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Abstract

Functional Data Analysis represents a field of growing interest in statistics. Despite
several studies have been proposed leading to fundamental results, the problem of
obtaining valid and efficient prediction sets has not been thoroughly covered. Indeed,
the great majority of methods currently in the literature rely on strong distributional
assumptions (e.g, Gaussianity), dimension reduction techniques and/or asymptotic
arguments. In this work, we propose a new nonparametric approach in the field of
Conformal Prediction based on a new family of nonconformity measures inducing
conformal predictors able to create closed-form finite-sample valid or exact prediction
sets under very minimal distributional assumptions. In addition, our proposal ensures
that the prediction sets obtained are bands, an essential feature in the functional
setting that allows the visualization and interpretation of such sets. The procedure
is also fast, scalable, does not rely on functional dimension reduction techniques and
allows the user to select different nonconformity measures depending on the problem
at hand always obtaining valid bands. Within this family of measures, we propose
also a specific measure leading to prediction bands asymptotically no less efficient
than those with constant width.

Keywords: Conformal Prediction; Distribution-free prediction set; Exact predic-
tion set; Functional data; Prediction band; Valid prediction set

1 Introduction

One of the main roles of statistics in our new, data-rich world is to provide scientists,
business people and policy makers with tools able to deal with an increasing amount
of data, of increasing complexity. Automated sensor arrays and measuring systems
now provide huge quantities of high-frequency and high-dimensional data about all
sorts of social or physical phenomena.
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Among the most popular toolboxes that have the capacity to deal with this kind
of complex data one can find Functional Data Analysis (FDA, Ramsay & Silverman
2005). FDA is an ebullient field of statistics which aim is to develop theory and
methods to deal with data sets made of functions defined over a domain, either uni-
or multidimensional, and usually characterized by some degree of smoothness. In the
following, we will indicate with Y(T ) the family of functions y : T → R belonging
to L∞(T ) with T closed and bounded subset of Rd, d ∈ N>0, and with y1, . . . , yn
possible realizations of n i.i.d. random functions Y1, . . . , Yn ∼ P taking values in
Y(T ). Without loss of generality, hereafter we will consider d = 1 since it is the
most common practical case. Despite being born in relatively recent times (Ramsay
1982), a plethora of standard multivariate tools have ported to the functional realm:
among others Functional Principal Component Analysis (Ramsay & Silverman 2005,
Chapter 10), Functional Linear Regression (Ramsay & Silverman 2005, Chapter 12)
and Functional Boxplots (Sun & Genton 2011).

A problem that, perhaps surprisingly, has not been covered in a satisfactory way
in the FDA literature is the issue of uncertainty quantification in prediction and
forecasting. In a more formal way, the interest is in the creation of prediction sets,
namely subsets of Y(T ) that include a new function Yn+1 (i.i.d to Y1, . . . , Yn) with a
certain nominal confidence level 1−α. In particular, the aim is to obtain either exact
- i.e. ensuring a coverage equal to the nominal confidence level - or at least valid - i.e.
ensuring a coverage no less than the nominal confidence level - prediction sets. Recent
works in FDA provide novel insights into this very meaningful applied and theoretical
issue. These attempts can be broadly classified in two classes: a first one, composed of
works based mainly on parametric bootstrapping techniques (e.g., Degras 2011, Cao
et al. 2012), and a second one, where a dimensionality reduction technique is applied
to render the naturally infinite-dimensional problem more tractable by projecting
it on a finite dimensional functional basis (e.g., Hyndman & Shahid Ullah 2007,
Antoniadis et al. 2016). These approaches carry some shortcomings: the first group of
techniques is computationally intensive, thus requiring long calculation times, while
the second ones rely on the approximations introduced by basis projection. Both
of them, in any case, either rely on not easily provable distributional assumptions
and/or on asymptotic results.

