
 

Permanent link to this version 

http://hdl.handle.net/11311/1007279 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
Z.F. Luo, F. Topputo 
Capability of Satellite-Aided Ballistic Capture 
Communications in Nonlinear Science and Numerical Simulation, Vol. 48, 2017, p. 211-223 
doi:10.1016/j.cnsns.2016.12.021 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.cnsns.2016.12.021 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  



Capability of Satellite-Aided Ballistic Capture

Z.-F. Luoa,b, F. Topputoc,∗

aCollege of Aerospace Science and Engineering, National University of Defense Technology,
410073, Changsha, P. R. China

bNaval Aeronautical and Astronautical University, 264001 Yantai, P. R. China
cDepartment of Aerospace Science and Technology, Politecnico di Milano, Via La Masa, 34,

20156, Milano, Italy

Abstract

In this paper we study a special instance of ballistic capture dynamics: the case
in which the capture orbit about a planet experiences a close passage to one or more
of its natural satellites. The capability of the satellites in improving ballistic capture
is assessed. The dynamical framework considers at least the gravitational attrac-
tions of the Sun, the planet, and its satellites, all acting on a massless particle. The
effect of the satellites is introduced explicitly by modifying a previously developed
method, which relies on three-dimensional stable sets and n-body dynamics with
precise ephemeris. Once a stability criterium is defined, initial conditions defined
over a computational grid are integrated forward and backward. This allows us to
classify orbits into different sets. Ballistic capture orbits with prescribed features are
generated by manipulating these sets. Two indices, namely the hyperbolic velocity
and the stability index, are used to assess the performance of pre- and post-capture
portions, respectively. A Pareto frontier is used to extract orbits of practical inter-
est. Case studies are performed in the context of Earth and Jupiter environments.
Comparing to the situation with no moons, the satellite-aided ballistic capture can
evidently increase the pre-capture energy and post-capture stability, so making it
possible to have permanent capture of a particle at zero-cost. This is a desirable
feature in mission design.
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1. Introduction

Ballistic capture is a mechanism in which a particle initially in hyperbolic state
with respect to a primary can perform a number of revolutions about it in a totally
natural way. By definition, this dynamics can be reproduced in restricted n-body
models, with n ≥ 3. Ballistic capture is used in celestial mechanics to study the
formation and evolution of the Solar System (Brunini, 1996; Astakhov et al., 2003),
the impact dynamics (Benner and McKinnon, 1995; Alessi et al., 2012), and the
chaotic exchange of solid material between planetary systems (Belbruno et al., 2012).
Ballistic capture is also used in astrodynamics to reduce propellant consumption
(Belbruno and Miller, 1993), mitigate the risks associated to single-point burns (Jehn
et al., 2004), and accommodate launch window extensions (Topputo and Belbruno,
2015). These features are achieved at the cost of a generally longer transfer time
(Circi and Teofilatto, 2001; Ivashkin, 2002).

Ballistic capture orbits are generated with direct numerical simulation due to the
lack of analytical solutions. Much effort has been put to view ballistic capture dynam-
ics under the perspective of dynamical system theory in either the circular restricted
three-body problem or one of its variants (Conley, 1968; Yamato and Spencer, 2004;
Russell and Lam, 2007; Parker and Born, 2008; Mingotti et al., 2012a,b; Ren and
Shan, 2014). If, on the one hand, this approach allows us to relate ballistic capture
to Lagrange point dynamics, on the other hand, it can be barely adapted in the real
model where, e.g., fourth-body perturbations and primaries orbital eccentricity have
to be considered. An alternative way to generate ballistic capture orbits consists in
computing and manipulating the stable sets of initial conditions, which are associated
to a simple, geometrical definition of stability (Belbruno, 2004; Garćıa and Gómez,
2007; Topputo and Belbruno, 2009; Sousa Silva and Terra, 2012). Stable sets can be
readily computed in the elliptic problem (Hyeraci and Topputo, 2010; Makó et al.,
2010; Hyeraci and Topputo, 2013) or in models that attempt to adhere to the real
Solar System dynamics (Romagnoli and Circi, 2009; Luo et al., 2014; Brasil et al.,
2015). Ballistic capture orbits can be reproduced in these models by manipulation
of stable and unstable sets (Luo and Topputo, 2015).

Recent interests in Giant Planets exploration1 and asteroid retrieval missions2

raise the question of a possible use of ballistic capture in such applications. If so,
to what extent natural satellites can be exploited to improve capture performances?

1http://www.nasa.gov/topics/solarsystem/features/20090218.html (visited 11 April
2016).

