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Original Article

Windbreaks for railway lines: wind tunnel
experimental tests

Gisella Tomasini, Steffano Giappino, Federico Cheli and
Paolo Schito

Abstract

A number of tests were carried out in the Politecnico di Milano wind tunnel to study the properties of different

windbreak barriers for high-speed railway lines. A possible problem with the wind tunnel testing of these devices is

the need to create wide scenarios (long barriers) and achieve high Reynolds number values in order to avoid scaling

problems. In this study, two experimental campaigns were performed. In the first stage, the Reynolds number sensitivity

was checked through specific tests in a high-speed test section (Remax¼ 7� 105): it was found that, in the presence of

barriers, the rolling moment coefficient is independent of the Reynolds number. A second experimental campaign was

then carried out in a low-speed test section (Remax¼ 1.3� 105) where a very long scenario was reproduced (150 m at

real scale): barriers of different types, heights and porosities were tested. To compare them, forces and pressures on the

vehicle model as well as forces on the barrier were measured.
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Introduction

Crosswind effects on trains have, in the past decade,
become one of the most widely studied problems in
vehicle aerodynamics, due to their importance in rail-
way safety. The development of new high-speed lines
and rolling stock in Europe and Japan, the need for
interoperability standards for trains travelling through
the European Union1 and the increasing importance of
safety have focused the interest of researchers on the
danger of train overturning induced by crosswinds.

Before the Technical Specification for Interoperability1

in 2008, only a few European countries had National
Standards focused on crosswind risk, and these
standards were mainly based on experience rather
than on real technical and scientific knowledge of
the problem.2–5

At present, the most common approaches used to
reduce the risk of overturning induced by crosswinds
include the following methods.

1. On the vehicle: aerodynamic optimization and
reduction of the exposed lateral surface, in order
to decrease the aerodynamic loads51 from the aero-
dynamic point of view, and actions on the weight,
the mass distribution and the suspension charac-
teristics, from the dynamic point of view.

2. On the infrastructure: both adoption of oper-
ational restrictions such as reduction of the

speed limit on bridges or viaducts7,8 and installa-
tion of windbreak barriers.9 Both of these solu-
tions require a phase of preliminary study to
locate high-risk areas.10 The second solution is
preferred when the high-risk sites are short, as
on viaducts or bridges.

The reduction of the maximum admissible vehicle
speed as a function of the wind speed measured in
proximity to the railway line is a procedure that has
been adopted, in recent years on European high-speed
lines such as the LN5 line in France (also known as
the TGV-Mediterranée line7) and the Rome–Naples
line in Italy.8 More recently, a specific task in the
international project named ‘Aerodynamics in Open
Air’ was devoted to the definition of risk analysis.

These methodologies are based on the calculation
of characteristic wind curves1,11–13 that permit the
evaluation of the maximum allowable vehicle speed
for every section of a line and for every possible
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wind velocity; over this speed limit, the overturning
risk exceeds the safety limit.

Regarding windbreaks, an initial analysis of the
sheltering effects of barriers with different features
was carried out within the TRANSAERO project9

for high angles of attack with both still and moving
models. Similar tests have also been performed in the
Politecnico di Milano wind tunnel, on solid and
porous barriers, using various scenarios.14 Barcala
and Meseguer15 used wind tunnel tests to study the
effects of a perpendicular wind on different parapets
on bridges at a scale of 1:70. In recent years, some
authors have approached the problem using compu-
tational fluid dynamics (CFD) studies in order to
evaluate the effects of different fence parameters on
trains, however, the experimental validation of these
simulations do not seem to have been adequately
performed.15–172

The work presented in this paper is part of a pro-
ject funded by Rete Ferroviaria Italiana that was
aimed at studying the effects of different windbreaks
on train wind loads in order to design barriers for
installation on Italian high-speed railway lines.

Wind tunnel tests on scale models often deal with
competing requirements that cannot be completely
satisfied. In this case, the request was to perform
tests at a high Reynolds number to reduce scale
model effects (Reynolds number in the order of a
million) and also to create long infrastructure scen-
arios (with windbreak barriers) to avoid boundary
effects being produced due to the short length of the
barrier.

