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Asymmetric equilibrium configurations of a body immersed in a 2d laminar flow
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Abstract. We study the equilibrium configurations of a possibly asymmetric fluid–structure interaction problem. The fluid
is confined in a bounded planar channel and is governed by the stationary Navier–Stokes equations with laminar inflow and
outflow. A body is immersed in the channel and is subject to both the lift force from the fluid and to some external elastic
force. Asymmetry, which is motivated by natural models, and the possibly non-vanishing velocity of the fluid on the boundary
of the channel require the introduction of suitable assumptions to prevent collisions of the body with the boundary. With
these assumptions at hand, we prove that for sufficiently small inflow/outflow there exists a unique equilibrium configuration.
Only if the inflow, the outflow and the body are all symmetric, the configuration is also symmetric. A model application is
also discussed.
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1. Introduction

Let L > H > 0 and consider the rectangle R = (−L,L)×(−H,H). Let B ⊂ R be a closed smooth domain
having barycenter at the origin (x1, x2) = (0, 0) such that diam(B) � L,H. We study the behavior of
a stationary laminar (horizontal) fluid flow going through R and filling the domain Ωh = R \ Bh, where
Bh = B + he2 for some h (a vertical translation of B), see Fig. 1. Note that B0 = B.

The fluid is governed by the stationary 2D Navier–Stokes equations

− μΔu + u · ∇u + ∇p = 0, ∇ · u = 0 in Ωh, (1.1)

complemented with inhomogeneous Dirichlet boundary conditions on ∂Ωh = ∂Bh ∪ ∂R, see (2.4). Here,
μ > 0 is the kinematic viscosity, u is the velocity vector field, p is the scalar pressure.

The body B is subject to two vertical forces. The first force (the lift) is due to the fluid flow and tends
to move B away from its original position B0; it is expressed through a boundary integral over ∂B, see
(3.1). The second force is mechanical (elastic) and acts as a restoring force tending to maintain B in B0.
When there is no inflow/outflow, the body is only subject to the restoring force and remains in B0 which
is the unique equilibrium position. But, as soon as there is a fluid flow, these two forces start competing
and one may wonder if the body remains in B0 or, at least, if the equilibrium position remains unique.

We show that if the inflow/outflow is sufficiently small, then the equilibrium position of B remains
unique and coincides with Bh for some h close to zero. We point out that, contrary to [3,8,10], we make
no symmetry assumptions neither on B nor on the laminar inflow/outflow. Therefore, not only the overall
configuration will be asymmetric but also some of the techniques developed in these papers do not work
and Bh may be different from B0. The motivation for studying asymmetric configurations comes from
nature. Only very few bodies are perfectly symmetric, and most fluid flows, although laminar in the
horizontal direction, are asymmetric in the vertical direction: think of an horizontal wind depending on
the altitude or the water flow in a river depending on the distance from the banks. Figure 2 shows two
front waves in sandstorms that have no vertical symmetry although the wind is (almost) horizontally
laminar.
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Fig. 1. Rectangle R and the body B with its vertical displacements Bh

Fig. 2. Front wave of two wind storms

In Sect. 2, we give a detailed description of our model and we prove that, for small Reynolds numbers,
the Navier–Stokes equations are uniquely solvable in any Ωh, see Theorem 2.2. The related a priori bounds
depend on h, and this is one crucial difference compared to the (symmetric) Poiseuille inflow/outflow
considered in [3]. It is well known [5] that to solve inhomogeneous Dirichlet problems for the Navier–
Stokes equations, one needs to find a solenoidal extension of the boundary data and to transform the
original problem in an homogeneous Dirichlet problem with an additional source term. For the existence
issue, one can use the classical Hopf extension, but there are infinitely many other possible choices for
the solenoidal extension. One of them, introduced in [12], was used in [3] to write the lift force as a
volume integral by means of the solution of an auxiliary Stokes problem. For asymmetric flows, the
same solenoidal extension does not allow to estimate all the boundary terms and, in order to obtain
refined bounds for the solution to the Navier–Stokes equations in Ωh, we build a new explicit solenoidal
extension that also plays a fundamental role in the analysis of the subsequent fluid–structure interaction
(FSI) problem.

The main physical interest in FSI problems is to determine the ω-limit of the associated evolution
equations because this allows to forecast the long-time behavior of the structure. Since the evolution
Navier–Stokes equations are dissipative, one is led to investigate if the global attractor exists, see [7,15]:
the main difficulty is that the corresponding phase space is time dependent and semigroup theory does
not apply. The global attractor contains stationary solutions of the evolution FSI problem that we call
equilibrium configurations, which are investigated in the present work.

In Sect. 3, we introduce the lift force and the restoring force and we set up the steady-state FSI
problem. Our main result, namely Theorem 3.1, states that, for small Reynolds numbers, the equilibrium
position is unique and may differ from B0. By exploiting the strength of the restoring force, uniqueness
for the FSI problem is obtained without assuming uniqueness for (1.1). To prove this result, we need
some bounds on the lift force in proximity of collisions of Bh with ∂R: these bounds are collected in
Theorem 3.2 and proved in Sect. 4 by using the very same solenoidal extension introduced in Sect. 2. The
remaining part of the proof of Theorem 3.1 is divided in two steps. In Subsection 5.1, we prove some
properties of the global force exerted on the body B. These properties are then used in Subsection 5.2
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to complete the proof by means of an implicit function argument, combined with some delicate bounds
involving derivatives of moving boundary integrals. We emphasize that for our FSI problem we cannot
use the explicit expression of the lift derivative as in [17] because the displacements Bh within R do not
follow the normal of ∂Bh, in particular if ∂Bh contains some vertical segments. Instead, based on the
general approach introduced in [2] (see also the previous work [14]), we compute with high precision the
lift variation with respect to the vertical displacement parameter h of Bh by acting directly on the strong
form of the FSI problem.

Section 6 contains the symmetric version of Theorem 3.1, see Theorem 6.1 which states that, under
symmetry assumptions on the inflow/outflow and on B, for small Reynolds numbers the equilibrium
position is unique and coincides with B0. This extends former results in [3,8,10] to a wider class of
symmetric frameworks.

As an application of our results, in Sect. 7 we consider a model where Bh represents the cross-section of
the deck of a suspension bridge [6], while Ωh is filled by the air and represents either a virtual box around
the deck or a wind tunnel around a scaled model of the bridge. Since the deck may have a nonsmooth
boundary, we also explain how to extend our results to the case where B is merely Lipschitz.

2. Fluid boundary value problem

Let R and B be as in Sect. 1 (Fig. 1) with

B of class W 2,∞. (2.1)

On the one hand, (2.1) ensures the regularity (u, p) ∈ H2(Ωh)×H1(Ωh) for the solutions to (1.1), see [14,
Theorem 2.1] and Theorem 2.2. On the other hand, in engineering applications B is usually a polygon
with rounded corners, see Sect. 7, which belongs to W 2,∞ but not to C2. Let

δb := − min
(x1,x2)∈∂B

x2 > 0, δt := max
(x1,x2)∈∂B

x2 > 0, τ := max
(x1,x2)∈∂B

|x1|. (2.2)

Since we consider vertical displacements Bh within R, we have h ∈ (−H + δb,H − δt) and Bh ⊂ [−τ, τ ]×
[h− δb, h+ δt] for any such h. Then, ∂Ωh = ∂Bh ∪∂R. The bottom and top parts of ∂R are, respectively,

Γb = [−L,L] × {−H} and Γt = [−L,L] × {H},

while its lateral left and right parts are, respectively,

Γl = {−L} × [−H,H] and Γr = {L} × [−H,H].

Let Vin, Vout ∈ W 2,∞(−H,H) ⊂ C0[−H,H] satisfy

Vin(−H) = Vout(−H) = 0, Vin(H) = Vout(H) = U ≥ 0,

H∫

−H

Vin(x2)dx2 =

H∫

−H

Vout(x2)dx2.
(2.3)

For some λ ≥ 0, we consider the boundary value problem

− μΔu + u · ∇u + ∇p = 0, ∇ · u = 0 in Ωh,

u|∂Bh
= u|Γb

= 0, u|Γt
= λUe1, u|Γl

= λVin(x2)e1, u|Γr
= λVout(x2)e1. (2.4)

Note that u|∂R
∈ C0(∂R) and (2.3)-(2.4) are compatible with the Divergence Theorem. The role of λ ≥ 0

in the boundary conditions is to measure with a unique parameter the strength of both the inflow and
the outflow. Hence, λ � Re where Re is the Reynolds number.
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Fig. 3. Qualitative behavior of Λ = Λ(h) for U = 0 (left) and U = 1 (right)

Definition 2.1. We say that (u, p) ∈ H2(Ωh) × H1(Ωh) is a strong solution to (2.4) if the differential
equations are satisfied a.e. in Ωh and the boundary conditions are satisfied as restrictions (recall that
H2(Ωh) ⊂ C0(Ωh)).

We now state an apparently classical existence and uniqueness result which, however, has some nov-
elties. First, since the domain Ωh is only Lipschitzian, the regularity of the solution is obtained through
a geometric reflection. More importantly, the explicit upper bound for the blow-up of the H1-norm of
the unique solution to (2.4) in proximity of collision: when B approaches Γt, the norm remains bounded
while when B approaches Γb we estimate its blow-up. This refined bound requires the construction of a
suitable solenoidal extension of the boundary data. Note that, up to normalization, we can reduce to the
cases where

U ∈ {0, 1}. (2.5)

In order to state the result, we define the distances of the body Bh to Γb and Γt, respectively, by

εb(h) := H − δb + h, εt(h) := H − δt − h. (2.6)

Hence, 0 < εb(h), εt(h) ≤ 2H −δb−δt for any h ∈ (−H +δb,H −δt). Throughout the paper, any (positive)
constant depending only on μ, B0, L, H will be denoted by C and, when it depends also on h, by Ch.
We may now state

Theorem 2.2. Let h ∈ (−H+δb,H−δt) and assume (2.3) with (2.5). Then, (2.4) admits a strong solution
(u, p) for any λ ≥ 0 and there exists Λ = Λ(h) > 0 such that the solution is unique if λ ∈ [0,Λ(h)); if
U = 0, Λ(h) can be chosen independent of h, i.e., Λ(h) ≡ Λ > 0. Moreover, there exist C > 0 and Ch > 0
such that the unique solution (when λ < Λ(h)) satisfies

‖u‖H1(Ωh) ≤ C(1 + U(εt(h))−3/2)λ, (2.7)

‖u‖H2(Ωh) + ‖p‖H1(Ωh) ≤ Chλ. (2.8)

A priori bounds such as (2.7) and (2.8) are available for any λ ≥ 0 and any strong solution of (2.4), but
with different powers of λ.

