM): a SVM classifies the P-ROM outputs as belonging either 

to the safe or failure domain for the identification of Fµ . It is worth mentioning that the 

B-ROM is not built directly on the physical model responses of the BE-TH code but on 

the P-ROM responses as this allows speeding-up the B-ROM evaluations by making 

G  smoother and easier to handle. 

 

We adopt an adaptive sampling algorithm [Rabiti et al., 2014a] for the approximation of the 
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model failure boundary Fµ : i) 
RN  model responses are obtained from the original BE-TH 

simulations, ii) a P-ROM is built to capture the general BE-TH model behavior, iii) a few new 

input values are sampled and the BE-TH responses are predicted by the P-ROM, iv) a B-ROM 

is built to classify the P-ROM outputs as failure or success, iii) new samples are selected based 

on the B-ROM constructed, v) the B-ROM is iteratively updated based on the P-ROM 

responses to the new sampled points, until Fµ  is identified. This iterative algorithm allows 

focusing samples on risk-sensitive regions of the input space so that the number of expensive 

trials needed to localize the boundary is reduced. 

The strategy hereby described to estimate Fµ  is implemented in the RAVEN code, within a 

project developed by the Idaho National Laboratory (INL) under the Nuclear Energy Advanced 

Modeling and Simulation (NEAMS) and Light Water Reactor Sustainability (LWRS) 

programs to provide software tools for the enforcement of the Risk Informed Safety Margins 

Characterization (RISMC) conceptual framework supported by the U.S. Department of Energy 

(DOE) [Rabiti et al., 2014b]. In more detail, the iterative algorithm is comprised of the 

following steps (without loss of generality, we consider a random safety threshold yGand a 

single model output Y ): 

 

1. at the 1=x  iteration, a limited number 
0n  of points 

)(

21

)2(

21

)1(

21
0),,,,(,,),,,,(,),,,,(

n

ynynyn ɔxxxɔxxxɔxxx >>>>  is sampled from the 
1+Án
 

input space through a brute-force approach (i.e., Monte Carlo, grid, stratified sampling, 

etc.); The sampled 
0n  points are, in principle, more than (and different from) the set of 

input values that have generated the 
RN  available BE-TH model responses; 

2. at each ɝ-th iteration, the P-ROM (previously trained on the 
RN  available BE-TH model 

responses) is employed to predict )()2()1( 0~,,~,~ n
yyy > , which reproduce the BE-TH code 

responses )()2()1( 0,,,
n

yyy >  to the set of 
0n  sampled points; 

3. a Boolean function ),,,,( 21 yn ɔxxxzz >=  is evaluated on each pair of points 

)(

21

)2(

21

)1(

21
0)~,,,,,(,,)~,,,,,(,)~,,,,,(

n

ynynyn yɔxxxyɔxxxyɔxxx >>>> : 

 

  
1 2

1 2

1 2

1,   ( , , , , ) 0
( , , , , )

1,   ( , , , , ) 0

n y

n y

n y

G x x x ɔ
z z x x x ɔ

G x x x ɔ

<ëî
= =ì

- ²îí

 (5) 
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4. a B-ROM is trained on the 
0n   points and used to predict 

)()2()1( ~,,~,~ gn
zzz > , e.g., the 

Boolean responses  of ),,,,( 21 yn ɔxxxz >  on a new set of gn  input values 

)(

21

)2(

21

)1(

21 ),,,,(,,),,,,(,),,,,( gn

ynynyn ɔxxxɔxxxɔxxx >>>>  that are sampled on a 

regular Cartesian grid in the input space; 

5. the failure domain F  is defined by the set of input values resulting in a B-ROM 

response 1),,,,(~
21 -=yn ɔxxxz > . This allows identifying the failure boundary Fµ  as 

the set of input values  >>> ,),,,,(,),,,,( )2(

21

)1(

21 FynFyn ɔxxxɔxxx µµ  that determine the 

transition of ),,,,(~
21 yn ɔxxxz >  from -1 to +1; 

6. among points >>> ,),,,,(,),,,,( )2(

21

)1(

21 FynFyn ɔxxxɔxxx µµ , the farthest one from 

)(

21

)2(

21

)1(

21
0),,,,(,,),,,,(,),,,,(

n

ynynyn ɔxxxɔxxxɔxxx >>>>  is added to the 
0n  training 

data and the algorithm is resumed at Step 2. By so doing, the B-ROM is retrained on a 

new point in the most risk-sensitive region of the input space (i.e., boundary between 

system safe and system failure), which is the farthest from the current training data; 