2http://www.nasa.gov/mission_pages/asteroidroids/initiative/index.html (visited 11
April 2016).
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In Solar System exploration, using Giant Planets’ moons may help both reducing
orbit injection costs and mitigating the risks of a single-point impulsive injection
maneuver. In asteroid retrieval missions, exploiting the Moon can lead to long-term,
quasi-stable orbits about the Earth. This argument builds upon previous studies
that considered natural satellites to improve trajectory performances (Cline, 1979;
Macdonald and McInnes, 2005; Landau et al., 2010; Kloster et al., 2011; Lynam
et al., 2011; Campagnola et al., 2014).

In this paper, we elaborate on ballistic capture orbits that experience close encoun-
ters with planet’s natural satellites. A previously developed method (Luo et al., 2014;
Luo and Topputo, 2015) has been modified to explicitly account for the presence of
the moons. The aim is to find orbits having the best balance between pre-capture
hyperbolic excess velocity and post-capture stability index. Ideally, this means find-
ing orbits behaving like hyperbolas before the capture, and ellipses afterwards. This
dramatic change is sought on a zero cost basis. It is expected that improvements
in the post-capture orbit can be obtained when comparing to the simple restricted
three-body problem (Kary and Dones, 1996; Tsui, 2000; Astakhov et al., 2003). The
analyses are tailored to the case of capture at Jupiter and the Earth. The scopes of
the paper are then 1) to modify the existing method to explicitly exploit the presence
of the moons, 2) to assess the role played by the moons by using suitable metrics, 3)
to compare the results to the case of no aid by the moons in two different scenarios.

The remainder is organized as follows. Section 2 summarizes the reference frames,
equations of motion, and numerical techniques used. Section 3 presents the method
developed for constructing and ranking ballistic capture orbits. Case studies are
given in Section 4. Some underlying conclusions are drawn in Section 5.

2. Problem formulations

We study the motion of a particle, a rock or a spacecraft, subject to the gravitation
attractions of the Sun, a planet, and its main moons. The planet, of mass mp, is
the body around which the ballistic capture is studied. The Sun–planet mass ratio
is µp = mp/(ms + mp), ms being the mass of the Sun. The analysis is specialized
to the case of ballistic capture at the Earth and Jupiter, and thus the Moon as
well as the four Galilean satellites are modelled. The planet-moon mass ratio is
µm = mm/(mp +mm), where mm is the mass of the moon considered. The physical
parameters used are reported in Table 1.

2.1. Reference frames

The precise locations of the main Solar System bodies at given epoch are retrieved
from the JPL planet ephemeris DE430 model. The position vectors are given in the
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Table 1: Physical parameters of planets and their natural satellites considered; Gm: gravitational
parameter, R: mean equatorial radius, a: semi-major axis, e: eccentricity, T : period, µp,m: Sun–
planet, planet–moon mass ratio, Rs: radius of the sphere of influence (SOI), i: obliquity.

Body Gmp,m R a e T µp,m Rs i
(km3/s2) (km) (km) (–) (days) (–) (×R) (deg)

Earth 3.986×105 6,371.0 1.496×108 0.0167 365.3 3.003×10−6 145.03 −
Moon 4.903×103 1,737.4 3.844×105 0.0549 27.32 1.215×10−2 38.03 5.15
Jupiter 1.267×108 69,911 7.784×108 0.0484 4,333 9.537×10−4 674.20 −
Io 5.960×103 1,821.5 4.218×105 0.0040 1.77 4.704×10−5 4.28 3.15
Europa 3.203×103 1,560.8 6.711×105 0.0101 3.55 2.528×10−5 6.22 3.58
Ganymede 9.888×103 2,631.2 1.070×106 0.0015 7.15 7.804×10−5 9.25 3.17
Callisto 7.179×103 2,410.3 1.883×106 0.0070 16.69 5.667×10−5 15.63 2.90

Earth mean equator and equinox of J2000 (EME2000) and converted into a frame
more suitable for our analysis: the planetocentric radial-tangential-normal at epoch
t0, RTN@t0. In this frame, the zr-axis is perpendicular to plane of the Sun orbit, the
xr-axis is aligned with the Sun–planet line and points from the Sun to the planet, and
the yr-axis completes the dextral orthonormal triad (see Fig. 1). The transformation
from RTN@t0 to EME2000 can be found in Luo and Topputo (2015).

The initial conditions are given in RTN@t0 and flown under the n-body dynamics.
The resulting orbits are also viewed into a barycentric pulsating rotating (BPR)
frame, where the x-axis is directed from the Sun to the planet (both at rest on the
x-axis), the z-axis is aligned with their orbital angular momentum, and the y-axis
completes the triad; the origin is at Sun–planet barycenter. Analyses into the BPR
frame are performed on an ex post facto basis.

