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Abstract

In this paper an algorithm is developed that combines the capabilities and advantages of several different astrodynamical models
of increasing complexity. Splitting these models in a strict hierarchical order yields a clearer grasp on what is available. With the
effort of developing a comprehensive model overhead, the equations for the spacecraft motion in simpler models can be readily
obtained as particular cases. The proposed algorithm embeds the circular and elliptic restricted three-body problems, the four-body
bicircular and concentric models, an averaged n-body model, and, at the top hierarchic ladder, the full ephemeris SPICE-based
restricted n-body problem. The equations of motion are reduced to the assignment of 13 time-varying coefficients, which multiply
the states and the gravitational potential to reproduce the proper vector field. This approach yields an efficient and quick way
to check solutions for different dynamics and parameters. We show that in bottom-up applications, a gradual increase of model
complexity benefits accuracy, the chances of success and the convergence rate of a continuation algorithm. Case studies are simple
periodic orbits and low-energy transfers.

Keywords: n-body dynamics, four-body problem, three-body problem

1. INTRODUCTION

The circular restricted three-body problem, addressed
CRTBP later in this work, is the ideal model to design unique
solutions, ranging from Lagrange point orbits to low energy
transfers [5, 12, 25]. These trajectories embed the effect of
two gravitational attractions in a natural way, and therefore they
are more accurate than the conics, solutions of the classic two-
body problem. The phase space portrait of the CRTBP has
been thoroughly studied in the past, with special attention to
the dynamics in the neighbourhood of the collinear libration
points [21, 15, 12]. This is because most of the dynamics of the
restricted problem can be related to the equilibrium points and
their invariant stable and unstable manifolds. From a practi-
cal perspective, these points possess properties that make them
valuable candidates for space missions. Herschel, Planck and
Gaia about the Sun–Earth L2, and SOHO and Genesis about
Sun–Earth L1, are just few examples of typical libration points
missions. Several other missions are planned that make ex-
plicit use of three-body dynamics, such as Plato and Euclid.
Finally, the concepts of weak stability boundaries and ballis-
tic capture [11, 19, 26], proved reliable from the rescue of the
Japanese spacecraft Hiten [2], and will be applied to the ESA’s
cornerstone mission BepiColombo [20].

However, when the three-body orbits are reproduced in more
comprehensive gravitational models, large errors are found.
That is, as the three-body orbits are defined in the regions of
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phase space where two main gravitational accelerations bal-
ance, the sensitivity is high and any additional perturbation pro-
duces large effects. An automatic algorithm able to correct or-
bits in the real solar system model is in these circumstances of
great aid to space mission design [9].

Several works exist in literature that present a way to account
for the full gravitational dynamics of the solar system. Dy-
namical substitutes are found by continuation in [14] and [15];
through a reduction to the centre manifold and by numerically
imposing the solution to be quasi-periodic in [12]; or selecting a
finite number of frequencies that reasonably represents the ma-
jor contribution of the celestial bodies [13]. Corrections have
also been obtained retaining a very large number of frequen-
cies in an analytical power series expansion of the gravitational
potential [17].

The purpose of this paper is to establish a clear hierarchy in
the gravitational models available to the designer, and to explic-
itly exploit it for the continuation of typical three-body orbits in
the n-body problem, modelled through precise ephemeris data.
To achieve the objective, an automatic algorithm has been im-
plemented. This combines the capabilities and advantages of
several different astrodynamical models of increasing complex-
ity. Splitting these models in a strict hierarchical order allows
a clearer grasp on what is available. The differential equations
governing the dynamics of a massless particle within the vec-
tor field generated by the n celestial bodies in the solar system
are written as perturbation of the CRTBP in a non-uniformly
rotating and pulsating frame. In this way, the equations for the
spacecraft motion in simpler models can be readily obtained as
particular cases of those in the general model. The equations of
motion are reduced to the assignment of 13 time-varying coeffi-
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cients, which multiply the states and the gravitational potential
to reproduce the proper vector field.

The refinement is carried out by means of a modified mul-
tiple shooting technique, and the problem is solved for a finite
set of variables. The proposed approach allows checking solu-
tions for different dynamics and parameters in an efficient and
quick way. It is shown how a gradual increase of the dynamics
complexity benefits accuracy, the chances of success and the
convergence rate of a continuation algorithm, applied to simple
periodic orbits and low-energy transfers.

The approach used in this work possesses similar traits com-
pared to the one developed in [22] and [28]. Nonetheless, the
explicit exploitation of a gravitational hierarchy in the models
represents a new approach. The results of the Earth–Moon sys-
tem serve as solid benchmark to validate this procedure com-
pared to others and prove this method correct and reliable. The
results obtained in this work further improve the algorithm de-
veloped in [8] and [15].

This paper is organised as follows. In Section 2 the dynam-
ical models that are used for the numerical computations are
described, paying careful attention to their hierarchical order.
Section 3 is the core of this work and details the algorithm that
refines trajectories in the real solar system model. The method-
ology and numerical procedure are explained. The results are
illustrated and discussed in Section 4, where families of halo or-
bits and one example of low-energy transfer are corrected with
the proposed algorithm. Conclusions are drawn in Section 5.

2. DYNAMICAL MODELS

A great variety of astrodynamical models are available to the
designer. As the complexity of such models increases, new so-
lutions appear due to the richer content of the vector field. The
drawback is that no analytical solution is available, and conse-
quently it’s very difficult to have a general insight on the dy-
namics. Extensive computational searches are usually required
in order to hit the desired optimal trajectory.

In this section the main astrodynamical models are shown
to be a particular case of the roto-puslating n-body problem.
With this approach, a single set of equations can be used to
represent the whole domain of possible gravitational models,
simply varying the coefficients and the potential function of the
model on the top of the hierarchic ladder.

2.1. The problem of n bodies

The most general model for the description of the motion
of a massless particle subjected to the gravitational field of
other n − 1 celestial bodies is the n-body problem, whose ge-
ometry is shown in Figure 1. The dynamics of the particle
Pk of mass mk, k = 1, . . . , n, whose Cartesian coordinates are
Rk = (Xk,Yk,Zk)T is governed by Newton’s universal law of
gravitation:

mkR̈k =

j=n∑
j=1
j,k

Gm jmk

R3
jk

(R j − Rk) k = 1, . . . , n (1)

m1

mk

m j

S/C

X Y

Z R1

Rk

R j

Fk1

F j1

F1kF jk

F1 j

Fk j

F1

F j Fk

Figure 1: Geometry of the n-body problem in an inertial reference frame.