Before giving the proof, let us explain qualitatively the main differences between the cases U = 0 and
U = 1. For U = 0, the a priori bound (2.7) is independent of h, so that the graph of Λ(h) looks like Fig. 3
(left). For U = 1, (2.7) depends on h and Λ(h) itself may depend on h, see Fig. 3 (right) and (2.20).

Proof. Existence of weak solutions. For later use, we first define weak solution for the forced Navier–Stokes
equations

− μΔu + u · ∇u + ∇p = f, ∇ · u = 0 in Ωh, (2.9)
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which reduces to (2.4) when f = 0. We say that u ∈ H1(Ωh) is a weak solution to (2.9) with f ∈ L2(Ωh)
if u is a solenoidal vector field satisfying the boundary conditions in the trace sense and

μ

∫

Ωh

∇u : ∇ϕ +
∫

Ωh

u · ∇u · ϕ =
∫

Ωh

f · ϕ (2.10)

for all ϕ ∈ W (Ωh) := {ϕ ∈ H1
0 (Ωh) : ∇·ϕ = 0 a.e. in Ωh}. For any weak solution u, there exists a unique

associated p ∈ L2
0(Ωh) (i.e., with zero mean value), satisfying

μ

∫

Ωh

∇u : ∇ψ +
∫

Ωh

u · ∇u · ψ −
∫

Ωh

p∇ · ψ =
∫

Ωh

f · ψ (2.11)

for all ψ ∈ H1
0 (Ωh) (Lemma IX.1.2, [5]). In (2.24), we introduce an ad-hoc solenoidal extension matching

our geometric framework which is not optimal for our current purpose. This is why we use here the
well-known Hopf’s extension s that reduces the effect of the nonlinearity and allows to prove existence
for any λ ≥ 0. Hence, we recast (2.4) as (2.9) with homogeneous boundary conditions, namely

− μΔv + v · ∇v + ∇p = f, ∇ · v = 0 in Ωh, v|∂Ωh
= 0, (2.12)

where f = μΔs − s · ∇v − v · ∇s − s · ∇s. Then, there exists v ∈ W (Ωh) satisfying (2.10) for any λ ≥ 0
(Theorem IX.4.1, [5]). This is equivalent to say that the vector field u = v+s ∈ H1(Ωh) and the associated
pressure p ∈ L2(Ωh) satisfy (2.10)-(2.11) with f = 0. Moreover, ∇ · u = 0, u|∂Ωh

= s|∂Ωh
and

‖u‖H1(Ωh) ≤ C(‖∇v‖L2(Ωh) + ‖s‖H1(Ωh))

≤ C
((

1 + 1
μ

)
‖s‖H1(Ωh) + 1

μ‖s‖2
H1(Ωh)

)
≤ Ch(λ + λ2) , (2.13)

‖p‖L2(Ωh) ≤ C(μ‖u‖H1(Ωh) + ‖u‖2
H1(Ωh)) ≤ Ch(λ + λ4). (2.14)

In these bounds and the ones below, we only emphasize the smallest and largest powers of λ, as for any
polynomial. These bounds are not part of the statement, but they will be used later in the present proof.

Regularity. We claim that any weak solution (u, p) to (2.4) satisfies (u, p) ∈ H2(Ωh) × H1(Ωh). This
would be straightforward if Ωh ∈ W 2,∞, see [14], but R is only Lipschitzian. Here, we take advantage of
the particular shape of R and use a reflection argument as in [9]. We construct a new domain Ωt

h = Rt\Bt
h,

obtained by reflecting Ωh across Γt, where Rt = (−L,L) × [H, 3H) and Bt
h is the reflection of Bh with

respect to Γt. Define (ut, pt) : Ωt
h → R

2 × R by

ut
1(x1,H + x2) = u1(x1,H − x2), ut

2(x1,H + x2) = −u2(x1,H − x2),

pt(x1,H + x2) = p(x1,H − x2) for all (x1, x2) ∈ (−L,L) × [0, 2H),

which satisfies
− μΔut + ut · ∇ut + ∇pt = 0, ∇ · ut = 0 in Ωt

h. (2.15)
Therefore, the couple

(u, p) =

{
(u, p) in Ωh,

(ut, pt) in Ωt
h,

satisfies the Navier–Stokes equations

−μΔu + u · ∇u + ∇p = 0, ∇ · u = 0 in
{
(−L,L) × (−H, 3H)

} \ {Bh ∪ Bt
h}.

Similarly, let Ωb
h = Rb \ Bb

h with Rb = (−L,L) × (−3H,−H] and Bb
h is the reflection of Bh with respect

to Γb. Define (ub, pb) : Ωb
h → R

2 × R by

ub
1(x1,−H − x2) = u1(x1,−H + x2), ub

2(x1,−H − x2) = −u2(x1,−H + x2),

pb(x1,−H − x2) = p(x1,−H + x2) for all (x1, x2) ∈ (−L,L) × [0, 2H),
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which satisfies the corresponding of (2.15) in Ωb
h. Thanks to these two vertical reflections, we obtain a

solution in Ωs
h =

{
(−L,L) × (−3H, 3H)

}\{Bh ∪ Bt
h ∪ Bb

h}.
With the same principle, we then perform two horizontal reflections of Ωs

h with respect to x1 = ±L.
At the end of this procedure, let

Ω̃h =
{
(−3L, 3L) × (−3H, 3H)

} \ {Bh and its eight reflections}
and (ũ, p̃) : Ω̃h → R

2 × R be the extension of (u, p), so that

− μΔũ + ũ · ∇ũ + ∇p̃ = 0, ∇ · ũ = 0 in Ω̃h, ũ|∂Bh
= 0 (2.16)

and ũ satisfies further boundary conditions that we do not need to make explicit. After introducing a
suitable solenoidal extension, we can proceed as in the first part of the proof and obtain the existence of
a solution (ũ, p̃) ∈ H1(Ω̃h) × L2(Ω̃h) satisfying the bounds (2.13)-(2.14). Hence, ũ · ∇ũ ∈ L3/2(Ω̃h) and

‖ũ · ∇ũ‖L3/2(Ω̃h) ≤ ‖ũ‖L6(Ω̃h)‖∇ũ‖L2(Ω̃h) ≤ C‖ũ‖2
H1(Ω̃h)

≤ Ch(λ2 + λ4) (2.17)

with Ch = C(Ω̃h). By applying [14] and [5, Theorems IV.4.1 and IV.5.1] to the Stokes problem (2.16),
we infer that (ũ, p̃) ∈ W 2,3/2(Ω′) × W 1,3/2(Ω′) for any Ω′ ⊂ Ω̃h and

‖ũ‖W 2,3/2(Ω′) + ‖p̃‖W 1,3/2(Ω′)

≤ Ch(‖ũ · ∇ũ‖L3/2(Ω̃h) + ‖ũ‖W 1,3/2(Ω̃h) + ‖p̃‖L3/2(Ω̃h)) ≤ Ch(λ + λ4)
(2.18)

with Ch = C(Ω′, Ω̃h). We recall that (ũ, p̃) = (u, p) in Ωh. Then, using Sobolev embedding W 2,3/2 ↪→ W 1,6

in R
2 and a bootstrap argument we obtain that (u, p) ∈ H2(Ωh) × H1(Ωh). Moreover, from (2.17)-(2.18)

we get
‖u‖H2(Ωh) + ‖p‖H1(Ωh) ≤ Ch(‖ũ · ∇ũ‖L2(Ω′) + ‖ũ‖H1(Ω′) + ‖p̃‖L2(Ω′))

≤ Ch(‖ũ‖L3(Ω′)‖∇ũ‖L6(Ω′) + ‖ũ‖H1(Ω′) + ‖p̃‖L2(Ω′))

≤ Ch(‖ũ‖H1(Ω′)‖ũ‖W 2,3/2(Ω′) + ‖ũ‖H1(Ω′) + ‖p̃‖L2(Ω′))

≤ Ch(λ + λ4)

with Ch = C(Ωh, Ω̃h). This also proves (2.8) whenever λ < Λ(h).
Uniqueness. Let u1 and u2 be two weak solutions to (2.4), let w = u1 − u2, then

μ

∫

Ωh

∇w : ∇ϕ +
∫

Ωh

w · ∇w · ϕ = −
∫

Ωh

(w · ∇u2 + u2 · ∇w) · ϕ

for all ϕ ∈ W (Ωh). Then, take ϕ = w so that the latter yields

μ‖∇w‖2
L2(Ωh) = −

∫

Ωh

w · ∇u2 · w ≤ ‖∇u2‖L2(Ωh)‖w‖2
L4(Ωh)

≤ Ch(1 + 1
μ )(λ + λ2)‖∇w‖2

L2(Ωh),

(2.19)

where we used Hölder, Ladyzhenskaya and Poincaré inequalities and (2.13). Hence, there exists Λ =
Λ(h) > 0 (uniformly upper-bounded with respect to h) such that

λ ∈ [0,Λ(h)) ⇐⇒ Ch(1 + 1
μ )(λ + λ2) < μ (2.20)

and this condition implies ‖∇w‖L2(Ωh) = 0 and, in turn, w = 0 since w|∂Ωh
= 0.

Refined bounds. For λ ∈ [0,Λ(h)), in all the above bounds we can drop the largest power of λ and they
all become linear upper bounds. We treat separately the cases U = 1 and U = 0 and we make explicit
the dependence of the constant Ch in (2.13) on h.

