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ABSTRACT
This paper merges multimedia and environmental research
to verify the utility of public web images for improving wa-
ter management in periods of water scarcity, an increasingly
critical event due to climate change. A multimedia process-
ing pipeline fetches mountain images from multiple sources
and extracts virtual snow indexes correlated to the amount
of water accumulated in the snow pack. Such indexes are
used to predict water availability and design the operating
policy of Lake Como, Italy. The performance of this in-
formed policy is contrasted, via simulation, with the current
operation, which depends only on lake water level and day of
the year, and with a policy that exploits official Snow Water
Equivalent (SWE) estimated from ground stations data and
satellite imagery. Virtual snow indexes allow improving the
system performance by 11.6% w.r.t. the baseline operation,
and yield further improvement when coupled with official
SWE information, showing that the two data sources are
complementary. The proposed approach exemplifies the op-
portunities and challenges of applying multimedia content
analysis methods to complex environmental problems.

CCS Concepts
•Computing methodologies → Visual content-based
indexing and retrieval; Image segmentation; Matching;
•Applied computing → Environmental sciences;

Keywords
Image processing, crowdsourcing, snow, environment moni-
toring, water management

1. INTRODUCTION
Water scarcity resulting from climate change has entered

the global agenda due to its impact on society and economy
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Figure 1: left: MODIS daily snow cover map on Jan. 9
2014; right: images acquired the same day by a webcam in
the position shown by the black circle.

and is recognized as a global risk already in the short term
[10]. Re-solving the uneven spatio-temporal distribution of
water requires storing it when it is naturally available (e.g.
when snow is melting) and delivering when required by users
(e.g. agriculture, hydropower). Dam operators must hence
balance the amount of water to release for short term needs
with the amount to store for future demands, particularly
during the dry season, possibly based on predicted water
availability. The Snow Water Equivalent (SWE), i.e., the
water content of the snow pack, is an important hydrological
variable used to predict future water availability. State-of-
practice SWE monitoring applications rely on mathematical
models often based on physical laws, ad hoc campaigns, and
dedicated observations from ground stations or remote sens-
ing (specialized satellite products), which cannot be easily
validated against ground truth given the high spatial het-
erogeneity of SWE and the few SWE point measurements
available.
The public visual content generated by users or by low cost
and widely available ground sensors, such as webcams, raises
the question of whether it is possible to use such data, albeit
collected for completely different purposes and with lower
quality, as a replacement or complement to the high quality,
but also more restricted and costly, data traditionally em-
ployed by environmental models, and specifically by water
management models. Recently, as discussed in [2], various
authors have shown the potential of using public content for
monitoring natural processes [25], hazards [5], and more.
However the claim that web media provides an effective
input for environmental models, usable to deliver reliable
management decisions, has still to be demonstrated. In this
work, we build an automatic data processing architecture
and apply it to investigate the operational value of public



web images, either produced by users or generated by touris-
tic webcams, as an input to an environmental model; as a
case study, we focus on a management problem that entails
the daily water release decisions for a sub-alpine regulated
lake. Traditionally, the decision of how much water to re-
lease, which influences the level of the lake, is taken in two
ways: by a limited information policy considering only the
current lake level and the day of the year; or by a more so-
phisticated policy relying on a hydrological predictive model
of the future water availability, which exploits snow infor-
mation (typically, SWE). In our case study, a SWE time
series is estimated weekly by the Regional Environmental
Protection Agency (ARPA) through a hybrid of satellite
retrieved information, ground observation, and model out-
puts. Ground stations and satellite data, however, have
limits when used to predict snow processes, which exhibit
high spatio-temporal variability [7, 25]. Ground stations are
few and coarsely distributed, especially in high altitude re-
gions. Satellite snow products have limitations in alpine con-
texts [7]: space-board passive microwave radiometers (e.g.,
AMSR-E) penetrate clouds and provide accurate snow cover
estimation, but have coarse spatial resolution (25 km); active
microwave systems (e.g., RADARSAT) detect the presence
of liquid water content, but require additional ground obser-
vations to make accurate estimates, whereas optical sensors
(e.g., MODIS) generate high spatial and temporal resolu-
tion maps, yet cannot see the earth surface when clouds are
present. As an example, Figure 1 shows how clouds can oc-
clude the satellite view, but not the ground view: the left
part shows the “MODIS/Terra Snow Cover Daily L3” snow
map on Jan. 9, 2014, where most of the Alps area is covered
by clouds and provides no snow information; the right part
shows images taken the same day by a webcam placed in
Livigno, Italy (its position is denoted by the black circle in
the satellite map). High clouds prevent satellite snow es-
timation, but do not occlude the ground view, which gives
complementary information.

The research question addressed in this paper is whether
visual content acquired from the web can bring a quantifiable
contribution as a replacement or supplement to traditional
input for environmental models. The case study used to ver-
ify the hypothesis focuses on snow information for informing
water system operation and exploits an architecture that au-
tomatically crawls content from multiple web data sources,
retains only geo-tagged images containing a mountain sky-
line with high probability, identifies the visible peaks in each
image using a public online digital terrain model, classifies
the image pixels as snow or no-snow to obtain a snow mask
per image, and, finally, extracts time series of virtual snow
indexes usable as a proxy of the snow covered area. To
assess the operational value of such indexes, a simulation
is performed of alternative control policies that decide the
daily operations (i.e., how much water to release) for Lake
Como, based on different inputs. As a criterion for defin-
ing performance, a multi-objective tradeoff function is used,
which pursues two competing objectives: avoiding floods on
the lake shores due to excessive water storage and deliver-
ing sufficient water to the downstream agricultural districts.
Several control policies are contrasted, and the results prove
that virtual snow indexes improve the system performance,
and can be combined with the official ARPA SWE data.
Beside the specific impact in the snow monitoring and wa-
ter management fields, the described approach can stimulate