Eq. (1) is written in an inertial reference frame and represents a
set of 6n first order ordinary differential equations.

However, astrodynamics is mainly concerned with the study
of artificial objects. In this context, the hypothesis of restricted
dynamics is applied with accurate results. The artificial object
moves in the vector field created by the n − 1 celestial bodies,
without affecting their motion. Another significant simplifica-
tion can be obtained if the trajectories of the primaries are not
integrated, rather they are specified by proper time-dependent
functions. Let S be the set of celestial bodies, the motion of an
artificial satellite is represented by

R̈ =
∑
j∈S

µ j
R j − R
‖R j − R‖3

, (2)

where µ j = Gm j is the j-th body mass parameter, G is the uni-
versal constant of gravitation, and R = (X,Y,Z)T is the position
of the probe.

We avail ourselves of the JPL ephemeris data DE430 [10] to
determine in a precise way the states of the Sun, the planets and
the Moon at given epochs with respect to an inertial reference
frame whose origin is located at the solar system barycentre.
More precisely, the SPICE toolkit1 has been use to determine
the states of the celestial bodies.

The equations of the solar system restricted n-body problem,
or simply SSRnBP, are written as perturbation of the CRTBP, by
means of a time-dependent coordinates transformation [13]; in
this way a better insight of each term can be attained. Moreover,
this model fits well in the hierarchic approach followed in this
paper. Let R and V be the dimensional position and velocity,
respectively, of a massless body P in the inertial solar system
barycentric frame, and let ρ be its nondimensional position in
the new rotating and pulsating reference frame, defined by a
pair of primaries P1 and P2 (see Fig. 2). The transformation
between the solar system barycentric reference frame, and the
new non-inertial reference is then

R = b + kCρ, (3)

1The toolkit is freely available through the NASA NAIF website. Please
refer to http://naif.jpl.nasa.gov/naif/. Downloaded on Dec 22 2016.

2

http://naif.jpl.nasa.gov/naif/


where

b(t) =
m1R1 + m2R2

m1 + m2
,

k(t) = ‖R2 − R1‖,

C(t) =
[
e1, e2, e3

]
,

(4)

and 
e1 =

R2 − R1

k
,

e2 = e3 × e1,

e3 =
(V2 − V1) × (R2 − R1)
‖(V2 − V1) × (R2 − R1)‖

.

(5)

In Eq. (4) and Eq. (5), mi, Ri, and Vi are the mass, position,
and velocity of Pi, respectively, i = 1, 2. The transformation is
hence composed by two parts. The first is a translation of the
origin from the solar system barycentre to the primaries centre
of mass, b. The second is a rotation by means of the orthogo-
nal cosine angle matrix C, and a scaling by means of the time-
dependent factor k. The rotation is such that the primaries are
always aligned with the x-axis of the new frame. The scaling
factor k, which is the actual distance between the primaries, ad-
justs their positions so as to be fixed in time with respect to the
new frame of reference. As a result, the new frame rotates and
pulsates in a non-uniform fashion. This guarantees some conve-
nient features, primarily suggested by the CRTBP. In this paper
the new gravitational model will be addressed as roto-pulsating
n-body problem, or simply RPnBP.

The Lagrangian of the complete gravitational model is:

L (R, Ṙ, t) = T − V =
1
2

Ṙ · Ṙ +
∑
j∈S

Gm j

‖R − R j‖
, (6)

where S is the set of all celestial bodies included in the solar
system model, except for P. The dots indicate derivation with
respect to dimensional time, t.

Without loss of generality, a constant time reference is cho-
sen for the nondimensionalisation, equal to the mean motion of
the primaries, n. With this choice the average primaries revolu-

x

y

z

m1

m2

m3

μ                                                            1-μ

ρ1

ρ1

ρ

ω2

Figure 2: Roto-pulsating reference frame.

tion period is 2π, that is

τ = n(t − t0), n =
2π
T

=

√
G(m1 + m2)

ā3 , (7)

where ā is the mean distance between the primaries taken over
a long time interval (e. g., 400 years). Note that the mean dis-
tance between primaries is not the semi-major axis of the ellipse
described by their orbits, the eccentricity modifies it by a factor
√

1 − e2. The initial epoch t0 is used to shift the non autonomous
problem to have null initial nondimensional time.

Applying the transformation of Eq. (3) to the Lagrangian
(Eq. (6)), and then carrying out the Lagrangian mechanics oper-
ations, we obtain the equations of motion in the roto-pulsating
frame. After some manipulation [7]:

ρ′′ = −
2
n

( k̇
k
I + CT Ċ

)
ρ′ −

1
n2

[( k̈
k
I + 2

k̇
k
CT Ċ

+ CT C̈

)
ρ +

1
k
CT b̈

]
+
µ1 + µ2

n2k3 ∇Ω,

(8)

in which primes indicate derivatives with respect to the nondi-
mensional time, τ, and ∇Ω is the gradient of the potential func-
tion of the RPnBP

Ω = (1 − µ)
ρ − ρ1

‖ρ − ρ1‖
3 + µ

ρ − ρ2

‖ρ − ρ2‖
3 +

∑
j∈S∗

µ̂ j
ρ − ρ j

‖ρ − ρ j‖
3 , (9)

where S∗ is the collection of celestial bodies except for the pri-
maries, and µ̂ j = m j/(m1 + m2) is a convenient form to ex-
press their mass parameters. Mixed derivative notation stems
acknowledging that ephemeris data is numeric, discrete, and
provided for regular dimensional time. The vector Eq. (8) might
be written per components,

x′′ = b1 + b4x′ + b5y′ + b7x + b9y + b8z + b13Ω/x, (10a)
y′′ = b2 − b5x′ + b4y′ + b6z′ − b9x + b10y + b11z + b13Ω/y,

(10b)

z′′ = b3 − b6y′ + b4z′ + b8x − b11y + b12z + b13Ω/z, (10c)

with coefficients

b1 = −
b̈ · e1

kn2 , b7 = −
1
n2

( k̈
k
− ė1 · ė1

)
,

b2 = −
b̈ · e2

kn2 , b8 =
1
n2 ė1 · ė3,

b3 = −
b̈ · e3

kn2 , b9 =
1
n2

(
2

k̇
k

e2 · ė1 + e2 · ë1
)
,

b4 = −
2
n

k̇
k
, b10 = −

1
n2

( k̈
k
− ė2 · ė2

)
,

b5 =
2
n

e2 · ė1, b11 =
1
n2

(
2

k̇
k

e3 · ė2 + e3 · ë2
)
,

b6 =
2
n

e3 · ė2, b12 = −
1
n2

( k̈
k
− ė3 · ė3

)
,

b13 =
µS + µP

k3n2 .