The framework of this manuscript is Conformal Prediction (Vovk et al. 2005,
Shafer & Vovk 2008), a novel method of forecasting firstly developed in the Machine
Learning community as a way to define prediction intervals for Support Vector
Machines (Gammerman et al. 1998). The interested reader can find a recent review
in Zeni et al. (2020). In univariate setting, Conformal Prediction is able to generate
distribution-free, valid prediction intervals and it has also been used as a data
exploration tool for Functional Data (Lei et al. 2015), via the use of a truncated
basis approach.

In this article, we build on top of the literature about set prediction for functional
data and Conformal Prediction, by introducing several theoretical and methodological
innovations.

1. In Section 2 we show the importance in interpretative terms of obtaining
functional prediction sets having a specific shape (i.e. prediction bands) through
a motivating example.

2. In Section 3.1 functional prediction sets are formally defined and the Semi-Off-
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Line Inductive Conformal framework, also known simply as Split Conformal, is
introduced. Specifically, we contribute in two ways to the Conformal Prediction
literature: via enriching the results about the validity of split conformal
prediction sets by making the exact probability reached by them explicit
(Theorem 1) and we provide what is to the best of our knowledge the first
formal proof of the exactness of smoothed split conformal prediction sets
(Appendix A.1).

3. In Section 3.2 we propose a nonconformity measure inducing a conformal
predictor able to create closed-form finite-sample either valid or exact prediction
bands of constant amplitude, under minimal distributional assumptions. The
procedure is fast, scalable and does not rely on widespread functional dimension
reduction techniques.

4. In Section 3.3 we propose a family of nonconformity measures (to which the
nonconformity measure introduced in Section 3.2 belongs) indexed by modula-
tion function sI1 that allows for prediction bands with non-constant width, but
able to keep all the aforementioned appealing properties. As a consequence,
prediction bands induced by the nonconformity measures belonging to this
family can be compared on the basis of features other than validity, such as
efficiency (i.e. the size).

5. In Section 3.3 we focus on a specific nonconformity measure belonging to this
family which leads to valid prediction bands asymptotically no less efficient
than those obtained by not modulating (Theorem 2, Theorem 3).

Finally, in Section 4 we propose a simulation study to compare our method with
four alternatives, and in Section 5 we apply our approach to the Berkeley Growth
Study data set (Tuddenham & Snyder 1954). Section 6 provides an overview of the
main results.

2 The Importance of Being a Band

Set prediction is of key importance in the statistical community. Specifically, three
main features characterize a prediction set: shape, coverage, and size. We start by
tackling, in this section, the first issue, while the last two are explored in Section 3.
In the classical multivariate statistical setting, elliptic regions have been and are still
considered as the standard shapes for prediction sets. Differently, in the functional
context many authors (López-Pintado & Romo 2009, Lei et al. 2015) note how the
focus should be on a particular type of prediction set, commonly known as prediction
band. Formally, a band is defined as

{y ∈ Y(T ) : y(t) ∈ Bn(t), ∀t ∈ T } ,

with Bn(t) ⊆ R interval for each t ∈ T (López-Pintado & Romo 2009, Degras 2017).
The focus on this type of sets, that can be defined as the Cartesian product of the
(infinitely many) intervals {Bn(t) : t ∈ T }, comes from the fact that – differently
from a generic region of Y(T ) – such a shape can be easily visualized on a plot (i.e.,
it is a band, in parallel coordinates, as noted by López-Pintado & Romo (2009)) and
thus interpreted with respect to the domain T . In order to clarify this concept, let us
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Figure 1. Example of importance of obtaining prediction bands.