2.2. Equations of motion

A three-dimensional model for the dynamics is constructed. All the celestial bodies
are assumed as being point masses. In the RTN@t0 frame the planet is located at the
origin, whereas the Sun and the satellites are assumed as revolving in elliptic orbits.
Thus, a spatial elliptic restricted n-body problem is formulated with n = 3 + ns,
where ns is the number of moons considered. The Sun and the satellites have phase
angles θs and θk (k = 1, . . . , ns), respectively; see Fig. 1. At the initial epoch, t0,
these angles are θs,0 = π (by definition) and θk,0, respectively.
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Figure 1: Geometry of spatial elliptic restricted n-body problem used (only one moon shown).

The equations of motion for the massless particle are

r̈ +
Gmp

r3
r = −Gms

(
rs
r3s

+
r− rs
‖r− rs‖3

)
︸ ︷︷ ︸

Perturbing from Sun

−
ns∑
k=1

Gmk

(
rk
r3k

+
r− rk
‖r− rk‖3

)
︸ ︷︷ ︸

Perturbing from satellites

, (1)

where r, rs, and rk are the spacecraft position vectors with respect to the planet,
the Sun, and the satellites, respectively, whereas r, rs, and rk are their norms; Gm
are the gravitational parameters. In the elliptic model assumed, the motion of both
the Sun and the satellites is known as a function of time (see Eq. (3) in Luo and
Topputo (2015)).

2.3. Initial conditions

Ballistic capture orbits are subdivided into two legs, namely, pre- and post-capture
orbits. The patching point is the point of first closest passage. This is the initial
condition in our simulations. The whole orbit is achieved by patching together the
forward and backward integrations. The initial conditions are defined in RTN@t0,
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which is a inertial frame. Integrating the motion in this frame allows us 1) track-
ing the authentic number of revolutions (so avoiding discrepancies with the rotating
frame), 2) computing conveniently the Kepler energy, and 3) inferring direct geomet-
rical interpretations on the capture dynamics.

In principle, six numbers have to be assigned to define an initial condition to
integrate under Eqs. (1). The set used is made of orbital elements defined at the
initial time t0: periapsis radius r0, eccentricity e0, inclination i0, right ascension of the
ascending node Ω0, argument of periapsis ω0, and true anomaly f0. In practice, we fix
f0 = 0 and assume e0 ∈ [0.9, 1). That is, the initial condition lies at the periapsis of a
highly eccentric osculating ellipse. The latter feature favors escape in backward time
and planet close passages in forward time (see Section 3.2). This is consistent with
Hyeraci and Topputo (2010) and later works by the authors. Stable sets for lower
eccentricity are given in Topputo and Belbruno (2009). The initial inclination and
orientation of the osculating plane is also fixed by assigning i0 and Ω0, respectively. A
comprehensive analysis with varying initial inclination and orientation is presented in
Luo and Topputo (2015). The remaining two parameters, r0 and ω0, are discretized
into Nr0 and Nω0 points, respectively. The computational grid is then made of
Nic = Nr0 ×Nω0 initial conditions; see Luo et al. (2014).

2.4. Numerical integration

The initial orbital elements are converted into position and velocity vectors, r0 and
v0, respectively, in the RTN@t0 frame. Let x(t0) = (r0,v0) be the initial state. This
is flown under Eqs. (1) until a specific stop condition is verified (see Section 3.1). Let
the terminal state be x(t) = (r(t),v(t)), where t ∈ [t0, t0 ± T ], the plus/minus signs
account for forward/backward integrations, whereas T is a maximum time duration.
A 7th/8th order Runge–Kutta–Felhberg integrator is used with absolute and relative
tolerances set to 10−12. The equations of motion are scaled for numerical consistency.
The gravitational, length, time, and speed units are MU = Gmp, LU = R, TU =
(LU3/MU)1/2, and VU = LU/TU, respectively.

3. Methodology

The way ballistic capture orbits are constructed is given in this section; this is
similar to Section 3 in Luo and Topputo (2015) with proper specializations to consider
the presence of the moons. We have used the algorithm in Luo et al. (2014); the
reader can consult these two references for further details.
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3.1. Classification of orbits

The particle motion is classified according to geometrical and energetic criteria.
To this aim, a semi-plane is introduced to count the revolutions of the particle around
the planet (dark grey plane in Fig. 2(a)). Let r0 and v0 be the particle initial position
and velocity, respectively, in EME2000 centered at the planet. These are obtained by
conversion of the initial orbital elements given in the computational grid, see Section
2.3. Let also r(t) and v(t) be the same quantities at a subsequent (or previous) time
t; h0 = r0×v0 is the initial angular momentum. The particle lies on the intersection
plane if r(t) · (h0 × r0) = 0.