The Politecnico di Milano wind tunnel has two
different test sections: the low-speed / boundary-
layer test section (14� 4m, maximum wind velocity
16m/s, turbulence intensity 1.5%) and the high-speed
test section (4� 4m, maximum wind velocity 55m/s,
turbulence intensity 0.15%). The limited dimensions
of the high-speed section make it impossible to obtain
a complete analysis of the effects created by the bar-
riers as a function of the angle of attack. However, the

larger dimensions of the boundary layer test section
permit a long model-scale scenario, so that the effects
of the barriers can be correctly reproduced for low
angles of attack, but without having to investigate
high Reynolds numbers. Based on the performance
of the facilities, it was decided to split the tests into
two stages. In the first stage, the Reynolds number
sensitivity of the model was checked in the high-speed
test section for high angles of attack (wind direction
close to 90�). In the second stage, due to the larger
dimensions of the low-speed test section, different
windbreaks were tested on a 10-m long (model
scale) infrastructure scenario scaled 1:15.

In both stages, tests were performed with a
non-moving model of the ETR500 train set on
single track ballast and rail (STBR) or double track
ballast and rail (DTBR), and both the aerodynamic
forces on the vehicle model and on a 1-m long barrier
section were measured. In the conditions of a station-
ary train model, unlike real conditions, the wind
speeds relative to the train and to the barriers are
the same. This means that the forces measured at
the barriers can be different than in reality. In any
case, the purpose of this study was to compare a
number of barriers by conducting a sensitivity study
as a function of different parameters. Once the main
effects of the barrier characteristics have been evalu-
ated in terms of aerodynamic coefficients, a further
development will be, in a future work, the simulation
of relative motion between the train and the infra-
structure through experiments or CFD simulations
in order to study its effect on the force coefficients
on both the train and the wind barrier.

Wind tunnel test setup

The ETR500 train was chosen as the reference vehicle
for these tests. A 1:15-scale carbon fibre model was
especially built in the Politecnico di Milano workshop
(Figure 1). Based on the findings of previous experi-
mental tests14,19, it was expected that the most

Figure 1. Wind tunnel tests on the ETR500 train: (a) on a STBR in the high-speed test section and (b) on a DTBR in the low-speed/

boundary-layer test section.
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important aerodynamic forces would be experienced
by the leading coach. Thus, the train model consisted
of the locomotive and half of the trailing coach.

Scenario and windbreak types

Different scenarios were adopted in the two
experimental campaigns (Figure 1): an STBR
(the reference scenario for wind tunnel tests
on trains20) was used in the high-speed section
(stage 1), whereas a DTBR was chosen for the
low-speed room (stage 2), with the aim of reprodu-
cing a more realistic situation. Due to the dimen-
sions of the test sections, in the high-speed section it
was possible to reproduce a 3-m long model-scale
infrastructure scenario (45-m full scale) whereas, in
the boundary layer section, the reproduced track
was 10-m long (150-m full scale). In both cases,
the scenario was mounted on a splitter plate set at
0.3-m above the floor of the wind tunnel, to repro-
duce a block vertical velocity profile on the model.

The tested barriers can be classified in terms of
their type, porosity and height (Table 1). Two specific
types of barrier were considered:

. with uniform porosity, made of perforated steel
sheets;

. horizontal band barriers, similar to the fences usu-
ally adopted on suspended bridges and made of
aluminium bars.

Porosity is defined as the ratio of the open area to
the total area of the barrier

� ¼
Aopen

Atotal
ð1Þ

The heights of the tested barriers were measured
from the splitter plate level and cover a range from
2 to 4m (full-scale value). The position of the barrier
in the two different scenarios is shown in Figure 2. In
the second stage a real track layout is reproduced that
has a DTBR with the barrier placed in its actual real-
life position (Figure 2(b)).

Force measurements

During the wind tunnel tests, aerodynamic forces
were measured on both vehicle and barrier models.

The locomotive model was mounted on an external
six-component force balance located under the splitter
plate (Figure 3(a)). To evaluate the wind force on the
windbreaks, a 1-m long (model-scale) barrier section,

Table 1. Properties of the tested barriers: type, height (full-scale dimensions) and porosity (see equation (1)).