a whole new branch of public web media exploita-
tion in many environmental monitoring problems. Previ-
ous work has applied multimedia processing techniques to
extract environment-related data from public media, but
struggled to convince environmental scientists that such data
are useful. This work demonstrates that it is possible to ex-
tract environment-related information from public media,
automatically and at scale, and that the extracted data are
improving the performance of an environmental model. Such
deep integration between multimedia and environment re-
search can have radical impact on environment moni-
toring as done today, and on environmental and so-
cietal objectives at large; this goal challenges multimedia
research to measure the impact of data extraction techniques
on the performance of practical environmental models, go-
ing beyond evaluation of mere algorithm accuracy.
The original contributions of the paper are:
- A web multimedia content processing pipeline that au-
tomatically extracts environmental meta-data from users’
mountain photos and touristic webcam streams. The pipeline
employs a mountain image classifier (with 94% precision,
96.3% recall), a weather condition filter, with 87.4% True
Positive Rate at 3.5% False Positive Rate, a peak detection
algorithm (with 75% overall accuracy, 81% in good mete-
orological conditions) based on a matching procedure be-
tween an image and a virtual panorama generated from an
online Digital Elevation Model (with 1′′ resolution), and a
snow/no-snow pixel-level classifier (with 90% accuracy).
- An algorithm that transforms mountain camera position,
peak metadata, and snow masks into data series of virtual
snow indexes for a mountain viewpoint, previously intro-
duced in [8, 9]. Such indexes, albeit not directly comparable
to available ground measures, exhibit a strong correlation
with meteorological data series.
- A multi-objective water management model and simulation
framework for the design and evaluation of optimal operat-
ing policies conditioned on multiple variables such as the
day of the year, the lake level, the SWE, the virtual snow
indexes, and more, which can be used to assess the opera-
tional value of virtual snow indexes.
- As byproducts of the content processing pipeline, we have
produced a very large public data set of Alpine mountain
images and a gamified web portal, where users can cooper-
atively access and enrich content1.

2. RELATED WORK
Web media mining for environment studies A grow-

ing body of research studies the potential of low cost, user
generated content in environmental applications, with differ-
ent content types, including text, images, videos, GPS tags,
and cellular phone traces. Zhang et al. [25] predict snow
and vegetation cover using geo-tagged Flickr photos. The
analysis is based on the tags associated with the photos and
on the image visual features. Daume et al. [4] approach for-
est monitoring with social media data (tweets), analyzed to
extract various ecosystem information types, trends, predic-
tions and alerts. Social media are also exploited for disaster
management: De Longueville et al. [5] report a study of fire
propagation monitored through tweet distributions. None of
these approaches evaluates the contribution of web content
to the performance of environmental models. In [18], the

1http://snowwatch.polimi.it



authors manually monitor YouTube videos to derive a wa-
ter level time series for a Saudi Arabian cave, which helped
locate the water source. In our work, media monitoring and
information extraction are completely automated.
Mountain image analysis. Traditionally, snow is moni-
tored through manual measurement campaigns, permanent
measurement stations, satellite photography, and, recently,
also with terrestrial photography. Although several approaches
monitor snow processes by means of short-range visual con-
tent analysis, all approaches (e.g., [20, 19]) rely on cameras
designed and positioned ad hoc by researchers, and are not
applicable to user-generated web content created in uncon-
trolled conditions. Other work addressed mountain peak
identification in public photos (a key problem to retrieve
snow information from public images) [1] and the segmenta-
tion of the image region corresponding to a certain mountain
in snow covered areas [20, 19]. All these approaches do not
provide an environmental evaluation of the utility of the data
extracted with the proposed techniques. In this paper, we
evaluate the utility of virtual snow indexes computed from
web content collected with such pipelines, on a case study of
water availability prediction and multi-objective allocation.
Water management with hydrologic information. The
availability of data at increasingly higher temporal and spa-
tial resolution creates an opportunity to enhance real-time
understanding of water systems and to improve prediction
of their future evolution, ultimately increasing quality of the
decisions. Yet, many large water projects worldwide had
their operations designed in prior decades, with rules based
on very simple data, such as current inflow and previous
release volumes [16]. Numerous studies have attempted to
improve water reservoirs operations by using information
selected on the basis of operators’ experience, such as ob-
servations of the previous period’s inflows [22], simplified
models of hydrologic variables [6], or streamflow forecasts
[21]. As for the latter, the use of reliable inflow forecasts
is beneficial in most situations. Yet, its real value is of-
ten problem-specific and depends on the system’s dominant
dynamics and the objectives considered [24]. For example,
using short-term inflow forecasts generally improves reser-
voir operations for flood control; for other objectives, such
as water supply, medium and long term streamflow forecasts
are required.

3. OVERVIEW OF THE APPROACH
The goal of this work is to experimentally assess the op-

erational value of information derived from public web me-
dia content, specifically from mountain images contributed
by users and existing webcams, to support environmental
decision making in a snow dominated context. An auto-
matic system crawls geo-located images from heterogeneous
sources at scale, checks the presence of mountains in each
photo, identifies individual peaks, and extracts a snow mask
from the portion of the image denoting a mountain. The as-
sessment requires a water management problem where snow
information is a determinant input to the system operation
and performance can be quantified. We use a water man-
agement model for Lake Como, and evaluate the impact of
snow-related data extracted from web content as additional
input to the lake operating policy.
The study site. Lake Como is a regulated lake in North-
ern Italy with an active storage capacity of 254 Mm3 and
fed by a 3,500 km2 catchment. The hydro-meteorological

regime is the typical Alpine one, with scarce discharge in
winter and summer, and peaks in late spring and autumn
due to snowmelt and rainfall, respectively. Snowmelt from
May to July is the most important contribution to seasonal
lake storage, but the operations of a number of hydropower
reservoirs in the upstream lake catchment alter the natu-
ral hydrologic regime. The water stored in the lake can
be used in different ways according to two main competing
objectives. Farmers downstream would like to save it for
the summer, when the natural inflow is not sufficient for
irrigation. Yet, storing water increases the lake level and,
consequently, the flood risks, which would be instead mini-
mized by keeping the lake level low. The ability to predict
future water availability, particularly from snow melt, is key
for an optimal water management strategy. The competing
interests of flooding and irrigation can be modeled using the
following quantitative objectives:
Flooding: the average annual number of flooding days, de-
fined as days when the lake level ht is higher that the flood-
ing threshold (h̄=1.24 m), i.e.,