Remark 1 (Revolution). The particle performs a complete revolution around the
planet at time t1 if the following conditions are all simultaneously satisfied,

r(i)(t1) · (h0 × r0) = 0, r(i)(t1) · r0 > 0, (v(i)(t1) · v0) (v(i−1) · v0) > 0, (2)

where the superscript (i) counts the number of orbit-plane intersections.

0
r

Target

Periapsis

Osculating ellipse

0r

0
v

0 0 0
h r v= ×

Intersection

semi-planeOsculating orbital plane

0v

(a) Intersection plane

0
r

0
v

Intersection

semi-plane

Unstable

Weakly stable

Crash

Osculating ellipses

(b) Orbit categories

Figure 2: Classification of orbits behavior.

The dimensionless Kepler energy of the particle with respect to the planet is

H(t) =
v2(t)

2
− 1

r(t)
, (3)

where r(t) = ‖r(t)‖ and v(t) = ‖v(t)‖. H(t) is not constant due to third-body
perturbations; its sign indicates which body dominates over the particle trajectory.
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Remark 2 (Escape). The particle escapes from the planet at time te if the following
two conditions are simultaneously satisfied,

H(te) > 0, r(te) > Rs, (4)

where Rs is the radius of the planet sphere of influence (see Table 1).

The two conditions in (4) have to be satisfied simultaneously because the first
one alone does not guarantee escape, and vice versa (Sousa Silva and Terra, 2012).
Impacts occur at time ti when r(ti) ≤ R, with R as in Table 1. Given r0, v0 and an
initial epoch t0, the particle motion is integrated forward under Eqs. (1). Orbits are
classified into five different categories (see Fig. 2(b)).

Remark 3 (Classification). The following sets of initial conditions (i.c.) are con-
structed according to the orbits they generate.

1) Weakly Stable Set, W1: Contains i.c. whose orbits perform a complete revo-
lution about the planet without escaping from or impacting with it (see Fig.
3(a)).

2) Unstable Set, X1: Contains i.c. whose orbits escape from the planet without
completing any revolution around it (see Fig. 3(b)).

3) Crash Set, K1: Contains i.c. whose orbits impact with the planet without com-
pleting any revolution around it (see Fig. 3(c)).

4) Moon crash Set, M1: Contains i.c. whose orbits impact with one of the moons
without completing any revolution around the planet (see Fig. 3(d)).

5) Acrobatic Set, D1: Contains i.c. with orbits not satisfying the above conditions
within a given time span of T = 8π(Rs)

3/2 (see Fig. 3(e)).

3.2. Construction of ballistic capture orbits

The classification in Remark 3 can be applied to orbits performing n revolutions
forward in time, n ≥ 1, and therefore the sets Wn, Xn, Kn, Mn, and Dn can be
defined starting from Wn−1. Moreover, performing a backward integration yields
W−1, X−1, K−1, M−1, and D−1. The capture set, a set containing initial conditions
that generate ballistic capture orbits, is

Cn−1 = X−1 ∩Wn. (5)
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(a) Weakly stable (b) Unstable (c) Crash (d) Moon crash (e) Acrobatic

Figure 3: Sample orbits in the RTN@t0 frame. The grey spot is the Earth (not to scale).

The initial condition in Cn−1 give rise to orbits that 1) escape the planet in backward
time (X−1 part), or equivalently approach it in forward time from outside of the SOI,
and 2) perform at least n revolutions about the planet (Wn part). The backward
and forward orbits are linked at t0 where they share the initial state given by the
osculating orbital parameters defined on the computational grid. Note that the
generic capture set might be defined as Cn−m = X−m ∩Wn. The choice m = 1 in (5)
is driven by the fact that orbits immediately escaping the planet in backward time
(without orbiting it) are sought. All subsequent forward revolutions are considered
in Wn. This stems from the analysis in Hyeraci and Topputo (2010).

3.3. Ranking candidate orbits

The capture set defined in (5) contains a number of points that depend upon the
discretization used to compute Wn and X−1. A fine discretization is usually favored
not to lose possible interesting dynamics, although the majority of Cn−1 is made of
spurious, useless solutions. This in turn raises the issue of finding criteria for the
selection of the most interesting dynamics, in order to avoid scanning the whole
capture set manually.

In the context of this work, the focus is on those orbits whose dynamics show a
sudden change when going from the pre-capture to the post-capture phase. The pair
(t0,x0) is used to indicate the initial time and state, the latter being the periapsis of
the initial osculating ellipse.