consider the following example. Let C1
n be a prediction band and let us consider the

simple case in which Bn(t) is the interval [0, 1] for each t ∈ T : in so doing, from a
geometrical point of view C1

n is an infinite-dimensional hypercube. Specifically, let us
focus on two points of the domain, t1 and t2 respectively, and with a slight abuse of
notation let us indicate with C1

n(t1, t2) := {(y(t1), y(t2)) : (y(t1), y(t2)) ∈ [0, 1]× [0, 1]}
the ”restriction” of prediction band related to {t1, t2}. In addition, let C2

n be for
example a different hypothetical prediction set having the shape of an infinite-
dimensional hyper-sphere such that for instance C2

n(t1, t2) := {(y(t1), y(t2)) : (y(t1)−
0.5)2 + (y(t2)− 0.5)2 ≤ 0.52}, i.e. C2

n(t1, t2) is the closed disk of center (0.5,0.5) and
radius 0.5. Both C1

n(t1, t2) and C2
n(t1, t2) are plotted on the left side of Figure 1.

Drawing conclusions only on the basis of the behavior of the plotted functions in t1
and t2 and ignoring it in all the other points of the domain, the right side of Figure
1 shows a function that does not belong to C2

n (the dashed curve y1) and a function
that belongs to such set (the solid curve y2): indeed, conditional on the fact that
y1(t1) = 1, the dashed curve y1 must satisfy y1(t2) = 0.5 to be included in C2

n, as
shown by the red dot on the left of Figure 1. Conversely, conditional on the fact that
y2(t1) = 0.5, y2(t2) can assume whatever value between 0 and 1 to be included in C2

n,
as shown by the blue solid vertical line on the left of Figure 1. The fact that the
point where y1 and y2 intersect (the black dot on the right of Figure 1) determines
whether to include or not a function in C2

n on the basis of the value assumed by
that function in t1 represents an undeniable limit to the visualization of prediction
sets, especially considering that this phenomenon involves all t ∈ T . Fortunately,
this problem is completely avoided by prediction sets as C1

n, and more generally by
every prediction band: indeed, differently from prediction sets characterized by other
shapes, prediction bands always coincide with (and are not only a subset of) their
envelope. In view of this, the development of a method that necessarily outputs
prediction bands - instead of more general prediction sets - represents the starting
point of this work.
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3 Conformal Prediction Bands

3.1 Conformal Prediction

The framework we use to develop our prediction sets is Conformal Prediction, a
nonparametric approach proposed in the multivariate literature for the first time
by Gammerman et al. (1998) and thoroughly described in Vovk et al. (2005), that
can be used to construct finite-sample either valid or exact prediction sets under no
assumptions other than i.i.d. data (for a review of the topic see, e.g., Lei et al. 2018,
Zeni et al. 2020). Even though the theory holds also under the weaker assumption
of exchangeable data, in this manuscript we will focus on the case of i.i.d. data
which is a very common case in applications and in particular on the case of i.i.d.
functional data taking value in Y(T ).

Following the notation of Vovk et al. (2005), given a set of i.i.d. random functions
Y1, . . . , Yn ∼ P and an independent random function Yn+1 ∼ P , a valid prediction
set Cn,1−α := Cn,1−α(Y1, . . . , Yn) for Yn+1 is a set such that

P (Yn+1 ∈ Cn,1−α) ≥ 1− α (1)

for any significance level α ∈ (0, 1) and with P the probability corresponding to the
product measure induced by P (Lei et al. 2015). If the inequality in (1) is replaced by
the equality, the prediction set is also said to be exact. In order to avoid ambiguity,
later in the discussion the term coverage (or unconditional coverage) will be used
to refer to P (Yn+1 ∈ Cn,1−α), the term conditional coverage will be used to refer to
P (Yn+1 ∈ Cn,1−α|Cn,1−α) and the terms empirical coverage and empirical conditional
coverage will be used to refer to the estimate - from simulated data - of the coverage
and conditional coverage respectively.