Jflood =
1

Ny

tfin∑
t=1

Λ(ht) where Λ(ht) =

{
1 if ht > h̄

0 otherwise

Irrigation: the daily average squared water deficit w.r.t.
the daily downstream demand wt, subject to the minimum
flow constraint qMEF

t to ensure adequate environmental con-
ditions in the Adda River, i.e.,

J irr =
1

tfin

tfin∑
t=1

max
(
wt −max(rt+1 − qMEF

t , 0), 0
)2

where rt+1 is the water volume released in the time interval
[t, t + 1). The release rt+1 coincides with the release deci-
sion ut unless a correction is needed in order to take into
account the legal and physical constraints on the reservoir
level and release. The quadratic formulation aims to penal-
ize severe deficits in a single time period, while tolerating
more frequent, small shortages.

4. WEB CONTENT PROCESSING
Two image sources are used: we crawl v2k touristic we-

bcams in the Alpine area and search Flickr for geo-tagged
user-generated mountain photos in a 300 × 160km Alpine
region. Both image types carry information about the lo-
cation where the image is taken, but require estimating the
orientation of the camera during the shot, identifying the
visible mountain peaks, and filtering out images not suit-
able for snow analysis (e.g., due to fog, rain etc.). The two
multimedia processing pipelines, shown in Figure 2, share
common steps but also have differences: webcams produce
a temporal series of images of the same view, so that only
one webcam image needs to go through the relevance clas-
sification and peak identification steps, whose results apply
to the entire time series. Instead, all crawled user-generated
photos need pre-filtering, for discarding irrelevant content
before processing them for orientation and peak detection.

4.1 Webcam processing
The registered webcams capture images every 1 to 60 min-

utes, thus ensuring temporal density incomparably higher
than any remote sensed data. On the other hand, their spa-
tial density is lower than that of user-generated photos, be-
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Figure 2: Schema of the web media content processing pipelines.

cause they concentrate near popular touristic destinations.
We identified more than 3500 candidate webcams in the
Alpine area from touristic, meteorological, and skiing web-
cam directories, and manually filtered them, removing those
that were not framing significant mountain slopes, retaining
nearly 2k webcams. A web crawler checks each webcam at
1′ frequency and processes all new images. In this way, we
obtain, for each camera, from 10 to 1.5k images per day,
depending on update frequency and working hours. Due to
bad weather conditions, not all images can be exploited for
estimating snow cover. A manual screening of 1000 images
crawled from 4 webcams revealed that 67% were not suit-
able for snow analysis To retain only processable images, a
weather conditions filter automatically discards images ac-
quired during bad weather conditions, which are identified
by checking for occlusions of the mountain skyline, as fol-
lows: For each webcam, we manually annotate its skyline,
and a binary skyline neighborhood mask L identifies all the
pixels which are distant less than a certain value (in our
case empirically set to 4% of the image height) from at least
one skyline point. Then, for each webcam image, we ap-
ply standard edge detection and compute its binary edge
map E, which identifies pixels belonging to the skyline. To
check for occlusions, a skyline visibility score is defined as
v = f(E · L) / f(L), where · denotes the pixel-wise product
between two images of the same size and f(·) is a function
that, given an image, returns the number of columns that
contain at least one non-zero entry. The value of v is in
the interval [0, 1] and can be intuitively interpreted as the
fraction of the skyline that is visible in a given image. We
retain only those images for which v ≥ v̄, where v̄ is a thresh-
old (empirically set to 0.75). The filtering method retains
images with good skyline visibility, although clouds might
still be present and interfere with the estimation of the snow
cover. The effect of such transient clouds is mitigated by the
next webcam image processing step.
Daily image aggregation. Good weather images might
suffer from challenging light conditions (solar glares and
shadows) and moving obstacles (clouds and persons in front
of the webcam). At the same time, snow cover changes
slowly over time, so that one (good) measurement per day
is sufficient. Therefore, it is possible to aggregate all images
collected in a day, to obtain a single daily image, which is
both robust to transient occlusions and sufficiently represen-
tative for analysis. A simple median aggregation proved able
to effectively remove transient occlusions and glares. Given
a daily sample of N images I1, . . . , IN , the Daily Median
Image (DMI) is defined as

DMI(x, y) = med{I1(x, y), I2(x, y), . . . , IN (x, y)},

where med{·} is the median operator applied to the im-
age pixel values. Figure 3 shows a DMI obtained from
11 daily images, which attenuates transient illuminations
and removes the persons standing in front of the webcam.

Figure 3: An example of a Daily Median Image (right) per-
formed on 11 daily images (left).

A challenge in the creation of DMIs lies in strong winds,
which may produce a blurry aggregated image. To over-
come this issue, image registration is performed w.r.t. a
reference frame (the first image of the day). A global offset
is computed by means of the cross-correlation between the
two skyline edge maps and each image is compensated by
this offset before computing the DMI.
Identifying mountain peaks. A DMI per webcam is
processed to identify peaks, with a procedure based on the
alignment between the image and a virtual terrain model2.
Given a photo and the metadata extracted from the EXIF
container (geo-tag, focal length, camera model and manu-
facturer), it is possible to perform a matching with a 360◦

panoramic view of the terrain synthesized from a Digital
Elevation Model (DEM). The method proceeds in steps:
Preprocessing - estimation of the horizontal Field Of View
(FOV), edge extraction, noise edge filtering; Global align-
ment - estimation of the best overlap between the photo-
graph and the panoramic view through Vector Cross Cor-
relation (VCC) applied to the respective edge maps; Local
Alignment - improving the precision of the position of each
peak with a separate VCC procedure. If a webcam image
does not contain EXIF data, its FOV cannot be estimated,
and the alignment cannot be performed. In this case, the
image is posted to an ad-hoc developed crowdsourcing web
platform, where volunteers can help find the correct FOV
and alignment manually. This step does not induce a signif-
icant overhead, because it is executed only once per webcam.