(11)

These are the equations used throughout this work. Note that
a straightforward balance between centrifugal and gravitational
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forces would require the coefficient b13 to be unity when con-
sidering just two main bodies (i. e., the CRTBP). In the general
case this coefficient will oscillate about this value due to the
variability of k.

2.2. Circular restricted three-body problem
The lower level in the hierarchic ladder is represented by

the circular restricted three-body problem. Let us consider a
body P of mass m in the vector field of two primaries P1,
P2 of masses m1 and m2, respectively, such that the condition
m � m2 < m1 is satisfied. In the CRTBP the primaries revolve
in planar configuration at constant angular speed. By means
of a proper nondimensionalisation [27] the equations of motion
depend only on the mass parameter, µ = m2/(m1 + m2). The
nondimensionalisation is such that the distance between the pri-
maries, their angular speed and the sum of their masses are set
to a unity value. In this system the positions of P1 and P2 are
fixed, being P1 located at (−µ, 0, 0) and P2 at (1 − µ, 0, 0). The
equations of motion read

ẍ − 2ẏ = Ω
(3)
/x , ÿ + 2ẋ = Ω

(3)
/y , z̈ = Ω

(3)
/z , (12)

where the three-body potential function can be expressed as

Ω(3) =
1
2

(x2 + y2) +
1 − µ

r1
+
µ

r2
+

1
2
µ(1 − µ), (13)

and terms r1 =
√

(x + µ)2 + y2 + z2 and r2 =√
(x − 1 + µ)2 + y2 + z2 are the scalar distances between

the third mass and the primaries.
The dynamic equations describing this model can hence be

seen as a particular case of the more general RPnBP, and are
indeed obtained by simply assigning proper values to the co-
efficients, i. e., bi = 0 for i , [5, 7, 10, 13], b5 = 2, and
b7 = b10 = b13 = 1.

2.3. Elliptic restricted three-body problem
The next step in the hierarchy is the elliptic restricted three-

body problem, or ERTBP. This model studies the motion of
a massless particle, P, under the gravitational field generated
by the mutual elliptic motion of two primaries, P1 and P2, of
masses m1, m2, respectively. The equations of motion for P are
[27]

x′′ − 2y′ = ω/x, y′′ + 2x′ = ω/y, z′′ = ω/z. (14)

The subscripts in Eq. (14) mean the partial derivative of

ω(x, y, z, f ) =
Ω(3) − 1

2 z2ep cos f
1 + ep cos f

, (15)

where the potential function is the same defined in the CRTBP,
Eq. (13). Primes denote derivatives with respect to the new
independent variable: the true anomaly, f .

Eqs. (14) are written in a non uniformly rotating, barycen-
tric, nondimensional coordinate frame where P1 and P2 have
fixed positions (−µ, 0, 0) and (1 − µ, 0, 0), respectively, and µ
is the mass parameter of the system. This coordinate frame

isotropically pulsates as the P1P2 distance, assumed to be the
unit length. It varies according to the mutual position of the
two primaries with respect to f , the true anomaly of the system.
This is the independent variable and plays the role of time: f
is equal to zero when P1, P2 are at their periapsides, as both
primaries orbits their barycentre in similarly oriented ellipses
having common eccentricity ep. Normalising the primaries pe-
riod to 2π, the dependence of true anomaly on time is

d f
dt

=
(1 + ep cos f )2

(1 − ep)3/2 . (16)

Unlike the CRTBP, the true anomaly in Eq. (15) makes the el-
liptic problem nonautonomous. Thus, any qualitative feature of
this problem strictly depends on the true anomaly, f .

The coefficients of the elliptic restricted three-body problem
are not constant, but depend on the true anomaly. Namely,

b5 = 2, b12 = −
ep sin f

1 + ep cos f
,

b7 = b10 = b13 =
1

1 + ep cos f
.

(17)

Note that these coefficients reduce to those of the CRTBP if the
eccentricity of the primaries is zero, i. e., ep = 0.

2.4. Restricted four-body problem

Including an additional massive body into the bargain can po-
tentially lead to a different dynamical behaviour and solutions.
As the geometry becomes more complex, so does the hierarchi-
cal ladder. There is a bifurcation of models at this point: 1) a
system of two bodies revolves about a massive celestial body in
the bicircular model; or 2) two bodies revolve in similar fashion
around a massive primary in the concentric model.

2.4.1. Bicircular four-body model
The bicircular problem, addressed BCP hereafter, is a re-

stricted non-coherent model that considers two primaries and
a third gravitational perturbation:

1. two primaries P1 and P2 (e. g., the Earth and the Moon)
revolve in circular orbits around their barycentre, B;

2. at the same time, B and the third body P3 (e. g., the Sun)
are moving in circular orbits around the centre of masses
of the whole system (e. g., Earth–Moon–Sun), B′;

3. the primaries and the third body moves in the same plane.