Specifically, we will focus on the Semi-Off-Line Inductive Conformal framework,
also known simply as Split Conformal, a computationally efficient modification of
the original Transductive Conformal method (firstly proposed in Papadopoulos et al.
2002). In order to present this approach, let us consider the following procedure:
given data y1, . . . , yn, let {1, . . . , n} be randomly divided into two sets I1, I2 and let
us define the training set as {yh : h ∈ I1} and the calibration set as {yh : h ∈ I2},
with |I1| = m, |I2| = l and m, l ∈ N>0 such that n = m + l. Let us also define
nonconformity measure as any measurable function A({yh : h ∈ I1}, y) taking values
in R̄ whose aim is to score how different y ∈ Y(T ) is from the training set. The split
conformal prediction set constructed on the basis of the observed sample y1, . . . , yn
is defined as Cn,1−α := {y ∈ Y(T ) : δy > α}, with

δy :=
|{j ∈ I2 ∪ {n+ 1} : Rj ≥ Rn+1}|

l + 1

and nonconformity scores Rj := A({yh : h ∈ I1}, yj) for j ∈ I2, Rn+1 := A({yh : h ∈
I1}, y). In particular, hereafter we will focus on nonconformity scores {Rh : h ∈ I2}
having a continuous joint distribution, an assumption generally satisfied in the
functional context.

The essential result (due to Vovk et al. 2005) traditionally evoked when dealing
with the Conformal approach concerns the validity of split prediction sets: indeed,
under the exchangeability assumption (a direct consequence of having i.i.d. data) δY
is uniformly distributed over {1/(l+1), 2/(l+1), . . . , 1} and then (1) holds. Theorem
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1 proves and enriches such known result by making the exact probability reached by
split prediction sets explicit. The proof is given in Appendix A.1.

Theorem 1. Let Cn,1−α be a split conformal prediction set. If Y1, . . . , Yn+1 are i.i.d.
and {Rh : h ∈ I2} have a continuous joint distribution, then

P (Yn+1 ∈ Cn,1−α) = 1− b(l + 1)αc
l + 1

.

Specifically, Cn,1−α always satisfies

1− α ≤ P (Yn+1 ∈ Cn,1−α) < 1− α +
1

l + 1
. (2)

A natural consequence of the first part of Theorem 1 is that when b(l + 1)αc =
(l + 1)α the procedure automatically outputs exact prediction sets: in practice, since
in most cases both α and l are given by the application in hand, such property
should be simply considered as an useful by-product that may occur in some cir-
cumstances. More generally, Theorem 1 states that Conformal approach ensures an
easy-to-compute precise coverage for split prediction sets, and not only their validity.
Furthermore, the second part of Theorem 1 suggests that the coverage provided by
split conformal prediction sets is no less than 1− α and over-coverage is basically
avoided when sample size is large. In particular, inequality (2) represents a minimal
modification of Theorem 2 of Lei et al. (2018): the only difference - besides notation
- is the change of ‘’≤” with “<” in the upper bound of (2).

Conformal inference is a field of deep interest as minimal assumptions are required
on P to obtain prediction sets satisfying (1) for any finite sample size n, a property
particularly appealing in the functional context. A slight modification (Vovk et al.
2005) of the aforementioned procedure even allows to obtain a stronger version
of Theorem 1: in order to present it, first of all let us introduce an element of
randomization τn+1, realization of a uniform random variable in [0, 1]. The smoothed
split conformal prediction set is defined as Cn,1−α,τn+1 :=

{
y ∈ Y(T ) : δy,τn+1 > α

}
,

with

δy,τn+1 :=
|{j ∈ I2 : Rj > Rn+1}|+ τn+1 |{j ∈ I2 ∪ {n+ 1} : Rj = Rn+1}|

l + 1
.

Smoothed split conformal prediction sets are, by construction, exact for any α, l, i.e.
P
(
Yn+1 ∈ Cn,1−α,τn+1

)
= 1− α: to the best of our knowledge, in the literature there

is no formal proof of this well-established result (due to Vovk et al. 2005), and so a
proof is given in Appendix A.1.