Barrier name Type Height hB (m) Porosity � (%)

B1H2 Perforated steel sheets 2 63

B1H4 Perforated steel sheets 4 63

B2H3 Perforated steel sheets 3 51

B2H4 Perforated steel sheets 4 51

B3H3 Perforated steel sheets 3 33

B3H4 Perforated steel sheets 4 33

B4H4 Horizontal bands 4 50

Figure 2.9 Wind tunnel tests on an ETR500 train: barrier position (full scale): (a) STBR scenario and (b) DTBR scenario.

Tomasini et al. 3



free of mechanical connections to the other barriers,
was also mounted on a second external six-component
force balance (Figure 3(b)). As shown in Figure 3, the
vehicle was connected to the balance by means of two
threaded bars set in correspondence with the bogies,
whereas the barrier section was directly connected to
the balance.

Forces (Fi) and moments (Mi) on the vehicle are
expressed in a non-dimensional form as in the EN
14067-1 standard 21

CFi ¼
Fi

�AU2
�
2
, CMi ¼

Mi

�AhU2
�
2

i ¼ x, y, z

ð2Þ

where � is the density of air, U is the mean input flow
velocity and the characteristic dimensions of the
cross-section A and length h are as in the standard
21: their values were taken to be 10m2 and 3m,
respectively. The frame of the reference system (in
agreement with the EN 14067-1 standard 21) was
fixed to the car body and its origin was located at
the middle of the bogies, at track level (point P in
Figure 4). Wind angles were considered to be positive
when the train was located on the upwind rail. The
rolling moment coefficient for the lee rail (CMx,lee) was
also evaluated.21

The force/moment coefficients for the barrier were
defined as

CFib ¼
Fib

�AbU2
�
2
, CMib ¼

Mib

�AbhbU2
�
2

i ¼ x, y, z

ð3Þ

where hb and Ab are the height of the barrier and the
area of the instrumented section, respectively. The
moment was reduced to the barrier base level
(Figure 4).

Pressure measurements

For the tests carried out in the low-speed test section
(stage 2), the vehicle model was also instrumented for
pressure measurements: 158 pressure taps were pos-
itioned on the surface of the model, especially on the
nose and on the connection surfaces between the side
and upper part of the car body, where the highest
pressure gradients occur. Figure 5 shows the layout
of the pressure taps for some of the instrumented
sections.

Surface pressure was measured using high-resolu-
tion multi-channel pressure scanners (PSI System
8400 with ESP-DTC pressure scanners, range
�1 kPa, accuracy �0.10% full-scale deflection

Figure 3. (a) The connection scheme between the dynamometric balance and vehicle model and (b) a photograph of the instru-

mented 1-m long barrier section.

Figure 4. Reference frame system for force measurement on: (a) the vehicle and (b) the barrier section.
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(FSD)), hosted directly inside the model. Incoming
wind speed was measured by a Pitot tube, connected
to low-pressure micro-manometers (Furness FC0510,
range 200–2000Pa, accuracy 0.025% FSD).

Non-dimensional pressure coefficients were defined
as follows

CPi ¼
Pi � P

�U=2
ð4Þ

where Pi is the pressure at ith tap and P is the static
pressure at the location of the model.

Stage 1: Reynolds number sensitivity

The goal of the high-speed tests was to check if the
Reynolds number had any effect on the vehicle’s force
coefficients, both with and without windbreak fences,
and the barrier force coefficients. In these tests,
Reynolds numbers ranging between 1.3�105 and
6.6�105 (based on a reference length of 3-m full
scale) were investigated.

Vehicle force coefficients

The Reynolds number sensitivity of the vehicle model
without barrier is investigated in detail in Cheli
et al.22, thus, the main findings are summarized in
Figure 6. Figure 6(a) and Figure 6(e) show, respect-
ively, the lateral force and the rolling moment coeffi-
cient for the STBR scenario without barriers at
different Reynolds numbers. It is possible to divide
the diagrams into three sectors on the basis of the
coefficient trend: an almost parabolic increasing
trend, from 0� to about �w¼ 50�, a central sector
with a negative slope, for angles of attack from 50�

to 60�, and then a constant trend, up to 90�. In the
first sector, the two coefficients are independent of the
Reynolds number: in this range, the lateral force is

due to the wake width on the leeward side of the
vehicle. At �w¼ 45–50� (representing the critical
angle for the considered vehicle), the coefficients
reach their maximum value and then, above this
angle, they decrease down to a constant value, show-
ing a slight dependency on the Reynolds number and
a large scatter in the data. This trend is due to the fact
that, in the second sector, the flow behind the vehicle,
in the leeward zone, is no longer driven by vehicle
geometry; for this reason it is not able to produce
large regions of negative pressure and, as a conse-
quence, pressure recovery occurs.