When U = 1, we claim that the unique strong solution u to (2.4) satisfies

‖u‖H1(Ωh) ≤ C
(
1 + (εt(h))−3/2

)
λ (2.21)
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Fig. 4. Cutoff functions ζl (left) and ζr (right) on R when U = 1

with C > 0 independent of h. To this end, we introduce a different (and explicit) solenoidal extension.
Consider the cutoff functions ζl, ζr ∈ C∞(R2), with 0 ≤ ζl, ζr ≤ 1, defined piece-wise in the rectangles of
Fig. 4 by

ζl(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 in [−τ, τ ] ×
[
−H,H − εt(h)

2

]
,

0 in [τ, L] × [−H,H],
1 in [−L,−2τ ] × [−H,H],

ζ0
l (x1) in [−2τ,−τ ] ×

[
−H,H − εt(h)

2

]
,

C∞-completion in [−2τ,−τ ] ×
[
H − εt(h)

2 ,H
]
,

(2.22)

where ζ0
l is a function only of x1, and

ζr(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 in [−τ, τ ] ×
[
−H,H − εt(h)

2

]
,

0 in [−L,−τ ] ×
[
−H,H − εt(h)

4

]
,

1 in [2τ, L] ×
[
−H,H − εt(h)

4

]
,

ζ0
r (x1) in [τ, 2τ ] ×

[
−H,H − εt(h)

2

]
,

1 − ζl(x1, x2) in [−L,L] ×
[
H − εt(h)

4 ,H
]
,

C∞-completion in [−τ, 2τ ] ×
[
H − εt(h)

2 ,H − εt(h)
4

]
,

(2.23)

where ζ0
r is a function only of x1.

Then, letting ∇⊥ = (−∂2, ∂1), consider the vector field s : R → R
2 defined by

s(x1, x2) := −λ∇⊥

⎛
⎝ζl(x1, x2)

x2∫

−H

Vin(z)dz + ζr(x1, x2)

x2∫

−H

Vout(z)dz

⎞
⎠ , (2.24)

which is solenoidal and satisfies the boundary conditions in (2.4). Rewriting s as

s(x1, x2) = λ

⎛
⎝−∇⊥ζl

x2∫

−H

Vin − ∇⊥ζr

x2∫

−H

Vout + (ζlVin + ζrVout)e1

⎞
⎠ ,
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its partial derivatives read

∂1s = λ

⎛
⎝−∇⊥∂1ζl

x2∫

−H

Vin − ∇⊥∂1ζr

x2∫

−H

Vout + (∂1ζlVin + ∂1ζrVout)e1

⎞
⎠ ,

∂2s = λ

(
− ∇⊥∂2ζl

x2∫

−H

Vin − ∇⊥∂2ζr

x2∫

−H

Vout − ∇⊥ζlVin − ∇⊥ζrVout

+ (∂2ζlVin + ∂2ζrVout + ζl
d

dx2
Vin + ζr

d
dx2

Vout)e1

)
.

Using that Vin, Vout ∈ W 2,∞(−H,H) and that ζl, ζr are smooth, it follows that

‖s‖L∞(Ωh), ‖s‖L2(Ωh), ‖s‖L4(Ωh), ‖∇s‖L2(Ωh), ‖Δs‖L2(Ωh) ≤ Chλ,

‖s · ∇s‖L2(Ωh) ≤ Chλ2 ≤ Chλ.
(2.25)

We need to quantify the dependence of Ch > 0 on εb(h) and εt(h). On the one hand, we notice that, by
construction, both ζl and ζr depend on x2 only in

Ωεt(h) := [−2τ, 2τ ] ×
[
H − εt(h)

2 ,H
]
. (2.26)

In this domain, the x1-derivatives of ζl and ζr are uniformly bounded with respect to h while the
x2-derivatives blow-up as εt(h) goes to zero, for instance, we have

|∂2ζl|, |∂2ζr| ≤ C(εt(h))−1, |∂2
2ζr|, |∂2

2ζl| ≤ C(εt(h))−2.

Therefore, in Ωεt(h)

|s| ≤ C(1 + (εt(h))−1)λ, |∂1s| ≤ C(1 + (εt(h))−1)λ,

|∂2s| ≤ C((εt(h))−1 + (εt(h))−2)λ.

On the other hand, the cutoff functions depend only on x1 in Ωh \ Ωεt(h) and their x1 and x2-derivatives
are uniformly bounded with respect to h. Therefore, in Ωh \ Ωεt(h)

|s|, |∂1s|, |∂2s| ≤ Cλ.

Gathering all together, we refine the bounds in (2.25) as

‖s‖L∞(Ωh) ≤ C(1 + (εt(h))−1)λ,

‖s‖L2(Ωh) ≤ Cλ + C

⎛
⎜⎝

∫

Ωεt(h)

(εt(h))−2

⎞
⎟⎠

1/2

λ ≤ C(1 + (εt(h))−1/2)λ,

‖s‖L4(Ωh) ≤ C(1 + (εt(h))−3/4)λ, ‖∇s‖L2(Ωh) ≤ C(1 + (εt(h))−3/2)λ,

‖Δs‖L2(Ωh), ‖s · ∇s‖L2(Ωh) ≤ C(1 + (εt(h))−5/2)λ,

(2.27)

with all the constants C > 0 independent of h. Then, testing (2.12) with v = u − s we obtain

μ‖∇v‖2
L2(Ωh) = −

∫

Ωh

v · ∇s · v −
∫

Ωh

s · ∇s · v − μ

∫

Ωh

∇s : ∇v (2.28)

We want to estimate, when possible, only s and not ∇s since the bounds for s are less singular in terms
of εt(h). Hence, since ∇ · v = ∇ · s = 0 and using integration by parts, we rewrite (2.28) as

μ‖∇v‖2
L2(Ωh) =

∫

Ωh

v · ∇v · s +
∫

Ωh

s · ∇v · s − μ

∫

Ωh

∇s : ∇v. (2.29)
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We split the first integral in the right-hand side over Ωεt(h) and Ωh \ Ωεt(h). On the one hand, since
v|Γt

= 0, Poincaré inequality

‖v‖L2(Ωεt(h)) ≤ εt(h)
2

‖∇v‖L2(Ωεt(h)),

and Hölder inequality yield∫

Ωεt(h)

(v · ∇v) · s ≤ ‖v‖L2(Ωεt(h))‖∇v‖L2(Ωεt(h))‖s‖L∞(Ωεt(h))

≤ Cεt(h)‖∇v‖2
L2(Ωεt(h))

(1 + (εt(h))−1)λ ≤ Cλ‖∇v‖2
L2(Ωεt(h))

,

where we used that ‖s‖L∞(Ωεt(h)) ≤ C(1 + (εt(h))−1)λ and εt(h) ≤ 2H − δb − δt. On the other hand,
since v|Γl,Γr

= 0, Poincaré and Hölder inequalities yield∫

Ωh\Ωεt(h)

(v · ∇v) · s ≤ ‖v‖L2(Ωh\Ωεt(h))‖∇v‖L2(Ωh\Ωεt(h))‖s‖L∞(Ωh\Ωεt(h))

≤ Cλ‖∇v‖2
L2(Ωh\Ωεt(h))

,

where we used that ‖s‖L∞(Ωh\Ωεt(h)) ≤ Cλ. Therefore, from (2.27) and (2.29) we infer

μ‖∇v‖2
L2(Ωh) ≤ Cλ‖∇v‖2

L2(Ωh) + ‖s‖2
L4(Ωh)‖∇v‖L2(Ωh) + μ‖∇s‖L2(Ωh)‖∇v‖L2(Ωh)

≤ Cλ‖∇v‖2
L2(Ωh) + C(1 + (εt(h))−3/2)(λ + λ2)‖∇v‖L2(Ωh).

Then, for λ ∈ [0,Λ(h)) with Λ(h) as in (2.20) we have

‖∇v‖L2(Ωh) ≤ C(1 + (εt(h))−3/2)λ (2.30)

and
‖u‖H1(Ωh) ≤ ‖∇v‖L2(Ωh) + ‖s‖H1(Ωh) ≤ C(1 + (εt(h))−3/2)λ,

which proves (2.21).
When U = 0, we claim that the unique strong solution u to (2.4) satisfies

‖u‖H1(Ωh) ≤ Cλ (2.31)

with C > 0 independent of h, which will imply that Λ(h) ≡ Λ can be also taken independent of h. In this
case, we shall define the cut-off functions and the solenoidal extension differently depending if h ≤ 0 or
h > 0. If h ≤ 0, we define ζl, ζr as in (2.22)-(2.23) (see Fig. 5) replacing εt(h) with the distance of B0 to
Γt, namely εt(0) = H − δt. The solenoidal extension s is then defined as in (2.24). By construction both
ζl and ζr depend on x2 only in Ωεt(0), defined as in (2.26) with εt(h) replaced by εt(0). In this domain,
both x1 and x2-derivatives of ζl and ζr are uniformly bounded with respect to h, for instance, we have

|∂2ζl|, |∂2ζr| ≤ C(εt(0))−1 ≤ C, |∂2
2ζr|, |∂2

2ζl| ≤ C(εt(0))−2 ≤ C.

Since in Ωh \ Ωεt(0) the cutoff functions depend only on x1, we infer that s, ∂1s and ∂2s are uniformly
bounded with respect to h in all Ωh and

‖s‖L∞(Ωh), ‖s‖L2(Ωh), ‖s‖L4(Ωh), ‖∇s‖L2(Ωh) ≤ Cλ. (2.32)

Repeating the same computations as in the case U = 1 and using (2.32), we obtain (2.31) for h ≤ 0.
If h > 0, we make a vertical reflection x2 �→ −x2 and we consider the new cutoff functions defined

piece-wise in the rectangles of Fig. 5, where εb(0) = H − δb.
Then, we consider the vector field s : R → R

2 defined by

s(x1, x2) := λ∇⊥

⎛
⎝ζl(x1, x2)

H∫

x2

Vin(z)dz + ζr(x1, x2)

H∫

x2

Vout(z)dz

⎞
⎠ ,
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Fig. 5. Cutoff functions ζl (left) and ζr (right) on R when U = 0 for h > 0

which is solenoidal and satisfies the boundary conditions in (2.4). By the same argument used when
h ≤ 0, s, ∂1s and ∂2s are uniformly bounded with respect to h in Ωh. Therefore, using again (2.32), we
obtain (2.31) for h < 0. �

Remark 2.3. We stated (2.7) and (2.8) only in case of uniqueness because, in what follows, λ will be
taken small and higher powers of λ can be upper estimated with the first power.

The reflection method used to obtain the regularity result has its own interest. The rectangular shape
of the domain is crucial and the technique fails for other polygons. However, in the case of convex polygons,
in particular also for a rectangle, one can obtain the more C∞-regularity result by using Theorem 2 in
[13], see also [11, Section 7.3.3] and [4].