Remark 1. Our discussion was limited to the split setting because our work only
focuses on it, but the results of this section are very general and require just little
changes to be applied to the Transductive/Full Conformal framework. In addition,
as highlighted by Vovk et al. (2005) and briefly mentioned at the beginning of this
section, Theorem 1 and the result about exactness of smoothed prediction sets hold
even when the weaker assumption of exchangeability is formulated instead of the
traditional hypothesis of i.i.d. data.

Remark 2. The division of data into the training and calibration sets always induces
an element of randomness into the procedure, also in the non-smoothed scenario. A
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possible approach to limit the effect of this evidence consists of combining prediction
sets obtained from different splits, but the results provided by Lei et al. (2018)
suggest to perform a single split. As a consequence, in this article the aforementioned
single-split process is considered.

Remark 3. The Conformal approach can be also successfully applied to regression
and classification problems. A detailed presentation is not included hereafter being
out of scope, but an exhaustive discussion can be found in Vovk et al. (2005).

Remark 4. Although we focus on the functional setting, the Conformal framework
has initially been developed in the traditional univariate and multivariate settings
and so all arguments and results presented in this section can also be applied to
univariate variables and random vectors.

3.2 Supremum Metric as a Nonconformity Measure

Although some authors proposed different approaches to find prediction bands under
the Gaussian assumption (Yao et al. 2005) and through finite dimensional projection
(Lei et al. 2015), to the best of our knowledge no method to create valid prediction
bands by only assuming i.i.d. functional data and by avoiding dimension reduction
is available in the literature.

In light of this and of the discussion in Section 2, we propose a fast and scalable
split conformal predictor that outputs closed-form finite-sample valid (or even exact)
prediction bands under only the i.i.d. assumption. Indeed, the Conformal framework
ensures, by construction, that the prediction sets obtained are always valid, but other
features such as shape and size depend on the specific nonconformity measure used:
as a consequence, the core of the Conformal approach is represented by the choice of
such measure.

In particular, the nonconformity measure we propose automatically allows to
obtain prediction bands and is based on the supremum metric:

A({yh : h ∈ I1}, y) = sup
t∈T
|y(t)− gI1(t)| , (3)

with gI1 : T → R a function belonging to L∞(T ) based on {yh : h ∈ I1} and
acting as a point predictor of the new observation. Given the assumptions on Y(T )
and T , the computation of the supremum in (3) could be replaced by the simpler
computation of the maximum: however, for historical reasons and consistency with
possible future developments of the current work, we will use the standard notation
(3). Although valid prediction bands are obtained regardless the specific gI1 involved,
a careful choice of this function helps to obtain small prediction bands, a desirable
property from an application point of view which will be investigated in Section
3.3 (Lei et al. 2018). In view of this, gI1 is typically a point predictor summarizing
information provided by {yh : h ∈ I1}, e.g. the sample functional mean. However,
since the purpose of the article is to construct either valid or exact prediction bands
starting from any point predictor in order to obtain a widely usable procedure, later
in the discussion we will always consider gI1 as given - and properly chosen by the
expert according to the specific framework considered. Focusing on the non-smoothed
scenario (the minor changes needed for the smoothed case are introduced in Appendix
A.4), first of all it is possible to notice that if α ∈ (0, 1/(l + 1)) then Cn,1−α = Y(T )
since δy can not be less than 1/(l + 1): for this reason, later in the discussion we
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will always consider α ∈ [1/(l + 1), 1), unless otherwise stated. If α ∈ [1/(l + 1), 1),
the definition of Cn,1−α and δy implies that y ∈ Cn,1−α ⇐⇒ Rn+1 ≤ k, with k the
d(l + 1)(1− α)eth smallest value in the set {Rh : h ∈ I2}. Then

sup
t∈T
|y(t)− gI1(t)| ≤ k ⇐⇒ |y(t)− gI1(t)| ≤ k ∀t ∈ T

⇐⇒ y(t) ∈ [gI1(t)− k, gI1(t) + k] ∀t ∈ T .