For the sake of clarity the system Earth–Moon–Sun is anal-
ysed here. The results can be easily generalised and extended
to other selection of primaries with proper adjustments in the
model parameters. Fig. 3 shows the geometry of the BCP. Be-
ginning with an inertial frame, we perform a change of variables
to write the equations in synodical Earth–Moon coordinates.
However, in this case attention must be exerted in the transfor-
mation since the Earth–Moon barycentre ceases to be an inertial
point, due to the perturbation of the third body. From Newton’s
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Figure 3: Geometry of the BCP in rotating Earth–Moon coordinates.

law, the derivation of the equations of motion for a massless par-
ticle P is straightforward. The nondimensionalistaion paradigm
closely follows the one used for the CRTBP: it is such that the
distance between the primaries, their angular speed and the sum
of their masses are set to a unity value. In this system the posi-
tions of P1 and P2 are fixed, P1 being located at (−µ, 0, 0) and
P2 at (1−µ, 0, 0). To properly define the dynamics of the fourth
body in nondimensional coordinates, new quantities have to be
introduced: the Sun mass, m3, the distance between the Earth–
Moon barycentre and the Sun, a3, and the mean angular velocity
of the Sun in inertial and synodic coordinates, n3 and ω3. These
quantities are not independent. The following equalities hold:

ω3 = n3 − 1, a3
3n2

3 = 1 + m3, α = ω3t. (18)

The first one is easy to understand since the angular velocity
of the synodic frame is 1. The second is a consequence of the
third Kepler’s law in nondimensional coordinates. In the third
equality, α is the phase angle between the Earth–Moon line and
the Sun (see Fig. 3). The values used for these quantities are [1]

a3 = 388.81114, ω3 = −0.9251959855, m3 = 328900.54.
(19)

With these parameters the position of the Sun in the Earth–
Moon synodic frame can be written as

ρS = aS

[
cos (α + α0) sin (α + α0) 0

]T
, (20)

where α0 is the initial phase angle of the Sun, which depends
on the initial epoch and makes the BCP nonautonomous.

The equations of motion read

ρ′′ + CT (
2C′ρ′ + C′′ρ

)
= (µ2 − 1)

[
−

ρ − ρS

‖ρ − ρS ‖
3

− (1 − µ1)
µ1r + ρS

‖µ1r + ρS ‖
3 + µ1

(1 − µ1)r − ρS

‖(1 − µ1)r − ρS ‖
3

]
− (1 − µ1)

ρ + µ1r
‖ρ + µ1r‖3

− µ1
ρ − (1 − µ1)r
‖ρ − (1 − µ1)r‖3

,

(21)

where ρ and ρS are the nondimensional positions of the mass-
less particle and the Sun, respectively, r = (1, 0, 0)T is the
vector from the Earth to the Moon, and C is the rotation ma-
trix of the Earth–Moon synodic frame. Let mE , mM , and mS

be the masses of the Earth, Moon, and Sun, respectively, then

µ1 = mM
mE+mM

is the mass parameter of the Earth–Moon system,
and µ2 =

mE+mM+mS
mE+mM

is a convenient way to define the mass pa-
rameter of the Sun–Earth–Moon system. Primes denote here
derivatives with respect to the nondimensional time.

We obtain a set of equations that are similar to the equations
of the CRTBP, and that surprisingly possesses the very same set
of coefficients of the CRTBP. The BCP is hence considered as
a not so small perturbation of the CRTBP, next step of the hier-
archy. The major difference between the two models lays in the
definition of the potential function. Indeed, the BCP potential
embeds three new terms, in square brackets in Eq. (21). The
first is simply due to the Sun attraction, whilst the other two
stem from the nonzero acceleration of the Earth–Moon centre
of mass that depends on the actual distances between the pri-
maries and the Sun.

2.4.2. Concentric circular four-body problem
The concentric circular four-body problem, or simply CCP,

is the second horizontal hierarchical part of the restricted four-
body problem. It is a restricted non-coherent model that, unlike
the BCP, considers one primary and two secondary bodies. It
is assumed that the motion of a massless object is governed by
three primaries P1, P2, and P3, of masses m1, m2, m3, respec-
tively. One of the primaries is much more massive than the
other two, m1 � m2,m3. In a quasi-inertial reference frame
centred at P1, the bodies P2 and P3 rotate about m1 in circles of
radii r2 and r3 and with angular velocities ω2 and ω3, respec-
tively. The circular orbits are coplanar. The geometry of the
CCP is shown in Fig. 4

The equations of motion for P are first written as perturbation
of a simple Kepler problem [31], where the main attractor is P1.

r̈ + µ1
r
‖r‖3

= −

N∑
j=2

µ j

( d j

‖d j‖
3 +

r1 j

‖r1 j‖
3

)
, (22)

where µ j = Gm j, d j = R − R j is the distance between the
massless particle and the jth small attractor, and r j = R j − R1
is the distance between the massive central body and the small
attractors j = 2, 3, respectively. Eq. (22) is transformed into a
P1P2 synodic frame by means of a proper rotation r = r2Cρ.
The new position vector is ρ = (x, y, z)T . Dimensionless time is

X

Y

Z

ϕ

m1

m2
m3

S/C

r

r2r3

Figure 4: Geometry of the CCP in P1-centred inertial coordinates.
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again obtained through the mean motion of P2 about P1. The
equations of motion read

x′′ − 2y′ = Ω
(CCP)
/x , y′′ + 2x′ = Ω

(CCP)
/y , z′′ = Ω

(CCP)
/z ,

(23)
where the potential for the CCP is defined as

Ω(CCP) =
1
2

(x2 + y2) +
1 − µ1

‖ρ‖
+ µ1

( 1
‖ρ − ρ2‖

+
µ3

‖ρ − ρ3‖
+
ρ2 · ρ

‖ρ2‖
3 + µ3

ρ3 · ρ

‖ρ3‖
3

)
,

(24)

and µ1 = m2
m1+m2

is the synodic mass parameter, and µ3 =
m3
m2

is the perturbation mass ratio. The position vectors of the two
small attractors in the new rotating frame are

ρ2 = (1, 0, 0)T ρ3, =
‖r3‖

‖r2‖
(cosϕ, sinϕ, 0)T , (25)

where the phase angle of P3 with respect to the line P1 − P2 in
synodic coordinates is ϕ = ω̂t + ϕ0, and the apparent motion
of P3 about the synodic frame is ω̂ = ω3/ω2 − 1. The CCP is
nonautonomous due to the phase angle, ϕ0.

The coefficients of the circular concentric four-body model
are the very same of the CRTBP. This should not surprise be-
cause the baseline dynamics has not changed, being the well-
known synodic three-body coordinates. The perturbation of the
fourth body varies however the potential function.