3. Equilibrium configurations of a FSI problem

By Theorem 2.2, for any (λ, h) ∈ [0,+∞) × (−H + δb,H − δt) there exists at least a strong solution
(u, p) = (u(λ, h), p(λ, h)) to (2.4). The fluid described by (u, p) in Ωh exerts on Bh a force perpendicular
to the direction of the inflow, called lift (see [16]). Since the inflow in (2.4) is horizontal, the lift is vertical
and given by

L(λ, h) = −e2 ·
∫

∂Bh

T(u, p)n, (3.1)

where T is the fluid stress tensor, namely

T(u, p) := μ(∇u + ∇uT ) − pI ,

and n is the unit outward normal vector to ∂Ωh, which, on ∂Bh, points toward the interior of Bh.
In fact, L(λ, h) is a multi-valued function when uniqueness for (2.4) fails. However, we keep this simple
notation instead of writing L(λ, h, u(λ, h), p(λ, h)), in which also the dependence on the particular solution
(u, p) is emphasized. The regularity of the solution (see Theorem 2.2) and the smoothness of ∂Bh yield
T(u, p)|∂Bh

∈ H1/2(∂Bh) ⊂ L1(∂Bh); hence, the integral in (3.1) is finite. In fact, the lift can also be
defined for merely weak solutions, see (7.5) in Sect. 7. Note that (3.1) holds for any λ ≥ 0 and any solution
to (2.4), but our main result on the FSI problem focuses on small inflows, see Theorem 3.1.

Aiming to model, in particular, a wind flow hitting a suspension bridge, the body B may also be subject
to a (possibly nonsmooth) vertical restoring force f tending to maintain B in the equilibrium position B0

(for h = 0); see Sect. 7. We assume that f depends only on the position h, that f ∈ C0(−H + δb,H − δt)
with f(0) = 0 and

∃γ > 0 s.t.
f(h1) − f(h2)

h1 − h2
≥ γ ∀h1, h2 ∈ (−H + δb,H − δt), h1 �= h2. (3.2)
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Moreover, we assume that there exists K > 0 such that

lim sup
h→−H+δb

f(h)(H − δb + h)3/2 ≤ −K,

lim inf
h→H−δt

f(h)
max{(H − δt − h)−3/2, U(H − δt − h)−3} ≥ K.

(3.3)

The assumption (3.3) is somehow technical and prevents collisions of B with the horizontal boundary
Γb ∪ Γt, at least for small inflow/outflow. It can probably be relaxed but, so far, only few (numerical)
investigations on the effect of proximity to collisions of hydrodynamic forces (such as the lift), acting on
non-spherical bodies, have been tackled, see [20] and references therein. The presence of U in (3.3) high-
lights the different behavior of f when B is close to Γt for U = 0 or U = 1. In the first case, f has the same
strength close to Γb and Γt. Conversely, for U = 1, the asymmetry of the boundary conditions requires
a different strength of f , which is stronger when B is close to Γt than when B is close to Γb. Overall,
(3.2)-(3.3) model the fact that B is not allowed to go too far away from the equilibrium position B0.

Since we are interested in the equilibrium configurations of the FSI problem, we consider the boundary-
value problem (2.4) coupled with a compatibility condition stating that the restoring force balances the
lift force, namely

− μΔu + u · ∇u + ∇p = 0, ∇ · u = 0 in Ωh

u|∂Bh
= u|Γb

= 0, u|Γt
= λUe1, u|Γl

= λVin(x2)e1, u|Γr
= λVout(x2)e1,

f(h) = −e2 ·
∫

∂Bh

T(u, p)n. (3.4)

Our main result concerns the existence and uniqueness of the solution to (3.4) for small values of λ that
we expect to be stable.

Theorem 3.1. Let f ∈ C0(−H+δb,H−δt) satisfy (3.2)-(3.3) with f(0) = 0 and Vin, Vout ∈ W 2,∞(−H,H)
satisfy (2.3) with (2.5). There exist Λ1 > 0 and a unique h ∈ C0[0,Λ1) such that for λ ∈ [0,Λ1) the FSI
problem (3.4) admits a unique solution (u(λ, h), p(λ, h), h) ∈ H2(Ωh)×H1(Ωh)×(−H+δb,H−δt) given by

(u(λ, h(λ)), p(λ, h(λ)), h(λ)).

We emphasize that Theorem 3.1 ensures uniqueness of the equilibrium configuration for the FSI
problem (3.4) in the uniform interval [0,Λ1) even in absence of uniqueness for (2.4) that, instead, is only
ensured in the possibly non-uniform interval [0,Λ(h)). The proof of Theorem 3.1 is given in Sect. 5. It
is fairly delicate because if U = 0 (as for symmetric inflow/outflow), then from (2.21) we infer that the
H1-norm is uniformly bounded with respect to h. However, if U = 1, the same norm obviously blows up
when Bh approaches Γt, which affects the bounds for the lift in (3.1). As already mentioned, very little
is known when a body approaches a collision, see again [20] and references therein. Therefore, the next
statement has its own independent interest; it provides some upper bounds and shows that, probably,
the lift behaves differently for homogeneous and inhomogeneous boundary data.

Theorem 3.2. Assume (2.5) and let λ ∈ [0,Λ0] for some Λ0 > 0. Let (u, p) be a strong solution to (2.4)
(see Theorem 2.2) and let L(λ, h) be as in (3.1). There exists C > 0 (independent of λ, h, u, p) such that,
for any (λ, h) ∈ [0,Λ0] × (−H + δb,H − δt),

|L(λ, h)| ≤ C
(
(εb(h))−3/2 + max{(εt(h))−3/2, U(εt(h))−3}

)
λ (3.5)

with εb(h) and εt(h) defined in (2.6). In fact, L(λ, h) is defined in all [0,+∞)×(−H +δb,H −δt), possibly
as a multi-valued function, but (3.5) would hold with different powers of λ.

The proof of Theorem 3.2 is given in the next section.
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4. Proof of theorem 3.2

We rewrite the lift (3.1), which is a boundary integral, as a volume integral. This can be done by
considering w ∈ H1(Ωh) that satisfies

∇ · w = 0 in Ωh, w|∂Bh
= e2, w|∂R

= 0. (4.1)

The divergence theorem ensures that (4.1) admits infinitely many solutions. Testing (2.4) with one such
solution w (recall that ∇ · T = μΔu − ∇p) yields∫

Ωh

u · ∇u · w =
∫

Ωh

∇ · T(u, p) · w = −μ

∫

Ωh

∇u : ∇w +
∫

∂Ωh

T(u, p)n · w

and, using the boundary conditions on w,

− e2 ·
∫

∂Bh

T(u, p)n = −
∫

Ωh

u · ∇u · w − μ

∫

Ωh

∇u : ∇w. (4.2)

Among the infinitely many solutions of (4.1), we select one obtained by using a solenoidal extension
similar to the ones introduced in Sect. 2. We consider a cutoff function χ ∈ C∞(R) with 0 ≤ χ ≤ 1 such
that

χ(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 in [−τ, τ ] × [h − δb, h + δt],

0 in Ωh \
(
[−2τ, 2τ ] ×

[
h − δb − εb(h)

2 , h + δt + εt(h)
2

])
,

χ0(x1) in ([−2τ,−τ ] ∪ [τ, 2τ ]) × [h − δb, h + δt],
C∞-completion elsewhere.

We put w = ∇⊥(x1χ). Clearly w ∈ H1(Ωh) satisfies (4.1) and supp w ⊆ Ωw = Ωw,b ∪ Ωw,c ∪ Ωw,t with

Ωw,b := [−2τ, 2τ ] ×
[
h − δb − εb(h)

2 , h − δb

]
, Ωw,c := [−2τ, 2τ ] × [h − δb, h + δt],

Ωw,t := [−2τ, 2τ ]×
[
h + δt, h + δt + εt(h)

2

]
.

Moreover, from the definition of χ it follows that w and its x1 and x2-derivatives are uniformly bounded
with respect to h in Ωw,c, while in Ωw,b

|w| ≤ C(1 + (εb(h))−1), |∂1w| ≤ (1 + (εb(h))−1),

|∂2w| ≤ ((εb(h))−1 + (εb(h))−2)
(4.3)

and in Ωw,t

|w| ≤ C(1 + (εt(h))−1), |∂1w| ≤ (1 + (εt(h))−1),

|∂2w| ≤ ((εt(h))−1 + (εt(h))−2).
(4.4)

Bh close to Γb. We consider the case when h is close to −H +δb; hence, εb(h) is close to zero. This implies
that εt(h) ≥ 1 and the bounds in (4.4) become uniform. Choosing in (4.2) the previously constructed w,
we observe that the integrals in the right-hand side are defined only on Ωw. Let us split these integrals
over the regions Ωw,b, which is shrinking as εb(h) goes to zero, and Ωw \ Ωw,b. On the one hand, Hölder
inequality and (2.7) yield∣∣∣∣∣∣∣

∫

Ωw\Ωw,b

u · ∇u · w + μ

∫

Ωw\Ωw,b

∇u : ∇w

∣∣∣∣∣∣∣
≤ C‖u‖2

H1(Ωh
‖w‖L∞(Ωw\Ωw,b) + μ‖∇u‖L2(Ωh)‖∇w‖L2(Ωw\Ωw,b)

≤ C(‖u‖2
H1(Ωh) + ‖u‖H1(Ωh)) ≤ Cλ

(4.5)
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for λ ∈ [0,Λ0], using that w and its derivatives are uniformly bounded with respect to h in Ωw\Ωw,b. On
the other hand, since w ≡ 0 in Ω0

w,b := [−2τ, 2τ ] × [−H,h − δb − εb(h)
2 ] and u|Γb

= 0, Poincaré inequality
for u in Ωw,b ∪ Ω0

w,b, the Hölder inequality and (2.7) yield
∣∣∣∣∣∣∣

∫

Ωw,b

u · ∇u · w

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Ωw,b∪Ω0
w,b

u · ∇u · w

∣∣∣∣∣∣∣
≤ εb(h)‖∇u‖2

L2(Ωw,b∪Ω0
w,b)

‖w‖L∞(Ωw,b) ≤ C‖u‖2
H1(Ωh) ≤ Cλ

(4.6)

and ∣∣∣∣∣∣∣
∫

Ωw,b

∇u : ∇w

∣∣∣∣∣∣∣
≤ ‖u‖H1(Ωh)‖∇w‖L2(Ωw,b) ≤ C(εb(h))−3/2λ, (4.7)

for λ ∈ [0,Λ0], using that ‖w‖L∞(Ωw,b) ≤ C(εb(h))−1 and ‖∇w‖L2(Ωw,b) ≤ C(εb(h))−3/2 for εb(h) close to
zero, due to (4.3).