These trends are typical of the crosswind problem
and can be explained by considering changes in the
aerodynamic behaviour of the first car from a slender
body flow at low angles of attack, to bluff body
behaviour with wind direction close to perpendicular.
It is important to note that the effects due to the
Reynolds number are negligible for low angles of
attack, the most important ones in crosswind-related
problems.

On the other hand, looking at Figure 6(c), the ver-
tical force coefficient shows a Reynolds number
dependency starting from low wind angles (about
25�) up to 90�.22

Figure 6(b), Figure 6(d) and Figure 6(f) show the
same vehicle aerodynamic coefficients but in this case
measured for the presence of a B1H2 barrier: the tests
with barriers were carried out for angles of attack
higher than 30�, due to the point that, at lower
angles, the finite length of the infrastructure model
with barriers modifies the wind flow acting on the
vehicle with respect to the real case, where the infra-
structure has a pseudo-infinite length.

We observe that the effect of the Reynolds number
almost disappears in this scenario. Also, the vertical
force coefficient (Figure 6(d)) reveals a very low
dependency on the Reynolds number. The reason
for this behaviour is probably related to the properties
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Figure 5. ETR500 train model: layout of the pressure taps in the considered sections.

Tomasini et al. 5



of the flow impacting on the train that is affected by
the wake of the barrier. In fact, the wake has a higher
turbulence level than the undisturbed flow and, in
wind tunnel tests, Reynolds number effects are
strongly related to flow turbulence characteristics,
tending to decrease as the turbulence level increases.22

Barrier force coefficients

The two coefficients of significance for barrier dimen-
sioning are the normal force and rolling moment coef-
ficients. Both these coefficients (Figure 7) show an
increasing trend as a function of the wind angle.
This behaviour is obviously due to the barrier surface

being exposed to the wind, which is at its maximum at
90�. The lateral force and the rolling moment coeffi-
cients show the same trend; this means that the height
of the point of application of the lateral force remains
unchanged as the wind angle varies. Finally, a disper-
sion of the coefficients as a function of the Reynolds
number may be observed (about 12% of the variation
of the rolling moment coefficient at 60�): the trend is
not well-defined, however, and changes based on the
wind angle range. On the basis of the available experi-
mental data, neither coefficient seems to show a sig-
nificant dependency on the Reynolds number.

The results of the high-speed test section tests, in
terms of both vehicle and barrier coefficients, have
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not demonstrated any significant dependency of
the force/moment coefficients on the Reynolds
number within the test wind velocity range investi-
gated. This allowed us to perform a second test
stage at low values of the Reynolds number, corres-
ponding to the lower test speed in the stage 1 tests.
These tests were conducted in the low-speed test
section, where longer barrier scenarios could be
reproduced.

Stage 2: Analysis of different
windbreak types

The larger dimensions of the low-speed test section
(14� 4m) allowed a wider scenario to be set-up so
that the barrier effects could be investigated to low
angles of attack. In a preliminary test, seven barriers
were compared at a 90� wind angle, that is, with the
wind perpendicular to the barrier and the train placed
on the windward track. In a second test, two barriers,
suitably selected from the seven previously tested,
were investigated in depth by performing tests in the
0–90� wind angle range. In these tests the Reynolds
number was equal to 1.3� 105 (based on a reference
length of 3-m full scale).