Extreme care should be exerted when using the circular con-
centric problem. Indeed, due to the derivation of the motion
equations, the centre of the reference frame is not the barycentre
of the synodic coordinates, but it is the massive body directly,
assumed to be quasi-inertial.

2.5. Averaged coefficients
The step before using ephemeris data to calculate the states

of the celestial bodies is the creation of a database that con-
tains the information and data on several choices of synodic
reference frames. In particular the equations of motion are the
same as the RPnBP, Eqs. (10). However, the coefficients are
not variable functions of time, they are instead constant values
that represent the average value of that coefficient for a selected
pair of primaries. The average process is a time-average mathe-
matical operator applied to the coefficients; long time spans are
required to include the dynamics of all the solar system bodies.
This operation avoids computing the coefficients in Eqs. (11),
which is expensive. The average is applied to all the possible
selection of primaries.

As an example, Tab. 1 lists the 13 coefficients of the Earth–
Moon mean problem, calculated with a time average procedure
on a 359.1-year span, starting from MJD 0 (i. e., 0h UT on Jan-
uary 1, 2000). For the sake of comparison, the table also dis-
plays the coefficients of the other gravitational models outlined
so far. The mean values of the coefficients do not detach very
much from the CRTBP. Perhaps, the only exception being iso-
lated to coefficient b12 (see Eq. (10c)). Fig. 5 displays the abso-
lute value maximum and minimum percent differences between
some of the coefficients of the CRTBP and ERTBP, defined as

Table 1: Coefficients of the Earth–Moon restricted hierarchic models.

b j

CRTBP
BCP ERTBP Mean model
CCP

b1 0 0 -3.20914171488e-4
b2 0 0 3.2232353399e-5
b3 0 0 5.7531979499e-5
b4 0 0 -2.992618268e-6
b5 2 2 2.000027151596389
b6 0 0 -1.72749153e-7
b7 1 [0.9475, 1.0586] 1.004782125388163
b8 0 0 5.3978293e-8
b9 0 0 -1.25267088e-7
b10 1 [0.9475, 1.0586] 1.004782657954894
b11 0 0 8.5510641e-8
b12 0 [−0.0586, 0.0586] -1.612531506110e-3
b13 1 [0.9475, 1.0586] 1.007472376385437

∆%b j( f , ep) = 100 · (b(CRT BP)
j − b(ERT BP)

j ), j = 7, 10, 12, 13.
It can be seen that for typical primaries within the solar sys-
tem (roughly 80% of primaries have ep < 0.1) the eccentricity
contribution does not significantly vary the coefficients of the
model. However, as a critical case, the coefficients of the Sun–
Mercury ERTBP exhibits variations of up to 25% with respect
to those of the CRTBP.

The harmonic content of the dynamics is clearly visible in
Fig. 6, displaying the Fourier transform of b9. The peaks in the
Fourier transform correspond firstly to the roto-pulsating main
frequency, and secondly to the largest perturbations which af-
fects the synodic dynamics. As for any Fourier procedure, the
most relevant parameters to be specified are the size, T0, of the
sampling interval, and the number, N, of equally spaced sam-
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Figure 5: Extrema absolute value of the percent differences between the coef-
ficients of the CRTBP and those of the equivalent ERTBP. Fixed eccentricity
vertical lines are examples of some primaries choices within the solar system.
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Figure 6: Norm of Fourier transform of the motion equation coefficients b9 for the Earth–Moon case.

pling points within such interval. These parameters define the
Nyquist critical frequency, fN = N

2T0
, that fixes the window

within which the frequencies (true or aliased) will be found.
The number of samples has been chosen such that the Fourier
analysis can detect frequencies at least equal to 1, N

2T0
= 1.

Moreover, the sampling period T0 should be large enough to
allow for both being able to resolve a minimum frequency, pro-
portional to 1

T0
, and at the same time to let the solar system com-

pletely exhausts its dynamics. A period larger than 250 years
suffice the purpose2. What is more, the number of samples cho-
sen has been selected as a power of two in order to improve the
numerical efficiency of the Fast Fourier Transform algorithm
used.

As far as the Earth–Moon system is concerned, the coeffi-
cients span an interval of 359.1 years with N = 218 samples,
which results in a time rate of 12 hours; on the other hand, the
Sun– systems coefficients are sampled with N = 219 with a time
rate of 12 hours, providing a totality of roughly 718.2 years.

Finally, in order to reduce the leakage, the functions to be
transformed are truncated by means of a Hanning window func-
tion of order 2 [16],

HT0 (t) =
2
3

(
1 − cos

2πt
T0

)2
. (26)

As expected, the majority of the perturbative contributions ap-
pear in the Fourier transform of some coefficients. Note, how-
ever, that not all the coefficients feel the same perturbative

2Note that Pluto has an orbital period of roughly 247 years.

effects. For example, considering the Earth–Moon case, co-
efficients b1, b3 and b5 show a different harmonic trend. In
the Earth–Moon system, the perturbation with highest Fourier
transform magnitude has period of 32 days roughly; this contri-
bution is conjectured to be caused by the Sun.

To sum up, Fig. 7 shows the flow diagram associated to the
hierarchy of the gravitational models. It’s interesting to note the
horizontal behaviour of the four-body models, indispensable to
consider different kind of relative position for the perturbations.

CRTBP

ERTBP

BCP CCP

Average coefficients

RPnBP

three-body

four-body

n-body

Figure 7: Hierarchic ladder for the gravitational models.

2.6. Potential functions
Increasing the complexity of the gravitational model in hi-

erarchical order has lead to new dynamical equations whose
coefficients do not vary significantly from the CRTBP. In the
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BCP and CCP cases the coefficients remain even unmodified.
This is because the nonlinear terms are mostly contained by a
proper redefinition of the potential function, Ω. Fig. 8 shows
the coloured parametric surface of section of the potential func-
tion of the BCP, on the left, and its percentage difference with
the CRTBP, on the right. In order to produce a bidimensional
gradient result, the height z has been set to 0. Moreover, the
bicircular problem being nonautonomous, the epoch has been
chosen at the date March 11 2015, 12hr56m00s TDB. With this
choice the initial phase angle of the Sun with respect to the
Earth–Moon line is roughly 115◦. Several tests have been run
with different epochs within a lunar period. The areas of mini-
mum and maximum percentage variation follow the Sun direc-
tion (black arrow in Fig. 8) and the whole picture rotates coun-
terclockwise. Except this rotating variation, the main shape of
the potential seems not to vary significantly within roughly 28
days from the result presented on the right figure.