Remark 4 (Pre- and post-capture). The ballistic capture orbits in Cn−1 are sub-
divided in two portions, namely

i) Pre-capture (X−1 part in Cn−1): Is the portion of orbit ranging from (t0,x0) to
(t−1,x−1), t−1 < t0, where the escape conditions are verified (see Remark 2).
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ii) Post-capture (Wn part in Cn−1): Is the portion of orbit ranging from (t0,x0) to
(tn,xn), tn > t0, where the n-turn condition is verified (see Remark 1).

The aim is finding orbits having a) the highest energy when approaching the planet
(pre-capture portion) and b) the most regular path after the first close encounter
(post-capture portion). In the formalism of the patched-conics method, the pre-
capture has to occur in a fashion resembling an incoming hyperbola, whereas the
post-capture has to show a repetitive, regular behavior, typical of a two-body ellipse.
Note that this dichotomy is sought by simply exploiting the natural dynamics: no
orbital maneuvers are admitted. Ideally, we want to turn an hyperbola into an ellipse
on a zero-cost basis.

The feature in point a) is desirable because increasing the approaching energy
yields a reduction of the heliocentric duration to rendezvous with the planet (Mac-
donald and McInnes, 2005). A highly energetic approach that turns into a ballistic
capture orbit enforces the multi-body system to work at its maximum capability to
slow down the particle and trap it about the planet. The following indicator is used
to measure the energy of the approaching particle,

C3 = v2∞, (6)

where v∞ is the velocity measured at the planet SOl (see Table 1).
The requirement in point b) sets the post-capture orbit to behave regularly. A

post-capture repetitive geometry is twofold: it can allow similar, multiple insertion
options into a more stable orbit, and it is suitable to analyze the mission perfor-
mances in case the ballistic capture orbit is baselined as definitive orbit. The capture
regularity is measured through the stability index

S =
tn − t0
n

(7)

where n is the number of revolutions completed by the particle. In Luo et al. (2014);
Luo and Topputo (2015) it has been shown that low values of S are associated to
regular post-capture orbits.

Remark 5 (Ideal orbits). Ideal orbits are orbits in Cn−1 having high C3 and low S.

The two conditions imposed to ideal orbits are in antithesis. It is natural that
increasing C3 yields to either planet fly-by orbits (no capture) or irregular post-
capture dynamics, and thus to high S. For this reason, ideal orbits are viewed as
those solutions belonging to the Pareto frontier in a (C3,S) plane.
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Figure 4 shows the solutions belonging to C6−1 about the Earth projected on the
(C3,S) plane. For this case, two simulations have been carried out, and two different
solution sets have been computed: the set M1, which considers the Moon (grey
dots), and the set M2, where the Moon is neglected (red squares). This distinction is
necessary to assess the capability of the Moon in enabling or improving the capture at
the Earth. Sample Pareto-optimal solutions are labelled (A1, . . . , F1 and A2, . . . , F2,
belonging to M1 and M2, respectively) to ease the discussion (see Section 4.1). Orbits
of practical interest can be picked from the Pareto-optimal points depending on the
mission requirements. A summary of the developed algorithm to construct ballistic
capture orbits and to select the ideal ones is outlined in Fig. 5.
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Figure 4: Solutions in C6−1 about the Earth (sets M1 and M2) and their Pareto frontiers.

4. Case Studies

In this section we analyze two cases involving ballistic capture about the Earth
and Jupiter. In both cases the set C6−1 is considered. This is consistent with real
applications (Jehn et al., 2004) and allows us comparing the results with previous
works (Hyeraci and Topputo, 2010; Luo et al., 2014; Luo and Topputo, 2015). The
aim is investigating the influence of the Moon and that of the Galilean moons. The
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1) Initialization
Select initial epoch t0, Sun, planet, and its satellites involved (Table 1)
Set forward revolution number (n) and backward number (−1)
Set orbital elements at t0 for the Sun and the satellites
Set initial eccentricity (e0 ∈ [0.9, 1)), inclination (i0 ∈ [0, π]), and RAAN (Ω0 ∈ [0, 2π))
Discretize periapsis distance, r0 ∈ [R+ ε, Rs], and argument of periapsis, ω0 ∈ [0, 2π)
Set maximum integration time T
Normalize all variables

2) Computation
Assign j = current revolution number
IF |j| = 1

a) Extract current value of r0 and ω0

b) Transform (t0, r0, e0, i0, Ω0, ω0, f0 = 0) to Cartesian state (t0,x0) in RTN@t0
c) Forward (j = 1)/backward (j = −1) integrate (t0, x0)
d) Stop when one of the five conditions in Remark 3 is verified (see Fig. 3)
e) Classify the initial conditions and assign them to Wj , Xj , Kj , Mj , Dj