Preliminary tests at 90�

Figure 8 summarizes the results of the preliminary
tests: the bars represent the train’s rolling moment
coefficient (scale on the left) for each barrier type,
and these are sorted first by descending porosity and
then by increasing height. Basically, we observe, as
expected, that as the barrier porosity decreases and
height increases, the train’s rolling moment decreases.
It is interesting to note that barrier B1H2 has no shel-
tering effect in the DTBR scenario, whereas it does
have this effect in the STBR scenario, as shown in the
previous section. This is because of the different dis-
tances between the train and the barrier in the two
different setups; in fact, barrier position plays an
important role in sheltering effects. This topic is not
discussed here, but has been investigated with CFD
simulations in Tomasini et al.23

Comparing the performances of barriers B4H4 and
B2H4, it can be observed that sheltering effects are
quite different even though porosity and height are
the same. The layout of the two barriers is in fact
different (horizontal bands versus perforated sheets)
and this has a major impact on sheltering properties.

In order to define the sheltering requirements for
the windbreak barriers, numerical simulations were
carried out using the characteristic wind curve
approach.11,12 The train was required to be able to
run at its maximum speed (300 km/h) in the presence
of an unsheltered/upwind gust wind velocity of 50m/s
(worst-case scenario for the incoming direction). By
setting this limit condition on the overturning risk and
progressively reducing the train’s aerodynamic forces,
it was found that the desired barrier could reduce the
rolling moment coefficient by about 30%; the dashed
red horizontal line in the graph represents this value.
Three barriers meet the requirements.

To select the best-performing barriers, the loads
acting on the barriers themselves were analysed.
The barrier’s rolling moment coefficient is also
reported in the graph, in green dots (scale on the
right). As expected, when sheltering properties are
increased, the load on the barrier itself grows. Since
wind load is a key parameter in the design of a wind-
break barrier, it should be kept as low as possible. For
this reason, barrier B3H4, which had the highest bar-
rier moment coefficient, was discarded at this stage.

Two barriers were then selected for in-depth inves-
tigation: B3H3 and B4H4. The first one has a lower
porosity (33%) than the second one (50%) and is even
lower in height (3m compared with 4m). The two
selected barriers also differ in type: B3H3 has uni-
formly distributed porosity, whereas B4H4 is
composed of equally distanced horizontal bars
(see Table 1).

Complete tests on the selected windbreak fences

The train’s vertical force and rolling moment coeffi-
cients in the presence of the selected barriers are
shown in Figure 9; negative values of �w indicate
that the train is situated on the leeward track.

Figure 7. High-speed section, STBR, B1H2 barrier aerodynamic coefficients as a function of wind angle for different Reynolds

numbers: (a) normal force coefficient and (b) rolling moment coefficient.
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Looking at the vertical force coefficient
(Figure 9(a)), it can be seen that both barriers create
their best sheltering effect at low wind angles, less than
50�. At 90� this effect is actually zero for barrier B4H4
and very low for B3H3. As will be shown by analysis
of the pressure coefficients, at high angles of attack,
the barriers do not significantly modify the pressure
distribution on the upper and lower part of the
vehicle.3

Looking at the rolling moment coefficient
(Figure 9(b)), it can be observed that the two barriers
have a significant effect on the reduction of loads on
the train at all angles of attack, and that the maximum
wind force is shifted toward higher angles of attack.
The reduction of rolling moment due to both barriers
with respect to the original value (without barrier) is
higher than 30% for all wind angles.

Moreover, it can be seen that the trend in the
moment coefficient is different in the two barriers:
B3H3 is more effective at angles lower than 70�.
This is because of the different designs of the two
barriers: B3H3, made from perforated steel sheets

(uniform porosity), is more sensitive to wind exposure
than the horizontal band one. A further investigation
on the different effects of the two barriers on the train
will be performed by analysing pressure distribution.

Finally, considering both coefficients, it may be
noted that when the train is on the leeward track
(�w0

�, Figure 4), there is a further reduction in the
force coefficients; in fact, as mentioned earlier, the
distance between the train and the barrier plays an
important role.23 It can be confirmed that, for the
barrier layout investigated, the most critical condition
for the train overturning is when the train is running
on the windward track.

Figure 10 shows pressure contour plots measured
at a wind angle of 45� without barriers (Figure 10(a)
windward and Figure 10(b) leeward), with barrier
B4H4 (Figure 10(c) windward and Figure 10(d) lee-
ward) and with barrier B3H3 (Figure 10(e) windward
and Figure 10(f) leeward) whereas Figure 11 shows
the same contour plot but for a yaw angle of 90�.