7. a persistence value )(j
xd  is computed for each ű-th point of Fµ : 

   

  
)()(

1

)( ~~ j
x

j
x

j
xd zz -= -  (6) 

 

 If all )(j
xd  are equal to 0 (i.e., any of the Fµ  points have changed) for a pre-defined 

number of consecutive iterations: a) new input points are added to the training set to 

explore farther regions of the input space from Fµ  and b) the process is resumed at Step 

2. 

 

When a pre-defined persistence requirement is met, the algorithm stops and Fµ  is obtained as 

the set of input points of the B-ROM failure domain ( 1),,,,(~
21 -=yn ɔxxxz > ) and safe domain 

( 1),,,,(~
21 =yn ɔxxxz > ), that determine the transition of ),,,,(~

21 yn ɔxxxz >  from -1 to +1. 

 

3. SAFEST OPERATING CONDITIONS IDENTIFICATION  

 

In the most general case, some model input variables are controllable (i.e., qXXX ,,, 21 > ), 
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while some others are not (i.e., nqq XXX ,,, 21 >++ ). The controllable and non-controllable input 

spaces are qÁ  and 1+-Á qn , respectively, and the yG has been included in the non-controllable 

input space as, without loss of generality,  we consider the model safety threshold as a random 

variable. 

The herein proposed approach for the safest operating conditions identification requires in 

input: 

 

i. the set of n+1-dimensional points of Fµ  (that can be estimated as in Section 2, by 

resorting to a P-ROM and a B-ROM, that in this case have been chosen to be SVMs for 

regression and classification, respectively); 

ii.  the distributions of the model input variables (i.e., )).(),(,),(),( 21 21 ynXXX ɔfxfxfxf
yn G>  

 

In particular, the available information on Fµ  (shown in Figure 1 for 2=n  controllable 

variables, where dots are safe points ( 1~=z ) and stars are failure points ( 1~ -=z ) is, then, 

manipulated within a K-D Tree algorithm [Bentley, 1975; Katayama et al., 2000; 

Maneewongvatana et al., 2001], as follows, for a 31=+n -dimensional problem with 2=q  

controllable (
21, XX ) and 11=+-qn  non-controllable ( yG) variables. 

In general terms, the K-D Tree algorithm is a space-partitioning data structure for organizing 

points in a K-Dimensional space [Bentley, 1975]. The K-D tree is a binary tree structure which 

recursively partitions the input space along the axes that divide it into nested orthotropic 

regions into which data points are filed. This is done to address the computational inefficiencies 

of the brute-force Nearest Neighborhood approaches and to reduce the required number of 

distance calculations by efficiently encoding aggregate distance information for the sample (the 

basic idea is, indeed, that if point A is very distant from point B, and point B is very close to 

point C, then, A is distant from C without calculating the distance between A and C). The 

construction of a K-D tree is very fast: because partitioning is performed only along the axes, 

no D-dimensional distances need to be computed. Rather, when a (2-D) point is assigned to a 

node of the tree, the two coordinates are chosen, alternatively, and their medians are calculated 

to define horizontal or vertical lines, that, recursively, define areas containing other data that 

are classified in the left and right branches thereby departing that are, respectively, on the left 

and right of the point corresponding to that node in the 2-D space. Figure 2 shows an intuitive  

2-D tree construction for the identification of the nearest safe point to any of the available safe 
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conditions plotted in Figure 1 (i.e., only X1 and X2 are considered as input variables for the KD 

tree construction): the methodological generalization to a higher-dimensional problem is 

straightforward [Bentley, 1975]. 

 

Figure 1: failure boundary Fµ  for 2=n  controllable input variables (dots are safe points ( 1~=z ) and stars 

are failure points ( 1~ -=z )). 