ELSEIF 2 ≤ j ≤ n
a) Forward integrate the terminal state in Wj−1

b) Stop when one of the five conditions in Remark 3 is verified (see Fig. 3)
c) Classify the initial conditions and assign them to Wj , Xj , Kj , Mj , Dj

END

3) Manipulation
Extract Cn−1 by intersecting Wn and X−1 as per Eq. (5)

4) Representation
Reconstruct ballistic capture solutions in Cn−1 within [t−1, tn]
Calculate C3 and S with Eq. (6) and (7), respectively
Compute Kepler energy (H(t) in (3)) and altitude profiles
Check approaching direction
Check overall orbit geometry (osculating plane, close passages, etc.)
Project solutions in the (C3, S) plane, and compute the Pareto frontier
Select sample Pareto-optimal solutions matching mission requirements (e.g., C3 given)
Validate selected trajectories in a full ephemeris model

Figure 5: Outline of the algorithm developed.

capability of these natural satellites in improving the ballistic capture is measured
quantitatively and assessed qualitatively. The settings are those in Table 1.

4.1. Ballistic Capture at the Earth

The set up for this case is as follows (refer to Section 2.3 for the definition and
meaning of the parameters). 1) t0 = 2458888.82 JD (or 9 February 2020); at this
epoch, the Sun and the Moon are in opposition with respect to the Earth (i.e.,
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θ1,0 = 0 and θs,0 = π in Fig. 1). 2) e0 = 0.95; this eases comparisons with previous
works (Luo et al., 2014). 3) i0 = 22.5 deg and Ω0 = 225 deg; this specifies the
plane on which initial conditions lie. 4) r0 and ω0 are uniformly discretized into
Nr0 = 919 and Nω0 = 720 points, respectively, and thus the computational grid is
made of Nic = 661, 680 initial conditions; the bounds for r0 and ω0 are given in
Fig. 5 (ε = 1 km). 5) n = 6, that is, we are looking for post-capture orbits that
perform at least six revolutions about the Earth. 6) The model in Eq. (1) considers
the gravitational attractions of the Earth, the Sun, and the Moon; this is chosen to
limit the computational burden while still retaining high-fidelity solutions.

Fig. 6 shows the sets of initial conditions W1, W6, W−1, and C6−1 projected in
the (r0 cosω0, r0 sinω0) plane. The points are coloured depending on their stability
index, S, defined in Eq. (7), which is reported on the side bars. For the analysis
below, it is worth mentioning that lower values of S lead to regular post-capture
orbits, which is desirable.

By inspecting Fig. 6 it can be seen that all the sets present an anomaly at ω0 ' 135
deg. This is ascribable to the presence of the Moon (recall that Ω0 = 225 deg and
θ1,0 = 0, see Fig. 1). This feature is a departure from previously computed sets
where the stable and capture sets present two symmetrical branches (Topputo and
Belbruno, 2009; Hyeraci and Topputo, 2010; Luo et al., 2014; Luo and Topputo,
2015). Moreover, it is interesting to notice that in C6−1, or the set from which practical
solutions are extracted, the points with lower S aggregate about the anomaly at
ω0 = 135 deg. The upper-left branch is also wider than the lower-right one. There is
evidence that the presence of the Moon favours capturing orbits that would not do
so without the Moon (larger branch), and improves the quality of the post-capture
dynamics (lower S).

The role played by the Moon is also assessed by comparing the set M1 (with
Moon) and M2 (without Moon) in Fig. 4. The points in Fig. 4 have been obtained
with exactly the same settings in terms of initial conditions except that the model
in Eq. (1) considers the Moon (M1) or not (M2). It can be seen that in general,
the solutions in M1 are more numerous than those in M2, which indicates that the
presence of the Moon increases the chances of capture. Most importantly, when
going from model M2 to M1, the Pareto frontier of M2 (red line) is moved to the
upper-left part of the plot. This proves the benign effect of the Moon in ballistic
capture orbits: it yields lower S and higher C3, which is ideal.

Six sample solutions belonging to the two Pareto frontiers of M1 and M2, indi-
cated in Fig. 4, are analyzed in Table 2. For each solution, the coordinates in the
(C3,S) plane are reported, and the orbit in the BPR frame is also shown. Dra-
matic improvements on both hyperbolic excess velocity and post-capture stability
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Figure 6: Forward and backward weakly stable sets and capture set about the Earth. Points are
coloured depending on their stability index (reported in the side bar). The solution A1 in C6−1 is
the Pareto-optimal point in Fig. 4 with the lowest value of S among all the solutions found.

are obtained when the orbits are allowed to exploit the presence of the Moon. For
instance, comparing A2 against A1 (solutions with lowest S in the sets they belong
to), the average post-capture period decreases from approximately 68 days to 10
days, whereas the hyperbolic excess velocity increases from approximately 500 m/s
(C3 = 0.256 km2/s2) to 820 m/s (C3 = 0.677 km2/s2). This is a major improvement,
and can be also inferred by looking at the orbits shape in Table 2.