By observing Figure 10(c) and Figure 10(d) with
respect to the situation without a barrier, it can be

No Barrier B1H2 B1H4 B2H3 B2H4 B4H4 B3H3 B3H4
0

1

2

3

4

5

Ctneiciffeoctne
mo

mllor
niart

M
x [

-]

0

0.1

0.2

0.3

0.4

0.5

ba
rr

ie
r 

m
om

en
t c

oe
ff

ic
ie

nt
 C

M
xb

 [
-]

Figure 8. DTBR, wind angle 90�. Train’s rolling moment coefficient for different barriers (bars, scale on the left) and corresponding

barrier moment coefficients (green dots, scale on the right). The red horizontal line represents the threshold value set-up.

Figure 9. DTBR, comparison between train without barrier, with B3H3 and with B4H4: (a) train’s vertical force coefficient CFz and
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seen that, as expected, barrier B4H4 reduces the
pressure on the windward side, especially near the
nose, but principally it reduces the negative pressure
on the leeward side. This means that the barrier not
only has an effect on the flow directly impacting the
vehicle, but also it modifies the wake behind the train.
The presence of barriers in front and behind the train
generates a sort of channel that, especially at low wind
angles, tends to drive the flow parallel to the train; the
range of wind angles where the vehicle behaves as a
slender body increases, and the maximum value is
reached, as already observed, at higher angles of
attack.

Looking at Figure 10(e) and Figure 10(f), the same
effects found for barrier B4H4 can be seen, but they
are more marked; barrier B3H3 significantly reduces
the pressure on the windward side and negative
pressure on the leeward side. The low and uniform
porosity of this kind of barrier makes the pressure
around the vehicle more uniform.

By analysing the effects of both barriers on the
upper part of the vehicle, it is possible to understand
why the vertical force coefficient at 45� is significantly
lower with the barriers; the negative pressure in this

zone is greatly reduced all along the vehicle, especially
with the B3H3 barrier.

At 90� the reduction of rolling moment coefficient
due to the barriers is lower than at 45�, and that
associated with the vertical force coefficient is almost
zero.

Figure 11 shows that, unlike the case of a wind
angle of 45�, the presence of the barriers mainly modi-
fies the pressure distribution on the windward side of
the vehicle. Only barrier B4H4 shows an additional
small pressure recovery on the leeward side. In con-
clusion, at 90� the barriers reduce the flow pressure
directly acting on the vehicle, however, they do not
modify the behaviour of the flow behind the vehicle.
In a similar way, the pressure on the upper part of the
vehicle is not changed by the presence of barriers and,
as a consequence, the vertical force coefficient with
and without barriers remains unchanged.

To ensure a better understanding of the described
phenomena, Figure 12 shows the pressure distribution
measured with and without barriers on two vehicle
sections at the same wind angles (the arrow pointing
outwards represents negative pressure). Figure 12(a)
and Figure 12(b) refer to �w¼ 45�; it can be seen that

Figure 10. DTBR, pressure contour plot, wind angle �w¼ 45�: without barriers windward (a) and leeward (b), with B4H4 barriers

windward (c) and leeward (d), with B3H3 barriers windward (e) and leeward (f).
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the barriers produce a reduction in pressure all
around the section, especially in the leeward
zone and in the upper windward corner. There is
also a reduction in negative pressure due to the
barriers in the lower part of the vehicle; in any
case, the combined effect on the upper and lower
parts of the vehicle leads to a lower value for the
vertical force.

Looking at the pressure distribution measured at
90� (Figure 12(c) and Figure 12(d)), the observations
made for Figure 11 are evident. At this angle, the
pressure distribution with and without the barriers is
very similar; the main differences arise on the wind-
ward side, where the presence of the fences signifi-
cantly reduces the positive pressure, and,
occasionally, the under-body zone. In this area, the
negative pressure associated with barrier B3H3 is
larger than that measured without a barrier and
with barrier B4H4; this behaviour justifies the reduc-
tion in the vertical force coefficient observed only for
this windbreak (Figure 9).

Finally, Figure 13 shows the lateral force and roll-
ing moment coefficients measured on the barrier; as
previously observed, the two coefficients show the
same trend and this means that the height of the
point of application of the lateral force is constant.