The typical regions of motion associated to the Jacobi con-
stant are maintained. The surfaces of zero-velocity, even though
now are variable, have retained the typical progression shape:
oval, dumbbell, horseshoe, and tadpole. The fundamental dif-
ference is that the perturbation of the Sun creates regions at
higher and lower levels of potential. The main consequence is
that there exist special configurations of the spacecraft at certain
epoch where the energy required to escape the Earth–Moon at-
traction and open the passage at L1 and L2 is lower. Conversely,
the opposite behaviour exists as well; the Sun can indeed act
upon the spacecraft to favour the stability of a capture orbit in
the synodic system. It is very peculiar to see how the action of
the Sun is symmetric. The central region has very low values of
variation, and bifurcates along the direction normal to the Sun
resulting in bigger regions with negative variation of potential.
The remaining regions, clustered in the Sun and anti-Sun direc-
tions have positive variation of potential. The small boundary
regions of the saddle that have zero variation of potential are
the regions where the perturbation of the Sun does not play any
role in the vector field of the massless particle, and presumably
are the best conditions to propagate halo-type orbits.

3. METHODOLOGY

In this Section the attention is focused on the logical and
mathematical procedure to continue trajectories calculated in
the CRTBP toward the RPnBP. The selection of the orbit to re-
fine is based on two factors: the stability of the orbit within the
three-body frame, and the sensibility to the increased chaotic
content associated to the larger number of retained celestial
bodies.

Interplanetary transfers and halo-like orbits are deemed to
satisfy these requirements, and, on top of that, they are being
widely used for current space missions. The computation of
halos must account for the non-linear terms that arise in the
linearised CRTBP when large amplitude orbits are considered.
These solutions are obtained through a numerical approach,
based on perturbation techniques [24], in order to correct the
analytic initial estimates, and on continuation techniques [18],
in order to expand the infinitesimal orbits. halo orbits are pe-
riodic orbits which bifurcate from the planar Lyapunov orbits
when the in-plane and out-of-plane frequencies of the linearised
vector field are equal. This is a 1:1 resonance that appears as a
consequence of the nonlinear terms of the equations and, hence,
these 1-D invariant tori have to be searched as series expansion
with a single frequency. In details, once the out-of-plane Az am-
plitude overcomes a limit value, the frequency of the in-plane
oscillatory motion achieves the value of the frequency of the
one out of the plane, and three-dimensional halo orbits emerge.
Fig. 9 represents a family of halo orbits of the L1 Sun-Jupiter
system, calculated via high-order differential corrections [30].

In this work, a Lindstedt-Poincare method is used to accu-
rately compute periodic and quasi-periodic trajectories around
a libration point. This process is based on finding a parametric
family of trigonometric expansions that satisfy the equations
of motion, up to a sufficiently high order. The potential func-
tion is expanded by means of Taylor series and terms up to the
second order have been retained. According to [24], Legendre
polynomial are used to retain high-order terms. The solution
of the linear periodic part of these equations remains unvar-

x

y

Ω ∆ΩP

Figure 8: Potential function, Ω(x, y, 0), colour-gradient visualisation.
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ied. These linear solutions are already Lissajous trajectories.
Following the procedure in [12], when the nonlinear terms (in
Legendre polynomials form) are considered, the complete so-
lution is sought as formal series in powers of the amplitudes Ax

and Az.
The main objective is to continue these halo orbits in the

RPnBP exploiting the hierarchy of the gravitational models to
smooth the nonlinear terms gradients and to ensure the success
of the refinement procedure. These orbits have been already
demonstrated to exist in the complete ephemeris model [17],
even though with small quasi-periodic modification in the base-
line shape and oscillation frequency. However, the computation
of these trajectories is computationally very expensive and re-
quires an ad-hoc procedure that is very cumbersome from the
mathematical perspective and that can fail according to the pre-
cision of the initial condition and to the time scale used. We
argue that this is because the passage from CRTBP to RPnBP is
too sharp, and the algorithm might encounter difficulties in the
minimisation of the objective function at hand. Applying the
same algorithm sequentially from the CRTBP to the RPnBP and
following the hierarchic order of the gravitational models estab-
lished in this paper, convergence is attained and the algorithm is
prone to easily find local optima that satisfy the requirements.

The refinement procedure, inspired by [22, 8], is achieved by
means of an iterative algorithm that consists of two steps: eval-
uation of a compliant initial seed orbit, and modified multiple
shooting.

The two-point boundary value problem (TPBVP) is formu-
lated slightly different from usual, leading to the name modi-
fied multiple shooting. In particular, the technique has to cope
with the fact that no boundary conditions are actually known,
and the sole requirement is to produce a piecewise continuous
trajectory which stays as ‘close’ as possible in phase space to
the initial seed. In order to attain this, the multiple shooting is
coupled with an optimisation. In the first place, the classical
optimal problem is translated into a non-linear programming
(often termed NLP) method by means of direct transcription of
the dynamics and the problem is then solved for a finite set of
variables when a proper objective function is specified [3, 6].
As opposite to the optimal control problem, no dynamics is in-

volved into a NLP problem, because in this case the dynamics
is merely seen as a constraint that the NLP must satisfy. Let T0
be the initial epoch, which should be specified due to the nonau-
tonomous nature of the n-body problem, and ∆T the time-span
covered by a certain set of nodes. The basic procedure for tra-
jectory refinement consists basically of the following steps:

Step 1 Using a simplified gravitational model, generate a se-
quence of nodes as initial guess for Step 2;

Step 2 Fix the initial epoch, T0, and for a given time-span ∆T ,
perform the modified multiple shooting with the initial
guess.

3.1. The modified multiple shooting

A TPBVP consists in finding x(t), t ∈ [t0, t f ], such that

ẋ = f(x, t), h(x(t0), x(t f )) = 0. (27)

In the present context, the first equation is the state space rep-
resentation of Eqs. (10) (x is 6-dimensional) when the proper
coefficients b j and potential function Ω are specified according
to the selected dynamical model as described in Section 2. The
function h specifies six boundary conditions, which are needed
to well-pose the problem [4]. In multiple shooting, problem
(27) is solved for a finite set of variables [23]. The procedure is
briefly recalled here for convenience.