Putting together (4.5)-(4.7), then there exists ηb > 0 sufficiently small such that, for any (λ, h) ∈
[0,Λ0] × (−H + δb,−H + δb + ηb),

|L(λ, h)| ≤ C(εb(h))−3/2λ. (4.8)

We remark that the same blow-up rate in (4.8) could be obtained without taking advantage of Poincaré
inequality in (4.6) but using directly u ∈ H1 ⊂ L4. This idea, however, will be crucial to obtain a better
blow-up rate for the lift in the case when the body is close to Γt, that we now analyze.

Bh close to Γt. We consider the case when h is close to H−δt; hence, εt(h) is close to zero. Analogously
to what done in the previous case, we split the integrals over the regions Ωw,t, which is shrinking as εt(h)
goes to zero, and Ωw \ Ωw,t. On the one hand, Hölder inequality yields∣∣∣∣∣∣∣

∫

Ωw\Ωw,t

u · ∇u · w + μ

∫

Ωw\Ωw,t

∇u : ∇w

∣∣∣∣∣∣∣
≤ C‖u‖2

H1(Ωh)‖w‖L∞(Ωw\Ωw,t) + μ‖∇u‖L2(Ωh)‖∇w‖L2(Ωw\Ωw,t)

≤ C(‖u‖2
H1(Ωh) + ‖u‖H1(Ωh))

using that w and its derivatives are uniformly bounded with respect to h in Ωw \Ωw,t. On the other hand,
since w ≡ 0 in Ω0

w,t := [−2τ, 2τ ] × [h + δt + εt(h)
2 ,H] and u = v + s with v|Γt

= 0, Poincaré inequality for
v in Ωw,t ∪ Ω0

w,t and Hölder inequality yield
∣∣∣∣∣∣∣

∫

Ωw,t

u · ∇u · w

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Ωw,t∪Ω0
w,t

v · ∇u · w +
∫

Ωw,t∪Ω0
w,t

s · ∇u · w

∣∣∣∣∣∣∣
≤ εt(h)‖∇v‖L2(Ωh)‖∇u‖L2(Ωh)‖w‖L∞(Ωw,t) + ‖s‖L2(Ωh)‖∇u‖L2(Ωh)‖w‖L∞(Ωw,t)

≤ C‖∇v‖L2(Ωh)‖u‖H1(Ωh) + C‖s‖L2(Ωh)‖u‖H1(Ωh)(εt(h))−1

and ∣∣∣∣∣∣∣
∫

Ωw,t

∇u : ∇w

∣∣∣∣∣∣∣
≤ ‖u‖H1(Ωh)‖∇w‖L2(Ωw,t) ≤ ‖u‖H1(Ωh)(εt(h))−3/2,
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using that ‖w‖L∞(Ωw,t) ≤ C(εt(h))−1 and ‖∇w‖L2(Ωw,t) ≤ C(εt(h))−3/2 for εt(h) close to zero, due to
(4.4). Now we shall distinguish the cases U = 1 and U = 0. When U = 1, using (2.7), (2.27) and (2.30)
we obtain, for λ ∈ [0,Λ0],∣∣∣∣∣∣∣

∫

Ωw\Ωw,t

u · ∇u · w + μ

∫

Ωw\Ωw,t

∇u : ∇w

∣∣∣∣∣∣∣
≤ C(εt(h))−3λ (4.9)

and ∣∣∣∣∣∣∣
∫

Ωw,t

u · ∇u · w

∣∣∣∣∣∣∣
≤ C(εt(h))−3λ,

∣∣∣∣∣∣∣
∫

Ωw,t

∇u : ∇w

∣∣∣∣∣∣∣
≤ C(εt(h))−3λ. (4.10)

When U = 0, using (2.7) and (2.32), we obtain, for λ ∈ [0,Λ0],∣∣∣∣∣∣∣
∫

Ωw\Ωw,t

u · ∇u · w + μ

∫

Ωw\Ωw,t

∇u : ∇w

∣∣∣∣∣∣∣
≤ Cλ (4.11)

and ∣∣∣∣∣∣∣
∫

Ωw,t

u · ∇u · w

∣∣∣∣∣∣∣
≤ C(εt(h))−1λ,

∣∣∣∣∣∣∣
∫

Ωw,t

∇u : ∇w

∣∣∣∣∣∣∣
≤ C(εt(h))−3/2λ. (4.12)

Putting together (4.9)-(4.12), then there exists ηt > 0 sufficiently small such that, for (λ, h) ∈ [0,Λ0] ×
(H − δt − ηt,H − δt),

|L(λ, h)| ≤ C max{(εt(h))−3/2, U(εt(h))−3}λ. (4.13)
For h ∈ [−H + δb + ηb,H − δt − ηt], εb(h) and εt(h) are uniformly bounded from below with respect
to h. Therefore, by combining (4.8) and (4.13), there exists C > 0 independent of h such that, for any
(λ, h) ∈ [0,Λ0] × (−H + δb,H − δt),

|L(λ, h)| ≤ C((εb(h))−3/2 + max{(εt(h))−3/2, U(εt(h))−3})λ.

5. Proof of theorem 3.1

5.1. Continuity and monotonicity of the global force

In Sect. 3, we have defined the lift L(λ, h) as a possibly multi-valued function of (λ, h) ∈ [0,+∞)×(−H +
δb,H − δt). Let f be the restoring force satisfying (3.2)-(3.3). Then, the global force acting on Bh is the
function φ : [0,+∞) × (−H + δb,H − δt) → R defined by

φ(λ, h) = f(h) − L(λ, h). (5.1)

We first focus on the λ-dependence by maintaining h fixed, and we prove the Lipschitz-continuity of the
map λ �→ φ(λ, h).

Proposition 5.1. Let h = H − max{δb, δt}. There exist λ > 0 and h∗ ∈ (0, h) such that λ �→ φ(λ, h) is
Lipschitz continuous in [0, λ) for all h ∈ [−h∗, h∗].

Proof. To begin, let us take λ and h∗ sufficiently small so that Theorem 2.2 guarantees the uniqueness for
(2.4) whenever λ < λ and |h| ≤ h∗ (see Fig. 3). Hence, L(λ, h) is a one-valued function on [0, λ)×[−h∗, h∗].
Since f does not depend on λ, we only need to show that λ �→ L(λ, h) is Lipschitz continuous in a
neighborhood of λ = 0, possibly smaller than [0, λ).



ZAMP Asymmetric equilibrium configurations Page 15 of 25   180 

For λ1, λ2 ∈ [0, λ) consider, respectively, the solutions (u(λ1), p(λ1)) and (u(λ2), p(λ2)) to (2.4). Let

v := u(λ1) − u(λ2), q := p(λ1) − p(λ2), (5.2)

so that (v, q) satisfies
−μΔv + v · ∇v + ∇q = −v · ∇u(λ2) − u(λ2) · ∇v, ∇ · v = 0 in Ωh,

v|Γt
= (λ1 − λ2)Ue1, v|Γl

= (λ1 − λ2)Vin(x2)e1, v|Γr
= (λ1 − λ2)Vout(x2)e1,

v|∂Bh
= v|Γb

= 0.

(5.3)

Let vλ := v − sλ, where sλ ∈ W 1,∞(Ωh) ∩ H2(Ωh) is a solenoidal extension of v that can be constructed
as s in (2.24) and, hence, it satisfies the estimates (2.25), namely

‖∇sλ‖L2(Ωh) ≤ Ch|λ1 − λ2|, ‖Δsλ‖L2(Ωh) ≤ Ch|λ1 − λ2|,
‖sλ‖L∞(Ωh) ≤ Ch|λ1 − λ2|, ‖sλ · ∇sλ‖L2(Ωh) ≤ Ch|λ1 − λ2|2. (5.4)

We then rewrite (5.3) as

− μΔvλ + vλ · ∇vλ + ∇q = g, ∇ · vλ = 0 in Ωh, vλ|∂Ωh
= 0, (5.5)

where

g := μΔsλ − v · ∇(u(λ2) + sλ) − u(λ2) · ∇v + sλ · ∇sλ − sλ · ∇v.

From Theorem 2.2, we know that v, u(λ2) ∈ H2(Ωh) ↪→ L∞(Ωh), so that g ∈ L2(Ωh). Moreover,

‖g‖L2(Ωh) ≤ μ‖Δsλ‖L2(Ωh) +
(‖∇u(λ2)‖L2(Ωh) + ‖∇sλ‖L2(Ωh)

)‖v‖L∞(Ωh)

+ ‖u(λ2)‖L∞(Ωh)‖∇v‖L2(Ωh) + ‖sλ · ∇sλ‖L2(Ωh) + ‖sλ‖L∞(Ωh)‖∇v‖L2(Ωh)

≤ Ch|λ1 − λ2| + Ch(λ2 + |λ1 − λ2|
)‖v‖H2(Ωh)

+ Chλ2‖v‖H2(Ωh) + Ch|λ1 − λ2|2 + Ch|λ1 − λ2| · ‖v‖H2(Ωh),

where we used Hölder inequality (first step), the estimates (2.7)-(2.8)-(5.4) and the embeddings H2 ↪→
H1, L∞ (second step). Thus, by extending the solution as in the proof of Theorem 2.2, recalling [14] and
applying [5, Theorem IV.5.1] to (5.5), we obtain

‖vλ‖H2(Ωh) + ‖q‖H1(Ωh) ≤ Ch|λ1 − λ2| + Ch

(
λ2 + |λ1 − λ2|

)‖v‖H2(Ωh). (5.6)

Hence, there exists a possibly smaller λ > 0 such that if λ1, λ2 ∈ [0, λ), the second term in the right-hand
side of (5.6) can be absorbed in the left-hand side and

‖vλ‖H2(Ωh) + ‖q‖H1(Ωh) ≤ Ch|λ1 − λ2|, (5.7)

for some Ch > 0 also depending on λ. Since the lift (3.1) is linear with respect to u and p, we have