Solution A1 (indicated in Fig. 4 and 6(d)) is now analyzed. Among the orbits
simulated in this case study, this is the solution with lowest stability index (S = 1021
TU) and thus it belongs to the Pareto frontier by definition (see Fig. 4). The orbit
generated by forward and backward integration of the initial condition associated to
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Table 2: Feature of sample solutions belonging to the Pareto frontiers of M1 and M2 (Earth case).

Solution A1 B1 C1 D1 E1 F1

C3 (km2/s2) 0.677 0.718 0.742 0.799 0.882 0.898
S (days) 9.534 22.981 33.645 36.951 48.222 109.237

(x, y), BPR
 

 

 

 

 

 

 

 

 

 

 

 

(x, z), BPR
 

 

 

 

 

 

 

 

 

 

 

 

Solution A2 B2 C2 D2 E2 F2

C3 (km2/s2) 0.256 0.311 0.448 0.566 0.864 0.951
S (days) 67.916 79.925 95.146 102.220 109.289 140.564

(x, y), BPR

 

 

 

 

 

 

 

 

 

 

 

 

(x, z), BPR

 

 

 

 

 

 

 

 

 

 

 

 

A1 is shown in Fig. 7 in the RTN@t0 frame centered at the Earth. The initial position
of the Sun, the Moon, and the particle is indicated with the triangular marker. It can
be seen that the post-capture orbit (t > t0) experiences a fly-by at the Moon. After
such close encounter, the orbit evolves in a regular fashion resembling a two-body
dynamics. This was expected, A1 being the solution with lowest stability index.
This process can be inferred by looking at the histories of the Kepler energy with
respect to the Earth and the distances to the Earth and Moon, as shown in Fig.
8. The closest altitude to the Moon is at 746 km. After this, the post-capture
orbit becomes extremely regular and stable, akin to a cislunar transfer orbit (see
close-up in Fig. 7(b)). By definition, the Kepler energy with respect to the Earth
is negative in the post-capture portion. The pre-capture orbit (t < t0) escapes the
Earth in backward time, as expected. It is interesting to notice that solution A1 is
not isolated, but rather it belongs to a cluster of points in C6−1; see Fig. 6(d). In
case this solution is baselined in applied scenarios and, for some reason, an accurate
targeting is not possible, the region about it will still assure capture, so increasing
the strategy robustness.
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Figure 7: Orbit corresponding to solution A1 (Earth case) in the RTN@t0 frame.
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Figure 8: Parameter histories of solution A1.

4.2. Ballistic Capture at Jupiter

Ballistic capture orbits that interact with multiple natural satellites are studied
in the Jovian system. In this case, the gravitational attractions of the Sun, Jupiter,
and the four Galilean satellites (Io, Europa, Ganymede, and Callisto) are considered
in Eq. (1). Beside the parameters in Table 1, the other variables have been set as
follows. 1) t0 = 2459965.00 JD (20 January 2023), when Jupiter is at the perihelion;
this condition maximizes the chances of having capture orbits, as discussed in Circi
(2012); Hyeraci and Topputo (2013); Luo and Topputo (2015). 2) e0 = 0.95, as
in the previous case. 3) i0 = 0 deg (and thus Ω0 is not defined); this maximizes
the probability of encountering the moons (see the obliquities in Table 1); 4) ω0 is
uniformly discretized into Nω0 = 720 points, whereas r0 is defined on a nonuniform
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grid: the grid is finer in the region close to Jupiter (519 points in [R+ ε, 30R])3 and
coarser in the rest of the space (922 points in [30R,Rs]); in total, Nic = 1, 037, 520
initial conditions are analyzed; 5) n = 6, as in the previous case.

Fig. 9 presents the capture set C6−1 and a close up to its inner portion in the
(r0 cosω0, r0 sinω0) plane. By comparing Fig. 9 against Fig. 6, it can be seen that
the capture set at Jupiter is more scattered and less regular than that at the Earth.
These features are not found in moon-free models (Topputo and Belbruno, 2009;
Romagnoli and Circi, 2009; Makó et al., 2010), and thus there is evidence that it
is caused by the multiple interactions with the moons, which give rise to a lesser
smooth vector field. Moreover, the solutions with the lowest stability index (i.e.,
those of practical interest) are aggregated about the region near Jupiter.
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Figure 9: Capture set C6−1 about Jupiter. The points are coloured according to their stability index,
reported in the side bar. A1 is the solution with the minimum S.