4.2 User generated photograph processing
Webcams are relevant data sources, with high temporal

resolution but invariable positioning. Tourists are another
valuable source of images, with a potentially more uniform
spatial distribution. Also, if properly activated, crowds can
engage in specific campaigns and act as a collective web-
cam that could be pointed virtually to the desired target.
Differently from webcams, user generated photos are mined
from sharing sites by geo-search, whose results may con-
tain completely irrelevant images. Search outputs must be
filtered, to retain only mountain pictures. Analogously to
webcam images, once a photograph is classified as relevant,
it must be subjected to peak labeling, to identify the moun-
tain view it portrays and extract snow information. Flickr

2The procedure is the same applied to crowdsourced images.



was selected, because it contains a large number of public
images, many with the geo-tag in their EXIF container. A
continuous search system was built, which queries images
within a 300 × 160 km region in the Alps; as of now, the
Flickr search pipeline has examined v600k candidate pho-
tos. To train the relevance classifier, we collected ground
truth labels: 6940 randomly selected photos taken above an
altitude of 500 meters were processed in a crowdsourcing
experiment, in which workers had to label images based on
the presence of a mountain skyline. The aggregated label
was obtained by majority voting. Approximately 23% of
the images were classified as positive. Then, the automatic
mountain classifier was built as follows. From each training
image a fixed-length feature vector representing its visual
content was constructed. To create a balanced dataset, we
retained all the positive samples and randomly selected the
same number of negative samples. Then, we used ∼70% of
the samples for training and validation and ∼30% for test-
ing. The encoded feature vectors were fed to a SVM classi-
fier using a χ2 kernel. To learn the optimal values of the C
and γ kernel parameters of the SVM classifier, we adopted
k-fold cross validation, with k = 5 for the grid search. The
mountain photos classified as relevant are then subjected to
the same mountain peak identification procedure as webcam
images.

4.3 Experimental evaluation
The content processing pipeline has been evaluated ex-

perimentally. This required us to assess 3 components: the
weather condition filter (used for webcams), the mountain
relevance classifier (used for UGC) and the peak alignment
algorithm (used for both webcams and UGC).
Weather condition filter. We manually labeled 1000 im-
ages collected from 4 webcams, with the tag “good weather”,
if the mountain area was completely visible, or“bad weather”
otherwise. Due to the high temporal frequency of web-
cam image acquisition, many images are available; thus, the
threshold parameter v̄ was set to a value ensuring low FPR
(0.75), obtaining a TPR equal to 87.4% at FPR 3.5%.
Mountain relevance classifier. Evaluation compared 8
configurations, by pairing 4 local and global image feature
descriptors (Dense SIFT, HOG2x2, SSIM and GIST) and 2
vector encodings: Bag-of-Visual-Word (BoVW) and Fisher
vector encoding. The best configuration proved to be: Dense
SIFT, BoVW encoding, SVM with paramaters values C =
3.3, γ = 0.66; this configuration obtained 95.1% accuracy,
94.0% precision, and 96.3% recall on the test set.
Peak identification. We manually inspected 200 pho-
tographs and the virtual panoramas generated from the EXIF
metadata and DEM, to make sure that a plausible match ex-
isted (e.g. a match could be impossible due to bad GPS tag),
obtaining 162 good photos. Ground truth peak alignment
data were generated by an ad-hoc developed alignment tool,
which allows users to define the correct orientation of the
image and fix the position for each peak mentioned in the
virtual panorama. Considering a tolerance of 3deg, 75% of
the image orientations were correctly estimated; this per-
centage grows to 77.6% and 81.6% in absence of clouds
and nearby mountain slopes, respectively. The average po-
sitioning error of peaks resulted to be 0.78 deg.
Execution times. The automatic alignment procedure
dominates the entire image processing time. The generation
of 1500px×12000px panoramic view requires approximately

1s with a GeForce GTX 850M graphic card. The alignment
of an image to the virtual panorama requires approximately
30s on an OpenStack virtual instance with 4 2.5GHz VC-
PUs and 8Gb of RAM.

4.4 Snow index computation
Once an image is classified as relevant and its peak identi-

fied, snow information can be extracted and associated with
the mountain(s) that appear in it, at the time the image was
taken (or at the day, in case of a DMI). A virtual snow index
is defined as a real value representing the snow information
extracted from the photo or from the DMI. When used as
input to environmental models, these indexes do not neces-
sarily need a physical interpretation (e.g., like snow depth),
as long as they reflect the dynamics of snow distribution.
The snow indexes used in the case study are determined as
follows. Let I denote an image and M a binary mask hav-
ing the same size as I, where M(x, y) = 1 indicates that the
pixel I(x, y) of the image belongs to the mountain area, or
M(x, y) = 0 otherwise. A snow mask is defined as the out-
put of a pixel-level binary classifier that, given I and M as
input, produces a mask S that assigns each pixel a binary
label denoting the presence of snow. We computed snow
masks using the Random Forest supervised learning classi-
fier with spatio-temporal median smoothing of the output.
The classifier achieves 90.0% precision at 91.1% recall, out-
performing existing methods for pixel level snow detection.
From the snow mask S, the snow indexes are computed as
follows. Let H denote a real value map having the same size
as I, where H(x, y) denotes the altitude of the terrain in
the point that corresponds to I(x, y) (e.g., altitude in me-
ters, that can be estimated from the projection of the pixel
the on DEM), for each (x, y) such that M(x, y) = 1 (i.e.,
for pixels representing points within the mountain region of
the image). M and H can be obtained during the mountain
peak identification phase, because each pixel of the photo
gets aligned with a pixel of the virtual panorama; the latter
carries information not only about the edges of the moun-
tains, but also about the type (terrain/sky) and altitude

of each DEM pixel. Let Ĥ denote the linearly normalized
version of H, where the minimum (maximum) altitude cor-
responds to 0 (1). Then, a virtual snow index for an image I
is defined as