Therefore, the split conformal prediction set induced by the nonconformity measure
(3) is

Cn,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− k, gI1(t) + k] ∀t ∈ T } . (4)

Besides having the shape of a a band, the introduced prediction set can be
found in closed form, an appealing property that incredibly speeds up computation
time. In addition, the Conformal framework and the simplicity of the nonconformity
measure ensure highly scalable prediction bands as, on top of the cost needed to
build the point predictor gI1 , the time required to find k increases linearly with l.
Then, if a particularly sophisticated predictor is chosen for gI1 , one is justified in
expecting the total computation cost to be dominated by the calculation of such
point predictor. Moreover, as usual in the prediction framework the band is built
around a “central” object (gI1 in this case), a fact that further suggests to define this
function as a data-driven point predictor. Finally, the prediction bands defined in (4)
are simultaneous by construction, i.e. bands ensuring the desired coverage globally
(in addition to the pointwise validity). Similarly to the multivariate setting, a simple
concatenation of pointwise prediction intervals based on the pointwise nonconformity
score |y(t)− gI1(t)| for all t ∈ T would lead to a prediction band: that is a subset
of the simultaneous prediction band (4) (the proof is given in Appendix A.2); with
guaranteed pointwise coverage for all t ∈ T ; but whose simultaneous coverage over
the domain T can be dramatically lower than the desired one.

3.3 Improving Efficiency: the Choice of the Modulation
Function

It can be easily noted that the width of (4) over T is constant and equal to 2k
but, intuitively, prediction bands that do not adapt their width according to the
local variability of functional data, even though theoretically sound, may be of
limited interest in real applications. Let us consider the following running example:
let y1, . . . , y198 be independent realizations of the random function Y (t) := X1 +
X2 cos(6πt) +X3 sin(6πt), with t ∈ [0, 1] and (X1, X2, X3) being a Gaussian random
vector such that E[Xi] = 0, Var[Xi] = 1, Cov[Xi, Xj] = 0.6 for i, j = 1, 2, 3, i 6= j.
The solid light blue band in the left panel of Figure 2 shows the prediction band
obtained by the procedure presented in Section 3.2 considering α = 0.1, m = n/2
and gI1 sample functional mean of the training set: given the different variability of
functional data over T , in the low-variance parts of the domain the prediction band
is dramatically large containing all the pointwise evaluations of the functional data
(see, for example, t = 0.5 and nearby points).

A possible solution to this drawback consists of defining the following nonconfor-
mity measure and nonconformity scores:

A({yh : h ∈ I1}, y) = sup
t∈T

∣∣∣∣y(t)− gI1(t)
sI1(t)

∣∣∣∣ , (5)
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Figure 2. The left panel shows the split conformal prediction band computed
as in (4) (solid light blue band) and that computed as in (6) by considering the
standard deviation function as sI1 (dashed purple band). For visualization, a random
subsample of y1, . . . , y198 is plotted. The right panel shows the empirical pointwise
conditional coverage reached by the first band (solid light blue line) and by the
second one (dashed purple line). α = 0.1.

Rs
j := sup

t∈T

∣∣∣∣yj(t)− gI1(t)sI1(t)

∣∣∣∣ , Rs
n+1 := sup

t∈T

∣∣∣∣y(t)− gI1(t)
sI1(t)

∣∣∣∣ ,
with j ∈ I2 and sI1 := s({yh : h ∈ I1}) : T → R>0 a function which belongs to
L∞(T ) based on {yh : h ∈ I1}. At the interpretative level, the new nonconformity
measure (5) can be suitably considered as the nonconformity measure (3) taking the
transformed functions ys(t) := y(t)/sI1(t) and gsI1(t) = gI1(t)/sI1(t) ∀t ∈ T as input
instead of the original functions y(t), gI1(t). It is important to notice that, since
sI1(t) > 0 ∀t ∈ T , the function sI1 modulates the original data without altering the
order of the functions at each point t: for this reason, later in the discussion the
term modulation function will be used to refer to sI1 .