Basically, the more the wind angle increases,
rotating from parallel to the barrier (at 0�) to perpen-
dicular to the barrier (at 90�), the higher the
aerodynamic load on the barrier itself; in any case,
as the wind angle increases, the slope of the curve
decreases, and it is almost zero or negative at high
wind angles. A comparison of the two barriers reveals
that B3H3 is characterized by greater loads than
B4H4 at all wind angles.

In conclusion, the perforated sheet barrier,
although lower than the band barrier (3m as
compared with 4m), given its lower and more uniform
porosity, tends to better channel the flow along the
vehicle at low wind angles, significantly reducing the
negative pressure behind the train and, as a
consequence, rolling moment. On the other hand,
this barrier is subjected, at all wind angles, to a
wind load about 20% higher than that of the B4H4
barrier, also around 90�, where this barrier performs
less well. This implies higher costs in the dimensioning
phase.

Conclusions

Extensive wind tunnel tests were carried out on differ-
ent types of windbreak fences with a stationary train

Figure 11. DTBR, pressure contour plot, wind angle �w¼ 90�: without barriers windward (a) and leeward (b), B4H4 barriers

windward (c) and leeward (d), B3H3 barriers windward (e) and leeward (f).
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model. Force and moment coefficients were measured
on both the vehicle model and a 1-m long barrier
section; in addition, in order to understand the rea-
sons for the differences in behaviour observed in terms
of force coefficients, the pressures around the train
model were also measured.

The first tests were carried out in the high-speed
test section of the facility in order to evaluate the
sensitivity of the force coefficients to the Reynolds
number in the presence of barriers. It was shown
that the installation of a barrier considerably

reduces the sensitivity of all train coefficients to
the Reynolds number compared with the case with-
out barriers. In particular, the dependency of the
lateral force and rolling moment coefficients on
the Reynolds number completely disappears, and
that of the vertical force coefficient is significantly
reduced.

This result allowed a second test campaign to be
designed and carried out in the low-speed test section
(Remax¼ 1.3� 105) where longer barrier scenarios
(150-m full scale) were built.
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In this second campaign, preliminary tests were
performed on seven barriers at �w¼ 90� to identify
those most suitable for reducing overturning risk
associated with crosswinds. Using as a target a reduc-
tion of the rolling moment coefficient of 30% and also
considering the wind loads on barriers, two wind-
break fences were selected for more detailed investi-
gation: a perforated sheet barrier 3-m high with a
porosity of �¼ 33% (B3H3) and a horizontal band
barrier (B4H4), higher (4m) but more porous
(�¼ 50%).

It was shown that both barriers reduce the rolling
moment coefficient by more than 30% at all wind
angles. From the analysis of the pressure distribution,
it was found that the presence of barriers not only
reduces the pressure on the windward side, but also
modifies the wake behind the train. At low wind
angles, the barriers, especially the perforated sheet
type, tend to drive the flow parallel to the train, redu-
cing negative pressure behind the train and thus
increasing the range in which the vehicle behaves as
a slender body. Analysis of the barrier coefficients
revealed that the perforated sheet barrier, which is
less porous and performs better up to 70�, is subjected
to a wind load 20% higher than that of the band
barrier, at all wind angles.

Finally, it was observed that the distance between
train and barrier is an important parameter in evalu-
ating the barrier’s performance and, in particular, the
sheltering effect of barriers is higher when the train
model is on the leeward track.

As already observed in the Introduction, one of
the main limitations of these tests is that the relative
motion between the train and the barrier is not
reproduced in the test setup. In fact, using a sta-
tionary train model, it is possible to simulate the
actual yaw angle (relative wind direction with
respect to the train) but not the wind angle with
respect to the barrier at the same time, having
both the train and the barrier fixed. On the other
hand, the results of these tests have yielded import-
ant information on the sheltering effects of wind
barriers. In the future, it could be useful to repro-
duce the relative motion between train and infra-
structure through experiments or CFD simulations
to study its effect on the force coefficients on both
the train and the wind barrier.

Starting from these experimental tests, a numerical
CFD study was developed to analyse the sensitivity of
barriers to a number of parameters.23 The results of
all these studies were used by Rete Ferroviaria
Italiana for the design of new windbreaks on high-
speed lines.
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