L(λ1, h) − L(λ2, h) = −e2 ·
∫

∂Bh

T(v, q)n

with v and q defined in (5.2). Therefore, using the Trace Theorem and (5.7), we infer that, for any
λ1, λ2 ∈ [0, λ) and a fixed h ∈ [−h∗, h∗], we have

|L(λ1, h) − L(λ2, h)| ≤ Ch

(‖∇v‖L1(∂Bh) + ‖q‖L1(∂Bh)

)
≤ Ch

(‖v‖H2(Ωh) + ‖q‖H1(Ωh)

) ≤ Ch|λ1 − λ2|.
This shows that λ �→ L(λ, h) is Lipschitz continuous in [0, λ) for all h ∈ [−h∗, h∗]. �

We now focus on the h-dependence of φ by maintaining λ fixed. Although we prove a slightly stronger
result, we state:

Proposition 5.2. Let h = H − max{δb, δt}. There exist h0 ∈ (0, h∗] and λ0 ∈ (0, λ] (see Proposition 5.1)
such that h �→ φ(λ, h) is continuous and strictly increasing in [−h0, h0] for all λ ∈ [0, λ0).
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Proof. Recall that R = (−L,L)×(−H,H). Let 0 < r1 < r2 and Dri
(0) be the open disk centered at (0, 0)

with radius ri. Choose h0 ∈ (0, h∗) in such a way that Bh ⊂ Dr1(0) ⊂ Dr2(0) ⊂ R whenever |h| ≤ h0;
in later steps, we may need to choose a possibly smaller h0 that, however, we continue calling h0. Let
σ ∈ W 2,∞(R,R2) be defined by

σ(x1, x2) = F (|x|)e2, (5.8)

with F ≡ 1 in [0, r1], F ≡ 0 in [r2,+∞) and F ∈ W 2,∞(r1, r2) is the polynomial of third degree such that
F (r1) = 1 and F (r2) = F ′(r1) = F ′(r2) = 0. For h ∈ [−h0, h0], with h0 small, we view the fluid domain
Ωh as a variation of Ω0 via the diffeomorphism Id + hσ, that is,

Ωh = (Id + hσ)(Ω0).

In particular, ∂Bh = ∂B0 + he2 with unit outer normal vector n(h) = n(0) ◦ (Id + he2). Let J(h) denote
the Jacobian matrix of the diffeomorphism Id + hσ, that is,

J(h) = I + h
F ′(|x|)

|x|
(

0 0
x1 x2

)

with I the 2 × 2 identity matrix. Fixing λ ∈ [0, λ), the lift in (3.1) can be written as

L(λ, h) = −e2 ·
∫

∂B0+he2

T(u(h), p(h))n(h)

with T(u(h), p(h)) = T(u(λ, h), p(λ, h)). Letting

U(h) = u(h) ◦ (Id + hσ), P (h) = p(h) ◦ (Id + hσ)

with σ as in (5.8), we transform the moving boundary integral into a fixed boundary integral, namely

L(λ, h) = −e2 ·
∫

∂B0

T(U(h), P (h))(n(0) ◦ (Id + he2)).

Note that (U(0), P (0)) = (u(0), p(0)). We now claim that

h �→ (U(h), P (h)) ∈ H2(Ω0) × H1(Ω0) belongs to C1(−h0, h0). (5.9)

To this end, let M(h) = (J−1(h))T and we rewrite (2.4) as

− μ∇ · (|det J(h)|MT (h)M(h)∇U(h))

+ U(h) · |det J(h)|M(h)∇U(h) + ∇ · (|det J(h)|M(h)P (h)) = 0 in Ω0,

|det J(h)|M(h)∇ · U(h) = 0 in Ω0,

complemented with the same boundary conditions. This can also be expressed as

H(h,U(h), P (h)) = 0 (5.10)

where H : (−h0, h0) × H2(Ω0) × H1(Ω0) → L2(Ω0) × H1(Ω0) is defined by H(h, ξ,�) =
(H1(h, ξ,�),H2(h, ξ,�)) with

H1(h, ξ,�) = − μ∇ · (|det J(h)|MT (h)M(h)∇ξ)

+ ξ · |det J(h)|M(h)∇ξ + ∇ · (|det J(h)|M(h)�),

H2(h, ξ,�) = |det J(h)|M(h)∇ · ξ.

(5.11)
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Due to the expression (5.8), we are able to compute |det J(h)|M(h) and |det J(h)|MT (h)M(h) explicitly
at second order for h → 0. In fact,

|det J(h)| = 1 + h
F ′(|x|)

|x| x2,

M(h) = I +
h

|det J(h)|
F ′(|x|)

|x|
(

0 −x1

0 −x2

)
= I + h

F ′(|x|)
|x|

(
0 −x1

0 −x2

)
+ O(h2)

yield

|det J(h)|M(h) = I + h
F ′(|x|)

|x|
(

x2 − x1

0 0

)
=: I + hR0,

|det J(h)|MT (h)M(h) = I + h
F ′(|x|)

|x|
(

x2 − x1

−x1 − x2

)
+ h2(F ′(|x|))2

(
0 0
0 1

)
+ O(h3)

=: I + hR1 + h2R2 + O(h3),

(5.12)

where O(h3) contains terms having at least third order with respect to h as h → 0. Note that the
expression of |det J(h)|M(h) in (5.12) is exact and obtained without any Taylor expansion for h → 0. We
have that H is C1 in a neighborhood of (0, U(0), P (0)) since the mappings h �→ det J(h) and h �→ M(h)
are C1(−h0, h0) with values in C1(R,R4).

For h ∈ (−h0, h0), we consider the linearized operator Υ = D(ξ,�)H(h,U(h), P (h)) defined through
the Jacobian matrix of H. For any

(χ,Π) ∈ X × Y := (H2(Ω0) ∩ H1
0 (Ω0)) × (H1(Ω0) ∩ L2

0(Ω0)),

we have Υ(χ,Π) = (Υ1(χ,Π),Υ2(χ,Π)) with

Υ1(χ,Π) = − μ∇ · (|det J(h)|MT (h)M(h)∇χ) + χ · |det J(h)|M(h)∇U(h)

+ U(h) · |det J(h)|M(h)∇χ + ∇ · (|det J(h)|M(h)Π),

Υ2(χ,Π) =|det J(h)|M(h)∇ · χ.

The linear operator Υ is bounded from X ×Y into L2(Ω0)×Y. To show that Υ is an isomorphism, given
(ϕ1, ϕ2) ∈ L2(Ω0) × Y, we have to prove that there exists a unique solution (χ,Π) ∈ X × Y to

− μΔχ + χ · ∇U(h) + U(h) · ∇χ + ∇Π

+ h (−μ∇ · R1∇χ + χ · R0∇U(h) + U(h) · R0∇χ + ∇ · (R0Π))

− h2μ∇ · R2∇χ + O(h3) = ϕ1 in Ω0,

∇ · χ + hR0∇ · χ = ϕ2 in Ω0.

This linear elliptic problem admits a unique solution provided that

|h| < h0 and ‖U(h)‖H2(Ω0) < r

for h0, r > 0 small enough. For |h| < h0 and σ as in (5.8), we have

c‖u(h)‖H2(Ωh) ≤‖U(h)‖H2(Ω0) ≤ C‖u(h)‖H2(Ωh),

c‖p(h)‖H1(Ωh) ≤‖P (h)‖H1(Ω0) ≤ C‖p(h)‖H1(Ωh),
(5.13)

with constants 0 < c ≤ C independent of h. Then, by taking λ ∈ [0, λ), the bound (2.8), where the
constant Ch is uniformly bounded for |h| < h0, yields the needed smallness condition for U(h), so that Υ
is an isomorphism. Therefore, by applying the Implicit Function Theorem to (5.10), we conclude (5.9).

Moreover, the derivatives U ′(h) and P ′(h), whose existence follows from (5.9), satisfy

Υ(U ′(h), P ′(h)) = −∂hH(h,U(h), P (h)). (5.14)
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From (5.12), we know that for any h (resp. h → 0)

d

dh
(|det J(h)|M(h)) = R0,

d

dh
(|det J(h)|MT (h)M(h)) = R1 + 2hR2 + O(h2).

Then, recalling the definition (5.11), (5.14) and the fact that Υ is an isomorphism imply that (U ′(h), P ′(h))
is uniquely determined by the linear elliptic problem

− μΔU ′(h) + U ′(h) · ∇U(h) + U(h) · ∇U ′(h) + ∇P ′(h)

= S0(U(h), P (h)) + hS1(U ′(h), P ′(h), U(h)) + O(h2) in Ω0,

∇ · U ′(h) = −R0∇ · U(h) − hR0∇ · U ′(h) in Ω0,

(U ′(h), P ′(h)) ∈ X × Y,

(5.15)

with

S0(U(h), P (h)) =μ∇ · R1∇U(h) − U(h) · R0U(h) − ∇ · (R0P (h)),

S1(U ′(h), P ′(h), U(h)) =μ∇ · (R1∇U ′(h) + 2R2∇U(h)) − U ′(h) · R0∇U(h)

− U(h) · R0∇U ′(h) − ∇ · (R0P
′(h)).

For h ∈ (−h0, h0), with h0 small, we have

‖U ′(h)‖H2(Ω0) + ‖P ′(h)‖H1(Ω0)

≤ C(‖U ′(h) · ∇U(h) + U(h) · ∇U ′(h) + S0(U(h), P (h))‖L2(Ω0) + ‖R0∇ · U(h)‖H1(Ω0)).

Since (U(h), P (h)) ∈ H2(Ω0) × H1(Ω0) due to (5.13) and Theorem 2.2, we bound the right-hand side of
the above expression as

‖U ′(h) · ∇U(h) + U(h) · ∇U ′(h)‖L2(Ω0) ≤ C‖∇U ′(h)‖L2(Ω0)‖U(h)‖H2(Ω0),

‖S0(U(h), P (h))‖L2(Ω0) + ‖R0∇ · U(h)‖H1(Ω0) ≤ C(‖U(h)‖H2(Ω0) + ‖P (h)‖H1(Ω0)),

where in the second inequality we used that σ ∈ W 2,∞(R,R2), see (5.8). Testing the first equation in
(5.15) with U ′(h), using (5.13) and (2.13)-(2.14) yield

‖∇U ′(h)‖L2(Ω0) ≤ C(‖U(h)‖H1(Ω0) + ‖U(h)‖2
H1(Ω0)

+ ‖P (h)‖L2(Ω0))

≤ C(‖U(h)‖H1(Ω0) + ‖U(h)‖2
H1(Ω0)

).