The solution is discretised over m points t0 = t1 < t2 < · · · <
tm = t f ; that is, sk = x(tk), k = 1, . . . ,m. This defines m − 1
segments in which a TPBVP is solved by enforcing continuity
of the solutions at both ends. This shortens the duration of the
original problem, and thus reduces sensitivity. Let the defect
vector be

ζk = ϕ(sk, tk; tk+1) − sk+1, k = 1, . . . ,m − 1, (28)

where ϕ(x0, t0; t) is the flow (i. e., solution) at time t of Eq. (27)
starting from initial conditions (x0, t0). A schematic represen-
tation of the defect vectors is shown in Fig. 10. The problem is
to determine the states sk such that

ζk = 0, k = 1, . . . ,m − 1, and h(s1, sm) = 0. (29)

In Eqs. (29) we have 6m unknowns (the states sk) and 6m equa-
tions (6 boundary conditions and 6(m − 1) defect constraints).
This is the classic multiple shooting method.
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Figure 10: Multiple shooting strategy and defects vector.
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In the modified version of the multiple shooting the funda-
mental principles of the classical technique are preserved, and
eventually the zero of a non-linear multi-variable function has
to be found by Newton method. However, the classic multi-
ple shooting has be be modified so as to deal with free bound-
ary conditions. In particular, the equations that represent the
boundary conditions, h, are erased. Let s = (s1, s2, . . . , sm) be
the vector of unknowns and let

c(s) =


ζ1(s1, s2)
ζ2(s2, s3)

...
ζm−1(sm−1, sm)

 (30)

be the vector of defects.
Note that c(s) : R6m → R6(m−1) and s ∈ R6m. We have to seek

the zero of the function c(s), while minimising a scalar objec-
tive function f (s) : R6m → R1, defined later. An optimisation
procedure is implemented in order to shatter the underdetermi-
nation and provide for the 6 missing equations. The problem is
stated as

min
s

f (s) subject to c(s) = 0. (31)

In order to minimise the deviation between the final trajec-
tory and the seeding one, the cost function f is chosen to be
a quadratic form of the constraints,

f (s) =
1
2

cT c. (32)

Note that this also lead to minimising the corrections applied
by the modified multiple shooting.

The problem is solved numerically. The Jacobian of the
function c, Jc, is calculated by means of a first-order Euler
approximated forward finite difference scheme. This method
has been preferred over more accurate techniques (i. e., second-
order centred finite difference schemes or variational equations)
for implementation simplicity and reliability. The Jacobian is
sparse:

Jc(s) =



Φ1 −I6 0 0

0 Φ2 −I6
. . .

. . .
. . .

. . . 0

0
. . . Φm−1 −I6


, (33)

where I6 is the identity matrix of order 6, the state transition
matrices Φk are given by

Φk = Dskζk = Dskϕ(tk+1; tk, sk), (34)

andDsk (·) is the gradient with respect to sk.
Basically, the method consists of three steps:

1. Select and calculate trajectory to be refined;

2. Apply the continuation method to make a step further in
the hierarchic ladder and update the initial conditions;

3. Reiterate until the top of the hierarchic ladder, i. e., RPnBP.

4. RESULTS

The method described in Section 3 is applied to three fami-
lies of trajectories: (a) a family of halo orbits in the Earth–Moon
system at three different Jacobi constants; (b) an Earth-to-Moon
Hohmann transfer; and (c) an Earth-to-Moon low-energy trans-
fer that exploits the weak stability boundaries of the lunar re-
gion. The initial conditions for both Earth-to-Moon transfers
have been taken from [29].

4.1. Refinement of halo orbits

The initial condition for a Earth–Moon L1 halo orbit are
flown under the vector gravitational fields in the hierarchy. As
expected, the CRTBP reproduces again the original halo or-
bit. Within the other dynamics, the orbit deviates from the
original path and follows different trajectories, which might in
some cases be substantially different from the expected quasi-
periodic behaviour. This is because the other celestial bod-
ies produce perturbation along the orbit that are not negligible.
Fig. 11 shows the propagation of the halo orbits in the different
dynamical models. The BCP stays very close to the CRTBP,
making more than a complete revolution along the halo orbit
before escaping towards the Earth. This happens because at
the selected initial time the perturbation of the Sun is minimum
along the trajectory. However, as time passes the Earth–Moon
system revolves about the Sun, whose action eventually pulls
away the orbit. The RPnBP and the ERTBP behave in similar
fashion near the libration point, but detaches very quickly from
the halo trajectory and are temporarily captured in a selenocen-
tric orbit. These two models produce similar results because at
such distances the effect of the eccentricity of the lunar orbit
produces greater effects than the solar gravity. Lastly, the aver-
aged coefficients model is not able to simulate the nonlinearity
of the gravitational field, and results in a very fast escape from
the desired configuration. This model should be used with ex-
treme care. In fact, when following the chain of models it has
produced convergence issues for the refinement of the larger
halo orbits. In the latter cases, the average coefficient mod-
els is not representative of the real dynamics. Conversely, for
smaller LPOs the vector field is closer to the real scenario. This
is conjectured to occur mainly because the value of b13 equally
scales the potential gradient (which in this model comprehend
the contributions of the other n bodies) in every point of the
phase space.

The continuation algorithm is applied to Earth–Moon L1 halo
orbits, associated to different amplitude parameters, Az of the
northern family (first coefficient of the Fourier expansion of
the z-coordinate in normalised units, in which the unit length
is taken as the distance between the libration point and the sec-
ondary). Different values of Az univocally correspond to differ-
ent energy levels, and thus to different values of the Jacobi con-
stant. Given any of these two parameters, one particular halo
orbit is specified. Results are presented in Fig. 12, which dis-
plays the refinement of three halo orbits about the Earth–Moon
first libration point, associated to three different values of the
amplitude, Az = (0.01, 0.03, 0.06). Note that larger amplitude
means larger orbital path, and therefore smaller Jacobi energy,
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Figure 11: x − y (top), x − z (middle), y − z (bottom) projections of a Earth–Moon Az = 384.4 km halo, propagated in different gravitational models.
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CJ . The refinement has been done for 150 primaries revolu-
tions, but for the sake of presentation clarity, only the first year
is graphed. It is clear that the numerical refinement procedure
of a halo orbit produces a quasi-periodic one, whereas the base-
line shape and size do not change for most of the cases.