∑
(x,y)|S(x,y)=1 vsi(x, y), where vsi is a virtual

snow index function that transforms a pixel position into a
snow relevance coefficient. We tested three different snow
feature functions:

vsi1(x, y) = Ĥ(x, y)2, vsi2(x, y) =
Ĥ(x, y)

Nx,y
, vsi3(x, y) = 1

where N is the number of horizontal bands in which we
split the mountain area of the image and Nx,y denotes the
number of mountain pixels belonging to the same band of
a pixel I(x, y). The first snow index weights each snow-
covered pixel quadratically w.r.t. its altitude, the second
one weights each snow-covered pixel linearly w.r.t. its alti-
tude and normalizes the score w.r.t. the number of pixels
contained in the same band, and the third one weights each
snow-covered pixel uniformly regardless of its altitude. The
values for the three indexes are computed for each day and
their operational value is assessed in Section 6.

4.5 Content selection for the case study
The dataset contains more than 2.5M mountains images



located across the Lake Como catchment; such images are
produced by 62 webcams and include also more than 100k
photos produced by users. However, not all relevant images
are directly exploitable for the assessment; environmental
models require a very long observation period: a statistically
significant evaluation requires observations spanning multi-
ple years, to cope with seasonal effects. We started collect-
ing images in Dec. 2014, and therefore most sources lack
a long enough time series to be usable as input. A man-
ual search found historical images of a few webcams and
aggregated them to the dataset. Specifically, we found one
webcam with enough historical data, which was chosen for
the experiments. The webcam is placed in Livigno and the
observation period comprises 818 days, from Jan 1, 2013 to
Mar 29, 2015. The mountain framed by the webcam is po-
sitioned inside the Como lake catchment and its snow level
is known to affect the lake water dynamics. Even with a
single webcam, the experimental results described in Sec-
tion 6 demonstrate a significant utility of the snow-related
data. We plan to carry out experiments at larger scale in
the lake catchments of the entire Alpine arc, as the dataset
will grow thanks to continued crawling and the crowdsourc-
ing campaigns performed with the mobile photo collection
application described in Section 8.

5. WATER MANAGEMENT OPTIMIZATION
The assessment of the operational value of snow informa-

tion is done by comparing the performance of alternative
operating policies for the regulation of Lake Como. A policy
is a function returning the quantity of water to be released
ut at each time instant t = [0 . . . T − 1], as dependent upon
an information vector zt, i.e., ut = p(zt). Based on the
input information, different policies are employed: 1) A per-
fect control policy, an ideal policy used as an upper bound
of the system performance, which makes always the optimal
decision based on perfect knowledge of current and future
system conditions. 2) A baseline control policy, which con-
siders only limited information (day of the year and current
lake level). 3) An informed control policy, which exploits
additional information, including snow-related data. Specif-
ically, two informed policies are contrasted, one exploiting
official snow data from ARPA (official data policy) and one
using the virtual snow indexes computed from web content
(web data policy). The assessment quantifies how closer the
informed control policies get to the perfect one, in compar-
ison to the baseline.
This evaluation methodology, called Information Selection
and Assessment (ISA) framework [14], consists of 3 steps:
(i) Quantification of the expected value of perfect informa-
tion, i.e., the potential for improving operations under the
assumption of perfect knowledge of future conditions; (ii)
Automatic selection of the most valuable information to im-
prove current operations; (iii) Evaluation of the selected
information on the resulting control policy performance.

5.1 Expected Value of Perfect Information
The Expected Value of Perfect Information (EVPI) is the

performance gain that can be achieved under the assumption
of perfect foresight on the future [23]. If the value of EVPI
is small, a limited information policy already performs close
to the best strategy and thus the benefit of additional in-
put data approximating future system conditions is limited.
The availability of perfect knowledge of the future exter-

nal drivers (e.g., lake inflows) is equivalent to assume that
the operator is an omniscient oracle implementing a Perfect
Control Policy (PCP), consisting of an optimal sequence of
release decisions uPCP[0,T−1], conditioned on the current sys-
tem status (i.e., the time instant t and the current lake level
lt), and on the perfect knowledge of the future inflows. In
the experiments illustrated in Section 6, the PCP is built
by solving the control policy design problem over a 2-year
horizon in which the sequence of inflows is known. This is a
standard nonlinear optimization problem and can be solved
by either a local optimization method (e.g., gradient-based)
or a global optimization method (e.g., direct search). Alter-
natively, since the objective functions in our application are
time-separable, we use deterministic dynamic programming
(DDP), which is more efficient and provides an almost exact
solution.
PCP performance (JPCP ) has a relative value, because it
depends on the physical characteristics of the system, e.g.,
the ratio between the lake capacity and its inflow. The EVPI
has hence to be estimated as the distance between JPCP and
the performance of a Baseline Control Policy (BCP), defined
as a simple closed-loop control policy, where zt includes the
time index t and the current lake level lt.
In a single-objective scenario, the EVPI is simply the dif-
ference between the (scalar) performance of the PCP and
BCP. In a multi-objective case, the evaluation is more com-
plex; the performance objectives JPCP and JBCP are vector
functions and the solution is not unique, but rather a set of
Pareto optimal solutions (Pareto Front). Among the com-
monly used metrics (see [17]), the ISA framework adopts the
hypervolume indicator (HV ), which captures both the prox-
imity of the Pareto Front JBCP to the ideal one JPCP as
well as the distribution of the BCP solutions in the objective
space. The hypervolume measures the volume of objective
space dominated (�) by the considered set of solutions (S).
Then, the HV indicator is defined as the ratio of the hyper-
volumes of the solutions produced by BCP and PCP:

HV (BCP,PCP ) =

∫
α(sBCP )dsBCP∫
α(sPCP )dsPCP

α(s) =

{
1 if ∃s′ ∈ S such that s′ � s
0 otherwise

If policy A has a value of HV greater than a policy B, the
solutions produced by A dominate a larger fraction of the
objective space, which means that A is better than B in
pursuing the multiple objectives of the system. The EVPI
can then be computed as the difference between the HV of
PCP (i.e., 1 by definition) and the HV of BCP.