 

Figure 2: KD tree construction for the identification of the nearest safe point to any of the available safe 

conditions plotted in Figure 1. 
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The proposed approach can be summarized as follows: 

1. One set of values (i.e., >>>> ,,,,,,,,,,, )2()1()2()1()2(

2

)1(

2

)2(

1

)1(

1 yynn ɔɔxxxxxx ) is sampled for each 

input variable from its PDF (i.e., )(),(,),(),( 21 21 ynXXX ɔfxfxfxf
yn G> ); 

2. the sampled values of the controllable variables (i.e., >>> ,,,,,,,, )2()1()2(

2

)1(

2

)2(

1

)1(

1 qq xxxxxx ) 

are used to build a q-dimensional grid (hereafter called controllable grid), whereas the 

sampled values of the non-controllable variables (i.e., 

>>>> ,,,,,,,,,,, )2()1()2()1()2(

2

)1(

2

)2(

1

)1(

1 yynnqqqq xxxxxx gg++++ ) are used to build a n-q+1-dimensional 

grid (hereafter called non-controllable grid) (shown in Figure 3 for 2=n  and 2=q ); 

 

 

Figure 3: on the left side, a 2=q -dimensional controllable grid; on the right side, a 11=+-qn -

dimensional non-controllable grid. 

 

3. an exhaustive list of pairwise combinations ),,,,,,,,( 2121 ynqqq ɔxxxxxx >> ++  of the 

controllable and non-controllable  coordinates is built; 

4. for each point )),,,,(,,,,( 2121

y

ynqqq ɔxxxxxx >> ++  belonging to the set of entries 

),,,,,,,,( 2121 ynqqq ɔxxxxxx >> ++ , which is defined by the same ɣ-th set of non-controllable 

variables 
)(

21 ),,,,( y

ynqq ɔxxx >++ , a K-D Tree-based nearest neighbor algorithm is 

employed to identify the closest point Fynqqq ɔxxxxxx µ++ ),,,,,,,,( 2121 >>  of Fµ  (Figure 4) 

for which  1)),,,,,,,,((~
2121 =µ++ Fynqqq ɔxxxxxxz >> . 

5. the projection d  on the controllable input space (i.e., 
qÁ ) of the Euclidean distance   

between ),,,,,,,,( 2121 ynqqq ɔxxxxxx >> ++  and Fynqqq ɔxxxxxx µ++ ),,,,,,,,( 2121 >>  is 
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computed (Figure 5); 

6. the farthest point )),,,,(|,,,( )(

21

**

2

*

1

* y

y ynqqq ɔxxxxxxx >> ++¹  in the safe domain S from the 

ɣ-th  projection of Fµ  on qÁ  is identified, which is the point such that }max{dd =y  In 

other words, 
*

yx  is the safest point of the controllable input space for the ɣ-th set of non-

controllable values 
)(

21 ),,,,( y

ynqq ɔxxx >++ ; 

7. to each 
*

yx  one probability value 
*

yP  is associated, which is computed as the product of all 

the non-controllable variables marginal densities: 

 

  )()()()( )()()(

22

)(

11

* yyyy

y yynnqqqq ɔPxXPxXPxXPP =GÖ=ÖÖ=Ö== ++++ >  (7) 

 

8. the absolute safest position *x  can be computed as one of the following quantities: 

i. mean: 

 

 ä Ö=
y

yy
*** xPx  (8) 

 

ii.  median: 

 

 5.0),,,,(: )()()(

22

)(

11

** =<G<<<¹ ++++

yyyy

y yynnqqqq ɔxXxXxXPxx >  (9) 

 

iii.  Ŭ-th percentile: 

 

 
100

),,,,(: )()()(

22

)(

11

** ayyyy
y =<G<<<¹ ++++ yynnqqqq ɔxXxXxXPxx >  (10) 

 

As it is easy to see, both mean and median of the 
*

yx  population are solutions based on the 

most probable behavior of the non-controllable variables, whereas the Ŭ-th percentile defines 

a more or less risk-oriented solution depending on a and on what non-controllable variables 

are actually considered. 
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Figure 4: identification of the nearest neighbor of entry point )8,1,1(),,( 21 ¹yɔxx . 

