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A PEEC formulation is applied to compute Joule losses and currents in the wires composing the screens of the phase conductors
in a submarine tripolar cable. In order to model the infinite extent of the cable and to reduce the computational burden, simmetries
of the geometry are exploited. A good agreement is obtained with brute force FEM simulations, with a dramatic reduction of
computational times and memory requirement.

Index Terms—PEEC, submarine cables, integral equation methods.

I. INTRODUCTION

AN IMPORTANT part of the electrical system of an off-
shore wind farm is the connection between wind turbines

and substation(s), where the voltage is elevated before power
is transmitted to the land substation. These connections are
realized with medium voltage three-phase submarine cables,
in which, differently from the case of high voltage tripolar
submarine cables [1], [2], each phase has a screen made
of conductive wires; the computation of the screen losses
is a challenging task and brute force FEM approaches are
characterized by a high computational burden.

The Partial Element Equivalent Circuit (PEEC) formulation
here presented is applied to a test case where each phase cable
has a wire screen of diameter equal to 57.86 mm made of 55
tiny copper wires (with resistivity equal to 1.7241 · 10−8Ω ·
m) of diameter equal to 0.9 mm, helically twisted around the
cable with pitch equal to 851 mm (Fig.1). Phase cables are
also helically twisted with a pitch of 1740 mm and a helix
diameter equal to 146.56 mm. The tripolar submarine cable
carries a balanced three-phase systems of currents (500 A rms
@ 50 Hz). The wires of the screens can be twisted around
the phase cables with opposite (contralay) or same (equilay)
orientation.

II. FORMULATION

Let us consider N distinct screen wires of radius r and
conductivity σ, indexed by n = 1, . . . , N . The centerlines of
the wires are denoted by Γn, and, for the sake of computation,
they are represented as piecewise linear curves, each one of
them composed by Pn segments γ1

n, . . . , γ
Pn
n obtained by

joining uniformly distributed nodes along each helix, as shown
in Fig.2.

A (possibly zero) voltage ∆Vn is applied to the ends of
each wire. Moreover, each wire is subject to a time-harmonic
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magnetic field represented by magnetic vector potential A0

and generated by the phase conductors, at angular frequency
ω. Let An =

∫
Γn

A0 · d` be the line integral of A0 along Γn.
Phase conductors are modeled infinitely long, filamentary

and helically twisted, each one carrying a known current.
Under this assumption, the generated magnetic vector potential
at any point of the space can be computed by means of
analytical formulas [3].

Even if the formulation is able to consider another external
magnetic field in addition to that of the phase conductors, this
case is not taken into account because it is not interesting for
the application at hand.

The unknowns of the problem are the N wire currents
In, n = 1, . . . , N which can be determined by solving the
following system of equations [4]

RnIn + jω

N∑
m=1

Ln,mIm = −jωAn −∆Vn (1)

where Rn is the resistance of wire n and Ln,m is the mutual
inductance between wires n and m. In the application at
hand ∆Vn = 0. In (1) the proximity effect between wires
is neglected, which is possible under the assumption that the
current density is uniform on the cross section of each wire
(which is satisfied for the application at hand at the frequency
of interest).

Under the same hypothesis, the resistance Rn can be simply
computed as

Rn =
`n
πr2σ

(2)

where `n is the length of wire n.
Concerning the inductance Ln,m, since we have discretized

the wires into segments, it is useful to express Ln,m as

Ln,m =

Pn∑
p=1

Pm∑
q=1

Lp,qn,m (3)

where Lp,qn,m is the inductance between segments γpn and γqm.
When segments γpn and γqm are distinct, their mutual inductance



Fig. 1. Representation of the cable with screen wires

Fig. 2. Geometrical discretization of wire n.

can be computed using the hypothesis of filamentary conduc-
tors as

Lp,qn,m =
µ0

4π

∫
γp
n

∫
γq
m

d`n · d`m
rn,m

(4)

When segments γpn and γqm coincide (i.e. n = m and
p = q), the term rn,m tends to 0, making the integral in (4)
singular. Therefore Lp,pn,n cannot be computed using (4) and
we use instead the analytically computed formula for the self
inductance of a finite length cylinder of height h = |γpn| and
radius r given by [5]:

Lp,pn,n =
µ0

2π

[
h log

(√
h2 + r2 + h

)
− h

(
log r − 1

4

)
+

−
√
h2 + r2 + 0.905415 r

]
(5)

III. EXPLOITING CABLE SYMMETRIES

The geometry of the power cable exhibits symmetries [6]
which can be exploited for assembling the matrix associated
to the linear system of equations (1). In order to describe them,
it is necessary to analytically represent the curves of the phase
cables and of the screen wires.