5.2 Most Valuable Information Selection
A large value of EVPI indicates that a control policy en-

dowed with more information can approach the performance
of the ideal, omniscient one. The ISA methodology helps
identify the input information that enables the informed
policy to approximate as much as possible the optimal se-
quence of decisions uPCP[0,T−1]. The set Ξt of candidate inputs
may comprise exogenous variables, i.e., variables that are
observed in the time interval [0, T − 1] but are not part
of the problem formulation; examples are rainfall, tempera-
ture, snow presence, etc. Since Ξt can comprise redundant
and collinear variables, its smallest subset It ∈ Ξt that car-
ries the most valuable information must be identified, as the



Algorithm 1 Iterative Input Selection

Inputs: a dataset F of candidate inputs vi and
the output variable to explain vo.
Initialization:
Set V ← 0, v̂o ← vo, Dold ← 0
Iterations: repeat until stopping conditions are met
- select the most relevant input v∗ ∈ vi to explain v̂o

- if v∗ ∈ V, return V endif
- V ← V ∪ v∗
- m̂(·)← Extra-Trees(F, vo,V)
- v̂o ← vo − m̂(·)
- ∆D ← D(vo, m̂(·))−Dold
- Dold ← D(vo, m̂(·))
- until ∆D < εD
return V

one that best explains the optimal sequence of decisions.
Several techniques can be used to solve this feature selec-
tion problem [11], such as cross-correlation analysis, mu-
tual information analysis, or input variable selection meth-
ods. We use the hybrid model-based/model-free Iterative
Input Selection (IIS) algorithm (Algorithm 1), which can
approximate strongly non-linear functions and scale to large
datasets made of long time series and many candidate vari-
ables [11]. Given a generic output variable vo and the set of
candidate inputs vi, IIS first ranks the inputs w.r.t. a sta-
tistical measure of significance and adds the best performing
input v∗ to the current set of selected variables V. This step
avoids the inclusion of redundant variables: after an input
is selected, all the other inputs highly correlated with it will
rank low in the next iterations. Then, the algorithm esti-
mates a model of vo with input V, such that v0 = m̂(V),
and estimates the model performance with a distance met-
ric D (e.g., the coefficient of determination) as well as the
model residuals (vo − m̂(V)), which become the new out-
put at the next iteration. The algorithm stops when the
next best input variable selected is already in the set V, or
when over-fitting conditions are reached. Among the many
alternative model classes, IIS relies on extremely random-
ized trees (Extra-Trees), a tree-based method proposed by
[12] that was empirically demonstrated to outperform other
models in terms of modeling flexibility, efficiency, and scal-
ability with respect to the input dimensionality. Moreover,
Extra-Trees structures can be exploited to infer the relative
importance of variables, as required for their ranking [3].

5.3 Expected Value of Sample Information
After selecting the most valuable information It ⊂ Ξt, the

next step is to design the Informed Control Policy (ICP)
that exploits such information to make decisions. The ICP
is defined by extending the input zt of the baseline con-
trol policy with the selected information, i.e., zt = (t, lt, It),
and searching the optimal control policy with approximate
dynamic programming methods. We use the evolutionary
multi-objective direct policy search (EMODPS), a simulation-
based technique that combines direct policy search, nonlin-
ear approximating networks, and multi-objective evolution-
ary algorithms [13]. EMODPS exploits the parameterization
of the control policies pθ and explores the parameter space
Θ to find a policy (p∗θ) that optimizes the expected system
performance (Jθ, conventionally assumed to be a cost), i.e.,
p∗θ = arg minpθ Jθ where the policy pθ is parameterized by

Algorithm 2 Evolutionary Multi-Objective Direct Policy
Search.

Initialization:

Generate a random parameter values population {θ1, . . . , θP }
Iterations: repeat until stopping conditions are met
- generate a trajectory τ i via model simulation according to the

stochastic transition function xt+1 = f(xt,ut, εt+1)
and following the policy pθi (with i = 1, . . . , P )

- compute performance J1
θi
, . . . , Jq

θi
, with i = 1, . . . , P

- generate new population by selection, crossover and mutation
w.r.t. the best individuals (i.e., non Pareto-dominated solutions)

parameters θ ∈ Θ and the problem is constrained by the dy-
namics of the system. Finding p∗θ is equivalent to finding the
corresponding optimal policy parameters θ∗. A tabular ver-
sion of the EMODPS method is illustrated in Algorithm 2.
In general, we expect the ICP to fill the performance gap

between the upper and lower bound solutions (i.e., the PCP
and BCP), and to produce a performance JICP as close as
possible to JPCP . The benefit associated to the use of the
selected information is called Expected Value of Sample In-
formation (EVSI) and can be quantified by means of the
same metrics used for the evaluating the EVPI (see Section
5.1).