Summarizing, we obtain

‖U ′(h)‖H2(Ω0) + ‖P ′(h)‖H1(Ω0)

≤ C
(
‖U(h)‖H2(Ω0)(1 + ‖U(h)‖H1(Ω0) + ‖U(h)‖2

H1(Ω0)
) + ‖P (h)‖H1(Ω0)

)

≤ C(λ + λ3) ≤ Cλ

(5.16)

for any λ ∈ [0, λ), where in the second inequality we used (5.13) and (2.7)-(2.8).
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Finally, we estimate the variation in the lift for small values of h, say |h| < h0. By taking h1, h2 ∈
(−h0, h0), from the trace theorem we have

|L(λ, h1) − L(λ, h2)| =

∣∣∣∣∣∣
∫

∂B0

T(U(h1), P (h1))(n(0) ◦ (Id + h1e2)) − T(U(h2), P (h2))(n(0) ◦ (Id + h2e2))

∣∣∣∣∣∣
≤

∫

∂B0

|T(U(h1), P (h1)) − T(U(h2), P (h2))|

+
∫

∂B0

|T(U(h2), P (h2))| · |n(0) ◦ (Id + h1e2) − n(0) ◦ (Id + h2e2)|

≤ C(‖U(h1) − U(h2)‖H2(Ω0) + ‖P (h1) − P (h2)‖H1(Ω0))

+ C(‖U(h2)‖H2(Ω0) + ‖P (h2)‖H1(Ω0))|h1 − h2|.
Then, (5.16) and the mean value theorem yield

|L(λ, h1) − L(λ, h2)|
≤ Cλ|h1 − h2| + C(‖u(h2)‖H2(Ωh2 ) + ‖p(h2)‖H1(Ωh2 ))|h1 − h2| ≤ Cλ|h1 − h2|

using (5.13) and (2.8) in Ωh2 . Then, the monotonicity property (3.2) ensures that, if −h0 < h2 < h1 < h0,

φ(λ, h1) − φ(λ, h2) = f(h1) − f(h2) − L(λ, h1) + L(λ, h2) ≥ (γ − Cλ)(h1 − h2).

There exists λ0 ∈ (0, λ] such that γ − Cλ0 ≥ γ/2. Therefore, h �→ φ(λ, h) is continuous and strictly
increasing in [−h0, h0] (with a possible smaller h0) for all λ ∈ [0, λ0). �

5.2. Conclusion of the proof

Let (u(λ, h), p(λ, h)) be a solution to (2.4), and let φ(λ, h) be the corresponding global force in (5.1).
Then, the triple (u, p, h) is a solution to (3.4) if and only if

(u(λ, h), p(λ, h)) solves (2.4) and φ(λ, h) = 0.

Therefore, Theorem 3.1 follows once we prove:

Proposition 5.3. Let φ be as in (5.1) and (λ0, h0) be as in Proposition 5.2. Then, there exist Λ1 ∈ (0, λ0]
and a unique h ∈ C0[0,Λ1) such that, for all λ ∈ [0,Λ1), φ(λ, h) = 0 if and only if h = h(λ). Moreover,
‖h‖L∞(0,Λ1) ≤ h0.

Proof. We prove the result in two steps, namely by analyzing the behavior of φ in two different subregions
of [0, λ0) × (−H + δb,H − δt).

We start by considering the case when |h| is close to 0. Let again h = H − max{δb, δt}. We claim that
there exists λ̃ ∈ (0, λ0] and a unique h ∈ C0[0, λ̃) such that

∀(λ, h) ∈ [0, λ̃) × [−h0, h0] φ(λ, h) = 0 ⇐⇒ h = h(λ). (5.17)

To this end, we notice that Theorem 2.2 implies that, when λ = 0, the unique solution to (2.4) is
(u, p) = (0, 0), regardless of the value of h ∈ (−H + δb,H − δt). Hence, φ(0, 0) = 0. Moreover, by
Proposition 5.2 we know that h �→ φ(0, h) is continuous and strictly increasing in [−h0, h0]. These two
facts imply that

φ(0,−h0) < 0 < φ(0, h0). (5.18)
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In turn, by Proposition 5.1 we know that λ �→ φ(λ, h) is continuous in [0, λ) for all h ∈ [−h0, h0]. By
(5.18) and by compactness, we then infer that there exists λ̃ ∈ (0, λ0] such that

φ(λ,−h0) < 0 < φ(λ, h0) ∀λ ∈ [0, λ̃) (5.19)

and, by invoking again Proposition 5.2, that h �→ φ(λ, h) is continuous and strictly increasing in [−h0, h0]
for all λ ∈ [0, λ̃). Together with (5.19), this implies that for all λ ∈ [0, λ̃) there exists a unique h(λ) ∈
[−h0, h0] such that φ(λ, h(λ)) = 0. This defines the function λ �→ h(λ) in the interval [0, λ̃). Its continuity
follows by the (separated) continuities proved in Propositions 5.1 and 5.2. The proof of (5.17) is so
complete.

We now claim that there exists Λ1 ∈ (0, λ̃] such that

φ(λ, h) �= 0 ∀(λ, h) ∈ [0,Λ1) ×
[
(−H + δb,H − δt) \ [−h0, h0]

]
. (5.20)

Recall that in this set φ(λ, h) may be multi-valued, see Theorem 3.2. In order to prove (5.20), from
(3.2)-(3.3) we know that there exists K0 ∈ (0,K] such that

f(h) ≤ −K0(εb(h))−3/2 for h ∈ (−H + δb,−h0),

f(h) ≥ K0 max{(εt(h))−3/2, U(εt(h))−3} for h ∈ (h0,H − δt),
(5.21)

while from Theorem 3.2 there exists (a different) C > 0 such that

L(λ, h) ≥ −C(εb(h))−3/2 λ for h ∈ (−H + δb,−h0),

L(λ, h) ≤ C max{(εt(h))−3/2, U(εt(h))−3} λ for h ∈ (h0,H − δt).
(5.22)

Gathering (5.21)-(5.22) together yields

φ(λ, h) ≤ (−K0 + Cλ)(εb(h))−3/2 for h ∈ (−H + δb,−h0),

φ(λ, h) ≥ (K0 − Cλ)max{(εt(h))−3/2, U(εt(h))−3} for h ∈ (h0,H − δt).

Then, there exists Λ1 ∈ (0, λ̃] such that (5.20) holds and the statement of the proposition follows from
(5.17) and (5.20). �

Remark 5.4. In fact, the proof of (5.20) shows that if λ > 0 is small, then

h0 < h < H − δt =⇒ φ(λ, h) > 0 and − H + δb < h < −h0 =⇒ φ(λ, h) < 0.

From a physical point of view, this means that, for small Reynolds numbers, the global force φ = φ(λ, h)
in (5.1) pushes downwards the body if Bh is close to the upper boundary Γt, whereas it pushes the body
upwards if Bh is close to the lower boundary Γb.

6. Symmetric configuration

We consider here a symmetric framework for (3.4), that is, when

(x1, x2) ∈ ∂B ⇐⇒ (x1,−x2) ∈ ∂B

and the boundary data are symmetric with respect to the line x2 = 0. Therefore, the FSI problem (3.4)
is modified on Γb and reads

− μΔu + u · ∇u + ∇p = 0, ∇ · u = 0 in Ωh

u|∂Bh
= 0, u|Γb

= u|Γt
= λUe1, u|Γl

= λVin(x2)e1, u|Γr
= λVout(x2)e1,

f(h) = −e2 ·
∫

∂Bh

T(u, p)n, (6.1)
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Fig. 6. Cutoff functions ζl (left) and ζr (right) on R when U = 1 for the symmetric configuration

with λ ≥ 0, U ∈ {0, 1} (up to normalization). Here, Vin, Vout ∈ W 2,∞(−H,H) are now even functions
satisfying

Vin(±H) = Vout(±H) = U,

H∫

−H

Vin(x2)dx2 =

H∫

−H

Vout(x2)dx2. (6.2)

In this symmetric framework, δb = δt = δ and h ∈ (−H + δ,H − δ). Then, we prove that the unique
curve h(λ) found in Theorem 3.1 reduces to h(λ) ≡ 0, namely that the unique equilibrium position is
symmetric. Again, we expect this position to be stable, at least for small λ.

Theorem 6.1. Let Vin, Vout ∈ W 2,∞(−H,H) be even functions satisfying (6.2) and f ∈ C0(−H+δ,H−δ)
satisfying f(0) = 0 and (3.2)-(3.3) with δb = δt = δ. There exists Λ1 > 0 such that for λ ∈ [0,Λ1) the FSI
problem (6.1) admits a unique strong solution (u(λ, h), p(λ, h), h) ∈ H2(Ωh) × H1(Ωh) × (−H + δ,H − δ)
given by (

u0(λ, 0), p0(λ, 0), 0
)
,

where (u0(λ, 0), p0(λ, 0)) is the unique solution to the first two lines in (6.1) for h = 0 and has the
following symmetries:

u0
1(x1,−x2) = u0

1(x1, x2), u0
2(x1,−x2) = −u0

2(x1, x2), p0(x1,−x2) = p0(x1, x2).

Proof. The first step is to obtain the counterpart of Theorem 2.2. The case U = 0 is already included in
the original statement. When U = 1, we construct the cutoff functions ζl and ζr in a slightly different
way with Fig. 4 replaced by Fig. 6. We define the solenoidal extension as in (2.24), which satisfies the
boundary conditions in (6.1).

With this construction, the refined bound (2.7) is replaced by

‖u‖H1(Ωh) ≤ C((εb(h))−3/2 + (εt(h))−3/2)λ.