 

 

Figure 5: projected Euclidean distance d  between entry point )8,1,1(),,( 21 ¹yɔxx  and its nearest neighbor 

)9,3,0(),,( 21 ¹µFyɔxx  on the controllable variables space. 
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4. PROOF OF CONCEPT USING AN ANALYTICAL EXAMPLE  

 

4.1 Analytical Model Description 

 

The proposed approach is tested on an analytical model m , whose mathematical expression is 

given as: 

 

 3

1

2

21

2

121 )1()2()3(8),( --+Ö--== XXXXXXmY  (11) 

 

where inputs jX  ( 2,1=j ) are independent random variables obeying two truncated normal 

distributions: [ ]10,101 -ÍX ~ )4,2(1N , [ ]10,102 -ÍX ~ )25.6,0(1N . The model limit-state 

function G  can be written as: 

 

 yyy XXXXYXGG G---+Ö--=G-=G= 3

1

2

21

2

1 )1()2()3(8),(  (12) 

 

where the model safety threshold is distributed as a truncated normal variable 

[ ]2500,500-ÍGy ~ )2500,500(3N  and the model failure boundary is 

}0),,(:),,{( 2121 =GG=µ yy XXGXXF . 

 

4.2 Failure Boundary Estimation 

 

The methodological steps described in Section 2 have been applied to model m  to obtain the 

estimate F
~
µ  of the failure boundary, where: 

 

1. an initial training set of 110250=n  input points 

)(

21

)2(

21

)1(

21
0),,(,,),,(,),,(

n

yyy ɔxxɔxxɔxx >  is sampled on a regular Cartesian grid 

[ ][ ][ ]2500:125:50010:1:1010:1:10 -³-³- ; 

2. then, a P-ROM should be trained to reproduce the model m  responses )()2()1( 0,,,
n

yyy >  

to the input set of points 
)(

21

)2(

21

)1(

21
0),,(,,),,(,),,(

n

yyy ɔxxɔxxɔxx > . However, in this 

particular analytical example considered, the model m  of Eq. (11) and the 
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corresponding limit state function G of Eq. (12) are known, so that we resort directly to 

Eq. (11) to compute )()2()1( 0,,,
n

yyy > , instead of training the P-ROM; in other words, 

simulation data are directly used through Eq. (12) with a sampled safety limit ɔy to 

identify the set of inputs (x1, x2,..,xn| ɔy) that are on the limit surface; 

3. a B-ROM, i.e., an SVM-Classifier is trained on the available set of non-linearly 

separable data with: i) a Gaussian kernel 
ö
ö

÷

õ

æ
æ

ç

å -
=

b

tt
tt

n

n

2

exp),(eK , where 

)(

2121 ),,,,,,,,( n

nt ynqqq ɔxxxxxx >> ++= , 
00 n¢¢n , is one of the 

0n  training points and 

t is the test point to be classified as belonging to the failure or safe domain; ii)  a large 

value of parameter 10=b  (to assign high influence to each training point 
wt ); iii)  a 

relatively low value of the misclassification cost 10=C  (which ensures smoothness of 

the decision function [Maneewongvatana et al., 2001; Basudhar et al., 2008; Cortes et 

al., 1995; Guyon et al., 1993]) (see Appendix A for more details on SVMs); 

4. the persistence requirement on 
)(j

xd  is set equal to 30. 

 

The B-ROM estimates the failure boundary F
~
µ  as shown in Figure 6 (where, for clarity, only 

points 1),,(~:
~

),,( 2121 =µÍ yy ɔxxzFɔxx  are shown): it is clear that F
~
µ  (dots) well approximates 

the actual failure boundary Fµ  (continuous grid). 
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Figure 6: plot of the estimated F
~
µ  (i.e., dots) and of the actual failure boundary Fµ  (i.e., continuous grid) for 

the analytical model h  considered. 

 

For the case of interest, inputs jX  ( 2,1=j ) are considered the model controllable variables 

and yG is the only non-controllable variable. Accordingly, the controllable and non-

controllable input spaces are [ ][ ]10,1010,10 -³-  and [ ]2500,500- , respectively. 

The model absolute safest operating conditions *x  will be given as pairwise combinations of 

1X  and 
2X  values (i.e., points in the controllable space [ ][ ]10,1010,10 -³- ), while )( yɔf

yG
  

will be exploited to assign a 
*

yP   probability value  to each relative safest operating condition 

*

yx   (as shown in detail in Sections 3, Steps from 2 to 7). 

 

4.3 Safest Operating Conditions Identification 

 

In order to identify the safest operating conditions *x  of the system whose behavior is modeled 

by m , the approach proposed in Section 3 has been enforced on the failure boundary F
~
µ  

estimated in Section 4.2. 

The controllable and non-controllable grids are built on a Cartesian grid (i.e., 