6. EXPERIMENTS AND RESULTS
The experimental setting is characterized as follows.

Perfect Control Policies: PCPs are designed via Determin-
istic Dynamic Programming over 2 years of historical data
(2013-2014). The weighting method is used to convert the
2-objective problem (flooding and irrigation) into a single
objective, via convex combination. The PCPs are designed
under the assumption of perfect foresight on the future at
the moment when decisions are taken, i.e., we assume perfect
knowledge on the lake inflows over the evaluation period.
Baseline Control Policies: BCPs are defined as traditional
control policies conditioned on the day of the year t and on
the lake level lt. These policies are designed via EMODPS.
Candidate exogenous variables and automatic selection of
information: to build the informed control policies ICP, we
evaluate the contribution of adding exogenous variables from
the official monitoring network: previous day spatial pre-
cipitation in the Lake Como catchment (Pt), previous day
freezing level (FLt), upstream hydropower storage (sHPt),
previous day release from hydro-power reservoirs (rHPt),
and weekly estimate of snow water equivalent (SWEt), elab-
orated by ARPA from ground stations and MODIS data. In
addition to official variables, we consider the three virtual
snow indexes computed from web images. The most valu-
able information is identified with the IIS algorithm.
Informed Control Policies: ICPs are designed via EMODPS,
with the control policies parameterized as Gaussian Radial
Basis Functions, which have been proved effective in multi-
objective control problems with exogenous input [13, 14].
For the optimization, the self-adaptive Borg Multi-Objective
Evolutionary Algorithm [15] is used, which is robust and ef-
ficient across diverse multi-objective problems. Each opti-
mization is run for 2 million function evaluations, with the
simulation step performed over the same 2-years horizon.
To improve solution diversity and avoid dependence on ran-
domness, the solution set from each formulation is the result
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Figure 4: Performance of PCP (black squares), BCP (blue
circles), and alternative ICPs with different information
(SWE in cyan, vsi3 in red, SWE and vsi3 in green).

of 30 random trials. The final set of Pareto optimal policies
for each experiment is defined as the set of non-dominated
solutions from the results of all the optimization trials.

6.1 Quantifying the EVPI
The first step of the ISA framework (Section 5) estimates

the Expected Value of Perfect Information by contrasting
PCPs and BCPs. Figure 4 shows the performance of the
PCPs (represented by black squares) evaluated over the hori-
zon 2013-2014. The blue circles represent the performance
of the BCPs (traditional control policies conditioned on the
day of the year and the lake level). The performance of the
ICPs (red, cyan, and green circles) is discussed later on in
Section 6.3. The arrows on the axes point in the direction
of increasing preference, with the best solution located in
the bottom-left corner of the figure. Visual comparison of
the Pareto Fronts shows that the potential for improvement
over BCPs is large: the gap between basic information and
the perfect knowledge is substantial in terms of both operat-
ing objectives, as represented by the area between the black
squares and the blue points. A first qualitative analysis can
be done focusing on a specific target PCP solution (circled
in the figure), which represents a potentially good compro-
mise between flood control and irrigation supply. However,
it seems to be difficult to turn this solution into an actual
regulation of the lake with BCP: while the extreme solutions
in the PCP and BCP fronts, representing the independent
optima for flooding and irrigation, are almost equivalent,
the maximum distance between the two fronts is in cor-
respondence with the selected target solution. This moti-
vates searching for ICPs that can fill the gap. Quantitative
EVPI assessment is provided by the HV indicator in Ta-
ble 2, where the difference between BCP and PCP is equal
to 0.29, confirming the gap between Perfect and Baseline
Control Policies.

6.2 Exogenous Variables Selection
The question whether snow information can help mak-

ing more informed decisions is addressed by using the ISA
framework to identify the most informative exogenous vari-
ables It ⊂ Ξt. We first evaluate the day of the year and the

lake level together will all the exogenous variables except
our virtual snow indexes, to check if the official snow infor-
mation is relevant. The rationale for retaining the day of
the year and the lake level is to extend the BCP and avoid
selecting exogenous variables correlated with t or lt. Then,
we contrast official snow information with virtual snow in-
dexes in Section 6.3 and 6.4. We perform 20 runs of the IIS
algorithm to filter the randomness associated to the con-
struction of the Extra-Trees models. Despite the limited
length of the time series (only 2 years), which introduces
some variability across the runs, the best result consistently
selects as most valuable information the day of the year (t),
the lake level (lt), and the official ARPA estimates (SWEt).
This confirms the key role of snow dynamics in the Lake
Como system. Using the 3 variables selected, the Extra-
Trees model approximates the optimal sequence of release
decisions uPCP[0,T−1] attaining a model performance, evaluated
using the coefficient of determination (D), equal to 0.639.
Table 1 shows the contributions of variables and statistics
over the 20 repetitions.

Table 1: Variables selected by the IIS algorithm.

Variable Best-run Selection Average contribution
frequency, 20 runs (R2), 20 runs

t 0.231 100% 0.334
lt 0.348 85% 0.194
SWEt 0.060 45% 0.108

6.3 Benefits of official snow information
To quantify the value of the official ARPA snow water

equivalent, we assess the performance of the ICPs condi-
tioned on the information vector zt = (t, lt, SWEt). The re-
sulting policies ICP(SWE) are represented by cyan points
in Figure 4. The comparison of the performance of BCP
and ICP(SWE) shows a relevant contribution of the official
snow information: this is due to an improved medium-long
term foresight, as snow information provides useful insight
about the expected water availability during the next sum-
mer, when the irrigation demand is high and the conflict
between flooding and irrigation is critical. A quantitative
evaluation of the EVSI associated to this variable is given by
HV reported in Table 2: HV increases from 0.7079 to 0.7848
(i.e., +10.9%) when moving from BCP to ICP(SWE).

6.4 Benefits of web snow information
The question of whether the virtual snow indexes (vsik)

defined in Section 4.4 can complement the official ARPA
SWE data is addressed through the following experiments:
first, we replace the ARPA SWE variable with each virtual
snow index vsik and analyze the performance of the corre-
sponding policies ICPs(vsik). Second, we explore the pos-
sibility of complementing, instead of replacing, the ARPA
SWE variable with the virtual snow indexes, by evaluat-
ing the performance of ICPs conditioned on the informa-
tion vector zt = (t, lt, SWEt, vsi

k
t ). We report only the

results obtained using the third snow index vsi3, because it
consistently outperforms the other two indexes. The com-
parison of ICP(SWE) and ICP(vsi3), represented by red
points in Figure 4, shows that the value of the virtual snow
index is comparable to, and sometimes higher than, the



one of the ARPA SWE. In fact, the red Pareto Front in-
tersects the cyan one, with some red solutions outperform-
ing the cyan ones in the compromise region of the front,
close to the target PCP. This observation is confirmed by
the corresponding values of HV , with ICP(vsi3) attaining
a higher value than ICP(SWE), which corresponds to a
11.6% improvement with respect to the BCPs. Finally, the
performance of the ICPs conditioned on both SWEt and
vsi3 (green points in Figure 4) outperforms both BCPs and
ICPs(SWE). Such superiority is certified by the values of
HV : ICPs(SWE, vsi3) attains a value equal to 0.816, which
corresponds to a 15.2% improvement with respect to the
BCPs and a 4% improvement with respect to ICPs(SWE).
These results suggest a significant potential for complement-
ing the official ARPA SWE estimate with virtual snow in-
dexes derived from public web media.