The analytical equation of the helix of radius R1 rep-
resenting a phase cable is defined by the parametrization
r1 (s) = (x1 (s) , x2 (s) , x3 (s)), with

x1 (s) = R1 cos
(
2π s

K

)
y1 (s) = R1 sin

(
2π s

K

)
z1 (s) = p1

s
K

(6)

where K =
√
p2

1 + (2πR1)
2 and p1 is the laying pitch.

The helix representing a screen wire is twisted along the
helix of the corresponding phase cable and its parametrization
can be obtained as follows. First the tangent vector of (6) is
considered

t (s) =


xt (s) = −R1

2π
K sin

(
2π s

K

)
yt (s) = R1

2π
K cos

(
2π s

K

)
zt (s) = p1

K

(7)

together with its derivative

dt

ds
=


−R1

(
2π
K

)2
cos
(
2π s

K

)
−R1

(
2π
K

)2
sin
(
2π s

K

)
0

(8)

with
∣∣ dt
ds

∣∣ = R1

(
2π
K

)2
.

Knowing that the normal vector is given by

n (s) =


− cos

(
2π s

K

)
− sin

(
2π s

K

)
0

(9)

the binormal vector b (s) = t (s)×n (s) can be obtained as

b (s) =


p1
K sin

(
2π s

K

)
−p1K cos

(
2π s

K

)
2πR1

K

(10)

The equation of the curve representing a screen wire is
finally given by

r2 (s) = r1 (s) + n (s)R2 cos

(
2πs

p2

)
+ b (s)R2 sin

(
2πs

p2

)
(11)

where p2 and R2 are the pitch and the radius of the
secondary helix twisted along the primary helix (6).

When s = p2 the relative positions between the two helices
is the same as in s = 0 and the corresponding value for z1 is
defined as the ”cross-pitch” (Pcp) [2]

Pcp = z1 (s = p2) =
p1p2√

p2
1 + (2πR1)

2
(12)

Similarly as in ([2]), it can be shown that the entire geometry
of the sheaths, which we denote by Ω, can be decomposed into
a number of cells Ω(k), k = 0, . . . ,K, each one of length equal
to Pcp

N .
Cell Ω(k+1) is related to cell Ω(k) by a roto-translation τ

composed by a rotation of an angle equal to 2π
Pcp

N ·p1 and a
translation of a length equal to Pcp

N , so that

Ω =

K⋃
k=0

Ω(k) =

K⋃
k=0

τkΩ(0) (13)

which shows that the entire geometry Ω can be obtained by
appropriately replicating and transforming the elementary cell
Ω(0), as shown in Fig.3.



Fig. 3. Partition of geometry into elementary cells

TABLE I
COMPARISON WITH A 2D FEM MODEL IN TERMS OF JOULE LOSSES

Joule Losses [W/m] Err. [%]
PEEC FEM

5.2492 5.2641 -0.28

This regularity in the geometry can be exploited for re-
ducing the computational complexity of the assembly of the
inductance matrix L. Let L(n,m) denote the inductance matrix
between the wires of cell Ω(n) and Ω(m). Then the following
property holds:

L(n,m) = L(n−m,0) (14)

This property can be used to show that L, the inductance matrix
of the whole cable Ω can be computed as

L =

K∑
k=0

N∑
n=0

ck,nPk,nL
(k,0)Qk,n (15)

where ck,n are integer constants and Pk,n and Qk,n are
permutation matrices.

Using (15) for computing the inductance matrix leads to
a reduction in computational complexity from O(`2N2) to
O(`N), where ` is the axial length of the cable, greatly
reducing the computational time needed for matrix assembly.

IV. VALIDATION BY COMPARISON WITH A 2D FEM
MODEL

The formulation has been firstly validated in the case of
straight phase cables and screen wires by comparison with a
2D FEM model built with the help of a commercial software
[7] and based on a very fine FEM mesh. For this case self and
mutual inductances to be used in the PEEC formulation can
be computed analytically. The cross-section of the cable is the
same of the submarine cable described in the introduction. A
very good agreement can be obtained both in the computation
of losses (Tables I) and of currents (Tables II).

TABLE II
COMPARISON WITH A 2D FEM MODEL IN TERMS OF SCREEN CURRENTS

Current Amplitude [A] Err. [%]
Current Phase [°] Err. [°]

PEEC FEM PEEC FEM

55.109 55.172 -0.11 -97.70 -97.73 0.027
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Fig. 4. Relative error of the self-inductance of a straight wire computed with
(4) and compared with the analytical solution.

V. NUMERICAL RESULTS

In order to investigate the validity of the filamentary approx-
imation of a wire, the self-inductance of a straight cylinder
of length equal to 1 m is computed according to (4) and
compared with its analytical value for different values of
parameter h, length of the segments representing the wire,
normalized to the wire radius r = 0.45 mm [8]. As can be
noted, the approximation using filamentary elements shows a
low accuracy when h

r ≤ 10 (Fig. 4).
PEEC results for the real 3D geometries are then compared

with 3D FEM results obtained with the same commercial
software [7], in the two cases of equilay and contralay config-
urations.