The advantage of this algorithm is its simplicity. Using a
hierarchic modelling chain of increasing complexity in order
to go from a CRTBP-like model to the RPnBP prevents the
application of interpolation/extrapolations steps that might be
necessary to attain convergence if a direct continuation from
the CRTBP to the RPnBP is performed (see [22]). This is be-
cause the transition among models is smoother, the optimisa-
tion is well-behaved, and convergence properties more ideal.
This effect increases for larger time spans. Nevertheless, both
Andreu [1] and Lian et al. [22] obtain orbits of different kinds
(e. g., larger time spans, planar and vertical Lyapunov, halo and
quasi-halo, and around different libration points) directly from
the CRTBP within the restricted n-body problem, without pass-
ing through the hierarchy of models. The algorithm introduced
in this work approach the same refinement problem with a dif-
ferent methodology, and is applied also to end-to-end interplan-
etary trajectories.

The results obtained here, that is quasi-periodic orbits around
the Earth–Moon L1, have also been compared with the ones
obtained in [22] with a different method. This benchmark has
shown how the refined trajectories of these two works are very
close.

A Fourier analysis of the refined halo-type orbit shows that
the main single halo frequency is maintained. In addition, since
the refined orbit is now quasi-periodic, other frequencies ap-
pear. In particular, the frequency corresponding to main gravi-
tational perturbers appear. Note that the perturbative effects of
other massive planets are present, but cannot be resolved by the
Fourier transform due to the limited total period.

Fig. 13 shows the evolution of the smaller halo orbit refine-
ment in the ERTBP, BCP, and RPnBP. Only some of the multi-
ple shooting legs are displayed for clarity of presentation. It is
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Figure 13: Multiple shooting legs for the refinement of the Az = 0.01 halo
orbit in three different models within the hierarchic ladder (ERTBP, BCP, and
RPnBP).

very interesting to note that, depending on the actual position of
the Sun with respect to the Earth–Moon system, the BCP does
not always better represent the vector field if compared to the
ERTBP. In particular, in the left part of the displayed trajectory
the ERTBP is closer to the actual quasi-periodic refined orbit
in the RPnBP. This occurs even though, on average, climbing
up the hierarchic ladder of dynamical model produces results
that are more and more accurate and closer to the real n-body
problem.

4.2. Refinement of Earth-to-Moon transfers
Two sets of initial conditions for optimal two-impulse Earth–

Moon transfers [29] are flown under the gravitational fields in
the hierarchy. The trajectories are labeled as Hohmann transfer
and weak stability boundary transfer, respectively. While the
Hohmann transfer is computed in the CRTBP and can thus be
refined following the nominal hierarchical ladder of dynamical
models, the WSB transfer has been designed in a four-body
model and the refinement is performed exploiting only the BCP
and the RPnBP. In both cases, the S/C arrives at the Moon on
a circular orbit at 100 km altitude, and departs the Earth on a
ellipse with 653 × 70, 000 km periapsis/apoapsis altitude. The
Hohmann transfer employs 3.47 days to reach the Moon, while
75.57 days are necessary for the low-energy transfer.

The first row of Fig. 14 displays the evolution of the trans-
fers refinement for different dynamical models in the hierarchy.
The trajectories are plotted in the Earth–Moon synodic frame.
The Hohmann transfer is sampled in four multiple shooting
segments, for which Fig. 14a shows the behaviour within the
ERTBP, BCP, and average coefficient model. Clearly, the earth
departure leg is not well-captured by the elliptic problem, which
however produces results that are compatible with the initial
orbit in the coasting phase and Moon arrival leg. The BCP is
remarkably close to the optimal solution. The results of the av-
erage coefficients model are not satisfactorily and are not used
effectively during the refinement process. This suggests that a
simple average on the 13 coefficients is not sufficient to rep-
resent correctly the dynamical behaviour of the real ephemeris
n-body problem. For the WSB transfer, divided in 13 equally
spaced multiple shooting segments of roughly 5.8 days each,
the BCP sticks very close to the optimal trajectory, while the
elliptic model deviates from the nominal path for longer dis-
tances.

The first guess and final refined solutions for the Hohmann
and WSB transfers are shown in Fig. 14c and Fig. 14d, re-
spectively. The states of departure and arrival are hard bound-
ary conditions the multiple shooting target, while tweaking the
epochs of departure and arrival. In both cases, the transfers have
been successfully refined in the real ephemeris roto-pulsating
n-body problem.

5. CONCLUSION

In this paper an algorithm has been developed, that contin-
ues and refines trajectories calculated in the CRTBP (or slightly
more involved dynamical models) towards the more compre-
hensive ephemeris-based roto-pulsating n-body problem. The
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(c) First guess and refined solutions for the Earth–Moon Hohmann trajectory.

-4 -2 0 2 4
x [adim.]

-4

-3

-2

-1

0

1

2

3

4

y 
[a

di
m

.]

First guess
Real ephemeris

(d) First guess and refined solutions for the Earth–Moon WSB trajectory.

Figure 14: Refinement of Hohmann (first column) and low-energy WSB (second column) Earth–Moon transfers.

intrinsic hierarchic behaviour of the gravitational models at
hand has been employed to attain convergence and to improve
the efficiency of the algorithm. The difference among vari-
ous vector fields has been made smoother with a progressive
increase of the dynamical models complexity, explicitly us-
ing a hierarchic approach. In particular, a family of three
Earth–Moon L1 halo orbits have been refined with the pro-
posed method. The refinement algorithm has also been suc-
cessfully applied to two optimal Earth–Moon transfers, a direct
Hohmann-like transfer and a low-energy transfer using weak
stability boundary of the Sun–Earth–Moon system. The test
cases show the validity of the algorithm when compared to sim-
ilar methods in which the gravitational models hierarchy is not

explicitly exploited.
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