It is interesting to view the solutions belonging to C6−1 in the (C3,S) plane. The
initial conditions defined on the computational grid have been reintegrated in an ar-
tificial, moon-free model (labelled M2), and assessed against those accounting for the
Galilean satellites (M1 model). Figure 10 summarizes the outcome of this exercise.
The solutions in C6−1 obtained in the M1 model are more numerous than those in
the M2 model, so confirming once again that the presence of the natural satellites
improves the chances of achieving the capture. Most importantly, the point in M1

involve lower stability index S and higher pre-capture energy C3. This is remarkable.

3Note that the semi-major axis of Callisto’s orbit around Jupiter is 26.22 Jupiter radii.
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Samples solutions belonging to the two Pareto frontiers of M1 and M2 in Fig. 10
are detailed in Table 3. Beside C3 and S, for the points in M1, the flyby moon and
the minimum altitude relative to it are also given. The associated orbits projected in
the (x, y) plane (BPR frame) are also provided; the out-of-plane motion is negligible.
Notice the low altitudes of solutions D1 and F1 with respect to Ganymede, which
may eventually lead to discard them in practical application. (This assessment is
however out of the scopes of this work.)

We note from Table 3 that v∞ ' 4 km/s (C3 = 16.089 km2/s2) in solution F1 is
consistent with the result in Macdonald and McInnes (2005). The hyperbolic excess
velocity could be further increased by exploiting multiple lunar fly-byes (Landau
et al., 2010). This would also generate a more refined Pareto frontier. However,
solutions of this kind have to be imposed explicitly when designing Jupiter multi-
moon tours. This can be done, for instance, by studying the post-capture orbit
with the Tisserand-Poincaré graph and Laplace resonances (Campagnola et al., 2014;
Kloster et al., 2011), and patching it with a consistent pre-capture orbit. In this
work, multiple flybys are not imposed, because the focus is to assess the impact
of the natural satellites on the capture sets. In our solutions, capture orbits about
Jupiter exist even when moons are not exploited (see solutions A2, . . . , F2 in Table 3),
by virtue of the simultaneous gravitational attraction of the Sun and Jupiter upon
the massless particle. This is not the case of orbits designed with a patched-conics
method.
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Table 3: Feature of sample solutions belonging to the Pareto frontiers of M1 and M2 (Jupiter case);
hmin is the minimum altitude to the flyby satellite.

Solution A1 B1 C1 D1 E1 F1

C3 (km2/s2) 1.004 4.961 7.210 11.161 12.580 16.089
S (days) 133.763 139.168 140.780 367.381 467.039 515.001
Flyby moon Io Io Io Gan. Gan. Gan.
hmin 452.601 473.357 105.888 52.610 814.000 51.135

(x, y), BPR

 

 

 

 

 

 

 

 

 

 

 

 

Solution A2 B2 C2 D2 E2 F2

C3 (km2/s2) 2.138 2.339 2.459 5.281 6.067 6.241
S (days) 752.846 776.040 834.420 1,225 1,391 1,495

(x, z), BPR

 

 

 

 

 

 

 

 

 

 

 

 

The orbit corresponding to solution C1 in Table 3, which has a good balance
between C3 and S (see Fig. 10), is shown in Fig. 11. The close up shows that
the spacecraft passes by the satellite Io before its first periapsis to Jupiter (during
the pre-capture leg). Further features can be seen in Fig. 12. After the flyby, the
spacecraft moves along an elongated, regular orbit with a periapsis distance less than
Io’s semi-major axis about Jupiter and an apoapsis at about 200 Jupiter radii. The
post-capture orbit is occasionally perturbed by the gravity of Io (see Fig. 12(a)).

5. Conclusions

In this paper, the capability of natural satellites of improving the ballistic capture
performances has been explored. This is done by taking into account the presence
of moons in a previously developed method. In this model, a computational grid of
initial conditions is defined, and orbits are classified according to a simple definition
of stability. A proper manipulation of the resulting sets allows us to find ballistic
capture orbits with prescribed stability number. Two indicators, namely the excess
velocity and the stability index, are used to judge the performance of pre- and post-
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capture legs. Pareto optimality is used to extract solutions having the best balance
of pre-capture energy and post-capture regularity.

Numerical simulations have been performed for two case studies relevant for ap-
plications: Earth and Jupiter. In both cases, results have shown that the presence
of the moons increases the chances of performing ballistic capture about the planet,
improves the regularity of the post-capture orbit, and may accommodate higher pre-
capture energies than a moon-free model. Although exploiting the moons to improve
capture might be a powerful option, the presented method supports ballistic capture
in no-moon scenarios as well.
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