Table III shows screen losses per-unit-length of cable and
Table IV the sum of the currents flowing in the wires which
compose the screen of the phase-0°conductor, in the case of
contralay configuration.

Corresponding results for the equilay configuration can be
found in Tables V - VI.

In order to carefully analyse the role of discretization, three
different values of parameter h, length of the segments repre-
senting the wires, have been used for the PEEC simulations,
ranging from 20 times to 60 times the wire radius r.

TABLE III
COMPUTATION OF JOULE LOSSES AND COMPARISON WITH FEM -

CONTRALAY CONFIGURATION

h/r
Joule Losses [W/m] Err. [%]
PEEC FEM

60 4.5641 4.5663 -0.05
40 4.5765 4.5663 +0.22
20 4.5899 4.5663 +0.52



Fig. 6. Density of losses [W/m3] computed by FEM (reference solution) and
represented over the wires.

TABLE IV
COMPUTATION OF SCREEN CURRENT AND COMPARISON WITH FEM -

CONTRALAY CONFIGURATION

h/r
Current Amplitude [A] Err. [%]

Current Phase [°] Err. [°]
PEEC FEM PEEC FEM

60 56.133 54.864 2.31 -96.590 -96.582 -0.008
40 56.181 54.864 2.40 -96.586 -96.582 -0.004
20 56.233 54.864 2.50 -96.597 -96.582 +0.015

Fig. 5. Representation of the FEM mesh over a cross section of a screen made
of wires.

FEM simulations require 74464456 degrees-of-freedom and
426 GByte of RAM and are run on a 4 processor Intel Xeon
E7 v2 multi-core with 1.5 TB of RAM. The used mesh is
represented in Fig. 5 on a trasversal cross-section of one screen
made of wires. The density of losses computed by means of
the FEM model is represented in Fig. 6.

The PEEC method (implemented in Octave [9]) only re-
quires 165 degrees-of-freedom (to represent the current in
each wire) and a negligible amount of RAM. Computational
times reflect the different complexity of the models, with
FEM simulations requiring hours of computation and PEEC
simulations only a few seconds.

TABLE V
COMPUTATION OF JOULE LOSSES AND COMPARISON WITH FEM -

EQUILAY CONFIGURATION

h/r
Joule Losses [W/m] Err. [%]
PEEC FEM

60 4.2334 4.2645 -0.729
40 4.2122 4.2645 -1.226
20 4.1924 4.2645 -1.6907

TABLE VI
COMPUTATION OF SCREEN CURRENT AND COMPARISON WITH FEM -

EQUILAY CONFIGURATION

h/r
Current Amplitude [A] Err. [%]

Current Phase [°] Err. [°]
PEEC FEM PEEC FEM

60 52.922 51.632 2.4985 -96.376 -96.397 -0.021
40 52.753 51.632 2.1711 -96.346 -96.397 -0.052
20 52.623 51.632 1.9194 -96.333 -96.397 -0.066

VI. CONCLUSION

The proposed PEEC formulation has proven to be accurate
in the computation of Joule losses and currents in the wires
composing the screens of a medium voltage three-phase sub-
marine cable.

Computational times has been significantly reduced by ex-
ploiting the simmetries of the geometry, so that the resulting
integral equation approach reveals to be much more efficient
than brute force FEM simulations.

The discussed symmetries could applied also to other numer-
ical formulations for the computation of losses in the present
and in similar applications.
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[4] R. Scapolan, “Modélisation électromagnétique 3d d’inducteurs multibrins-
développement d’une méthode intégrale parallélisée,” Ph.D. dissertation,
Grenoble, 2014.

[5] H. A. Aebischer and B. Aebischer, “Improved formulae for the inductance
of straight wires,” Advanced Electromagnetics, vol. 3, no. 1, pp. 31–43,
2014.

[6] L. Giussani, L. Di Rienzo, M. Bechis, and C. de Falco, “Losses computa-
tion in thin conductive sheaths of power cables via an integral approach,”
IEEE Transactions on Magnetics, vol. 57, no. 6, pp. 1–4, 2021.

[7] COMSOL AB, “Comsol multiphysics.” [Online]. Available: www.comsol.
com

[8] C. R. Paul, Inductance: loop and partial. John Wiley & Sons, 2011.
[9] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave

version 6.1.0 manual: a high-level interactive language for numerical
computations, 2020. [Online]. Available: https://www.gnu.org/software/
octave/doc/v6.1.0/

www.comsol.com
www.comsol.com
https://www.gnu.org/software/octave/doc/v6.1.0/
https://www.gnu.org/software/octave/doc/v6.1.0/

	Introduction
	Formulation
	Exploiting Cable Symmetries
	Validation by Comparison with a 2D FEM Model
	Numerical Results
	Conclusion
	References