Hence, in both cases U ∈ {0, 1}, by arguing as in the proof of Theorem 2.2, we infer that there exists
Λ = Λ(h) > 0 such that for λ ∈ [0,Λ(h)) the solution (u, p) to

− μΔu + u · ∇u + ∇p = 0, ∇ · u = 0 in Ωh

u|∂Bh
= 0, u|Γb

= u|Γt
= λUe1, u|Γl

= λVin(x2)e1, u|Γr
= λVout(x2)e1, (6.3)

is unique for any h ∈ (−H + δ,H − δ). This proves the counterpart of Theorem 2.2.
In particular, for h = 0 there exists a unique solution (u0, p0) to (6.3) in Ω0. Since Ω0 is symmetric

with respect to the line x2 = 0, the couple (u∗, p∗) : Ω0 → R
2 × R defined by

u∗
1(x1, x2) = u0

1(x1,−x2), u∗
2(x1, x2) = −u0

2(x1,−x2), p∗(x1, x2) = p0(x1,−x2),
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Fig. 7. Left: erection of a suspension bridge. Right: sketch of a cross section

also satisfies (6.3) for h = 0 (see also [10]). Therefore, by uniqueness (u0, p0) = (u∗, p∗) is also symmetric
and, thanks to all these symmetries, we obtain

L(λ, 0) = −e2 ·
∫

∂B0

T(u0(λ, 0), p0(λ, 0))n = 0,

which implies
φ(λ, 0) = f(0) = 0 for λ ∈ [0,Λ(h)). (6.4)

From Theorem 3.1, we know that there exist Λ1 > 0 and a unique curve h ∈ C0[0,Λ1) such that for
λ ∈ [0,Λ1) the unique solution to (6.1) is given by

(u(λ, h(λ)), p(λ, h(λ)), h(λ)).

Thanks to (6.4), h(λ) ≡ 0 and this solution coincides with (u0(λ, 0), p0(λ, 0), 0). �

7. An application: equilibrium positions of the deck of a bridge

A suspension bridge is usually erected starting from the anchorages and the towers. Then, the sustaining
cables are installed between the two couples of towers and the hangers are hooked to the cables. Once all
these components are in position, they furnish a stable working base from which the deck can be raised
from floating barges. We refer to [18, Section 15.23] for full details. The deck segments are put in position
one aside the other (see Fig. 7, left) and have the shape of rectangles while their cross-section resembles
to smoothened irregular hexagons (see Fig. 7, right) that satisfy (2.1).

This cross section B plays the role of the obstacle in (2.4) while Ωh is the region filled by the air. This
region can be either be a virtual box around the deck of the bridge or a wind tunnel around a scaled
model of the bridge. In both cases, we may refer to inflow and outflow also as windward and leeward,
respectively: λVine1 represents the laminar horizontal windward while λVoute1 is the leeward. Typically,
the higher is the altitude the stronger is the wind. Therefore, in this application we consider specific
laminar shear flows, which are the Couette flows. Thus, the inflow and outflow now read

Vin(x2) = Vout(x2) =
U

2H
(x2 + H) for x2 ∈ [−H,H], (7.1)

and satisfy (2.3). The windward creates both vertical and torsional displacements of the deck. However,
the cross section of the suspension bridge is also subject to some elastic restoring forces tending to maintain
the deck in its original position B0. These forces are of three different kinds. There is an upwards restoring
force due to the elastic action of both the hangers and the sustaining cables of the bridge. The hangers
behave as nonlinear springs which may slacken [1, 9-VI] so that they have no downwards action and they
be nonsmooth. There is the weight of the deck which acts constantly downwards: this is why there is
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no odd requirement on the restoring force considered in the model. There is also a nonlinear resistance
to both elastic bending and stretching of the whole deck for which B merely represents a cross-section.
Moreover, since the boundary of the channel R is virtual and our physical model breaks down in case of
collision of B with ∂R, we require that there exists an “unbounded force” preventing collisions.

Overall, the position of B depends on both the displacement parameter h and the angle of rotation θ
with respect to the horizontal axis. With the addition of this second degree of freedom, we have B = Bh,θ

and Ω = Ωh,θ. A “plastic” regime leading to the collapse of the bridge is reached when θ = ±π
4 (see

[1]) since the sustaining cables of the bridge attain their maximum elastic tension. The strong point of
the analysis carried out in this paper is that it applies independently of the part of ∂B closest to ∂R.
Therefore, for any θ ∈ (−π

4 , π
4 ), we can apply our general theory considering the family of bodies Bh,θ

simply by adapting it to the rotating scenario. The only difference now is that, when the body is free to
rotate, the collision with Γb and Γt occurs at h = −H + δb(θ) and h = H − δt(θ), where δb(θ) and δt(θ)
are positive functions of θ. For θ = 0, δb(0) and δt(0) are as in (2.2) while, for θ �= 0,

δb(θ) := − min
(x1,x2)∈∂B0,θ

x2 > 0, δt(θ) := max
(x1,x2)∈∂B0,θ

x2 > 0,

both being independent of h. Due to the possible complicated shape of B, these functions are not easy
to be determined explicitly. For this reason, we define the set of non-contact values of (h, θ) by

A = {(h, θ) ∈ (−H,H) × (−π
4 , π

4 ) : Bh,θ ⊂ R}. (7.2)

Clearly, (0, 0) ∈ A and (h, θ) ∈ ∂A if and only if Bh,θ ∩ ∂R �= ∅. We assume that, for some K > 0,
f ∈ C0(A) satisfies

lim sup
d(Bh,θ,Γb)→0

f(h, θ)(d(Bh,θ,Γb))3/2 ≤ −K,

lim inf
d(Bh,θ,Γt)→0

f(h, θ)
max{(d(Bh,θ,Γt))−3/2, U(d(Bh,θ,Γt))−3} ≥ K,

(7.3)

where d(·, ·) is the distance function. Assumption (7.3) generalizes (3.3) taking into account the rotational
degree of freedom. Moreover, we assume that

∃γ > 0 s.t.
f(h1, θ) − f(h2, θ)

h1 − h2
≥ γ ∀(h1, θ), (h2, θ) ∈ A,

f(0, 0) = 0, f(h, θ)θ > 0 ∀(h, θ) ∈ A with θ �= 0.

(7.4)

In fact, the second line in (7.4) is not mathematically needed, but, from a physical point of view, it states
that the restoring force does not act at equilibrium and tends to maintain B in an horizontal position.
A straightforward consequence of Theorem 3.1, in the case of the interaction between the wind and the
deck of a suspension bridge, is the following:

Corollary 7.1. Let Vin, Vout be as in (7.1) and f ∈ C0(A) satisfy (7.3)-(7.4). There exist Λ1 > 0 and a
unique h ∈ C0[0,Λ1) such that, for λ ∈ [0,Λ1) and θ ∈ (−π

4 , π
4 ), the FSI problem (3.4) admits a unique

solution (uθ(λ, h), pθ(λ, h), h) ∈ H2(Ωh,θ) × H1(Ωh,θ) × (−H,H), with (h, θ) ∈ A, given by

(uθ(λ, h(λ)), pθ(λ, h(λ)), h(λ)).

Here, (3.4) is understood with h replaced by the couple (h, θ).

The deck of a suspension bridge, in particular its cross section, may have a nonsmooth boundary. If
B is not W 2,∞, but it is only Lipschitzian, Theorem 2.2 ceases to hold and we only know that (u, p)
is a weak solution to (2.4) so that (3.1) does not hold in a “strong” sense. Indeed, since u ∈ H1(Ωh),
see (2.7), we may rewrite the first equation in (2.4) as −μΔu + ∇p = f with f ∈ Lq(Ωh) for all q < 2.
Hence, f ∈ H−ε(Ωh) for any ε > 0. By applying [19, Theorem 7], we then deduce that u ∈ H1+s(Ωh)
and p ∈ Hs(Ωh) for all s < 1/2, but, still, this does not allow to consider the trace of T(u, p) as an
integrable function over ∂Bh. However, following [10] we may define the lift L through a generalized
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formula. Indeed, from u ∈ H1(Ωh) we know that T(u, p) ∈ L2(Ωh) and, since Ωh is a bounded domain,
T(u, p) ∈ L3/2(Ωh). Moreover, from the first equation in (2.4) we obtain ∇·T(u, p) ∈ L3/2(Ωh). Therefore,
T(u, p) ∈ E3/2(Ωh) := {f ∈ L3/2(Ωh) | ∇ · f ∈ L3/2(Ωh)}. By Theorem III.2.2 in [5], we know that
T(u, p)n|∂Ωh

∈ W−2/3,3/2(∂Ωh). Hence, if ∂Bh is Lipschitzian and (u, p) is a weak solution to (2.4), then
the lift exerted by the fluid over Bh is

L(λ, h) = −e2 · 〈T(u, p)n, 1〉∂Bh
, (7.5)

where 〈·, ·〉∂Bh
denotes the duality pairing between W−2/3,3/2(∂Bh) and W 2/3,3(∂Bh).
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853–882 (1982)

[5] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer Monographs in
Mathematics, 2nd edn. Springer, New York (2011). (Steady-state problems)

[6] Gazzola, F.: Mathematical Models for Suspension Bridges, vol. 15 of MS&A. Modeling, Simulation and Applications.
Springer, Cham (2015)

[7] Gazzola, F., Pata, V., Patriarca, C.: Attractors for a fluid-structure interaction problem in a time-dependent phase
space, To appear in J. Funct. Anal.

http://creativecommons.org/licenses/by/4.0/


ZAMP Asymmetric equilibrium configurations Page 25 of 25   180 

[8] Gazzola, F., Patriarca, C.: An explicit threshold for the appearance of lift on the deck of a bridge. J. Math. Fluid Mech.
24, 1–23 (2022)

[9] Gazzola, F., Secchi, P.: Inflow-outflow problems for Euler equations in a rectangular cylinder. Nonlinear Differ. Equ.
Appl. NoDEA 8, 195–217 (2001)

[10] Gazzola, F., Sperone, G.: Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for
unique solvability. Arch. Ration. Mech. Anal. 238, 1283–1347 (2020)

[11] Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics. Pitman
(Advanced Publishing Program), Boston, MA (1985)

[12] Ho, B.P., Leal, L.G.: Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65,
365–400 (1974)

[13] Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431
(1976)

[14] Murat, F., Simon, J.: Quelques résultats sur le contrôle par un domaine géométrique, VI Laboratoire d’Analyse
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[16] Päıdoussis, M.P., Price, S.J., de Langre, E.: Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge
University Press, Cambridge (2010)

[17] Pironneau, O.: On optimum design in fluid mechanics. J. Fluid Mech. 64, 97–110 (1974)
[18] Podolny, W.: Cable-suspended bridges, Structural Steel Designer’s Handbook, 3rd edn. McGraw-Hill, INC, New York

(1999)
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