Table 2: Quantification of Expected Value of Perfect and
Sample Information in terms of hypervolume indicator.

Policy HV ∆HV
BCP 0.7079 –
ICP(SWE) 0.7848 +10.9%

ICP(vsi3) 0.7898 +11.6%

ICP(SWE, vsi3) 0.816 +15.2%
PCP 1.0 –

7. DISCUSSION
In this paper we have presented the results of an integra-

tion effort of multimedia and environment research, proving
that low-quality, low-cost, yet widely available, public con-
tent can provide input that improves the performance of
a practical environmental model in a quantifiable manner.
The proposed approach exemplifies the opportunities, but
also the challenges, of applying multimedia processing tech-
niques to real-world environmental problems.

Opportunities Multimedia research has attained robust
methods and high accuracy in many knowledge extraction
tasks that could radically change the way in which environ-
ment monitoring is performed. The interplay of three fac-
tors makes the integration of multimedia and environment
research particularly relevant and timely: 1) the increase of
user generated content, which is now turning also to real-
time video; 2) the deployment of IoT infrastructures and
low-cost cameras, which makes ground sensing affordable
for novel applications, including e.g., environment and agri-
culture monitoring; 3) the impact of climate change, which
is increasing the frequency and severity of extreme events,
putting traditional monitoring networks under stress.

Open Challenges Traditional environment research gen-
erally relies on complex models, which encode the properties
of the investigated system and thus require input data en-
dowed with a precise physical interpretation, often collected
with manual procedures and dedicated equipment. On the
other hand, the information that can be extracted, automat-
ically, accurately, and at scale, from public content is much
more noisy and simpler in format and meaning than that em-
ployed by many state-of-practice models. The fundamental
challenge is to identify the“overlap region”where the knowl-
edge extracted with multimedia processing methods can im-
prove the performance of practical environmental models.

The problem addressed in this paper is an almost ideal one,
where several factors concur to make the case tractable:
public mountain images are abundant and with sufficient
spatio-temporal coverage, can be processed (offline) with
high accuracy, and contain a signal (snow presence) that, al-
beit simpler than the parameters used by snow process mod-
els based on physical laws, is relevant for a specific environ-
mental problem. However, future research can generalize the
proposed framework to more challenging scenarios, along a
number of directions, including: the type of input data (e.g.,
video), the processing requirements (e.g., online and real-
time), the spatio-temporal dynamics, and the environmen-
tal problem addressed. For example, river basin occlusion
is a relevant problem for hydrogeological risk prevention,
because excessive sediment and vegetation can cause over-
flow: multimedia research could exploit (already existing)
webcams deployed for human-assisted river bed surveillance,
possibly complemented by user generated, crowdsourced im-
ages, and help estimate the river flow, which is connected to
the risk of flooding during heavy rainfall. This scenario gen-
eralizes the research agenda towards another type of image
processing and the analysis of the spatio-temporal dynamics
of a different environment phenomenon. An even more chal-
lenging case of fast-dynamics, real-time scenario is exploiting
real-time user generated video content for addressing event-
based environmental monitoring. For example, flood level
and water speed information extracted from user-generated
video could be used in input to flood propagation prediction
models based on DEM data, to forecast the reach and im-
pact of flood, so to alert citizens and adjust evacuation plans.
This scenario generalizes the research agenda towards more
complex input, quasi-realtime constraints, and the analy-
sis of the fast spatio-temporal dynamics of an environment
phenomenon. Furthermore, multimedia analysis for envi-
ronmental data should move from “extract already available
environmental data from new media sources” paradigm to
“extract novel environmental data and prove that it is com-
plementary to existing one”. We believe that this impact-
focused approach will decrease the reluctance of the environ-
mental science community to adopt novel multimedia anal-
ysis techniques.

8. CONCLUSIONS AND FUTURE WORK
In this paper we tested the hypothesis that public web

content, either crowdsourced or gathered from ground sen-
sors, can be effectively used in input to environmental de-
cision models. The experiments, although conditioned by
the limited duration of the time series available, show that
it is possible to use virtual snow indexes computed from
mountain images to design more informed, and thus im-
proved, water management strategies. Preliminary results
show that even a single webcam stream is capable of provid-
ing valuable information to the management policy of Lake
Como and improves the system performance w.r.t. the con-
flicting objectives of irrigation water supply and flood risk
minimization. Using simulation, we demonstrated that the
virtual snow indexes obtained from public web media con-
tent can replace official snow measurements derived from
permanent ground stations and satellite imagery without
performance loss; also, they can complement official snow in-
formation yielding further performance improvement, which
shows that the two data sources are not redundant.
As time passes and we acquire longer time series for more



relevant mountains and more user generated photos, the per-
formance of the policies conditioned on web content inputs
is expected to increase. In parallel, we are building an aug-
mented reality mobile app for mountain photo sharing. The
app overlays in real time peak names over photo and videos,
with high accuracy. The user can save her photos, with
the mountain landscape nicely adorned with peak names,
in our mountain photo portal, correct the automatic align-
ment, and share the result on popular social networks, invit-
ing more people to do the same. As a last objective, we are
porting the architecture to different environmental problems
where the same approach applies: sediment monitoring in
river beds and vegetation monitoring in mountain regions.
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