Therefore, the split conformal prediction band induced by the nonconformity
measure (5), obtained by replicating the computations of Section 3.2 (see Appendix
A.3 for the proof), is

Csn,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T } , (6)

with ks the d(l+ 1)(1−α)eth smallest value in the set {Rs
h : h ∈ I2}. In other words,

the procedure presented in this section consists of modulating the data, computing
the prediction band (4) by using the transformed data and back-transforming it in
the non-modulated space: in so doing, prediction bands adapt their width according
to the specific modulation function chosen and their validity is guaranteed by the
Conformal framework. A similar consideration has been highlighted also in the
scalar regression setting by Lei et al. (2018), who proposed a locally weighted Split
Conformal method to vary the width of the prediction sets over the covariates x ∈ Rp.

In order to understand the modification introduced by the modulation function,
let us consider the aforementioned running example and specifically the left panel
of Figure 2: in this case, the band obtained by considering the standard deviation
function (Ramsay & Silverman 2005) as sI1 (dashed purple band) is deeply different
from the one in the top panel and it seems to better adapt to the variability of the
data over T . Intuitively, one is justified in accepting the bands to become wider in
the parts of the domain where data show high variability in order to obtain narrower
and more informative prediction bands in those parts characterized by low variability.

9



Remark 5. Replacing function sI1 with sI2 does not allow to obtain closed-form valid
prediction bands. This is due to the fact that their dependence on the calibration set
involves {Rs

h : h ∈ I2 ∪ {n+ 1}} not being exchangeable, and consequently validity
not being guaranteed.

Remark 6. Prediction bands induced by the modulation functions sI1 and λ · sI1 ,
with λ ∈ R>0, are identical. The proof is given in Appendix A.3. As a consequence,
an equivalence relation naturally arises and so for each specific equivalence class
(made up of modulation functions equal up to a multiplicative factor) we will consider
the modulation function whose integral is equal to 1. In view of this, the original
nonconformity measure (3) can be interpreted as the nonconformity measure induced
by the modulation function s0(t) := 1/|T | ∀t ∈ T , whose notation does not include
the subscript I1 to underline the lack of dependence of this function on the training
set.

Remark 7. One of the aim of the introduction of sI1 is to reduce the variability of
the pointwise miscoverage over T . In order to clarify this concept, let us consider
the right panel of Figure 2. The solid light blue (dashed purple respectively) line
shows the empirical pointwise conditional coverage of the solid light blue (dashed
purple respectively) prediction band showed in the left panel of the same figure,
that was obtained by setting α = 0.1. The empirical conditional coverage has been
computed considering the number of times that 200,000 - independent from and
identically distributed to the original sample - new functions belong to the two
prediction bands over T . As expected, the absence of modularization involves the
empirical pointwise converage being highly variable over T , whereas the use of the
standard deviation function as modulation function leads to an empirical pointwise
coverage concentrated around 0.98.

However, in absence of an optimality criterion there are no formal reasons to
prefer a specific modulation function over another, as Conformal approach ensures
valid prediction sets regardless the choice of sI1 . In this regard, a criterion that
naturally arises in the prediction framework to discriminate between modulation
functions is maximization of efficiency, i.e. minimization of the size of prediction
sets (Vovk et al. 2005) . The reason of this choice is very intuitive: since prediction
bands are, by construction, valid, one is justified in seeking small prediction bands
because they include subregions of the sample space where the probability mass is
concentrated (Lei et al. 2013). In view of this, first of all it is essential to define what
the size of a prediction band is, a nontrivial topic in the functional framework. The
definition we will consider is simply the area between the upper and lower bound of
the prediction band:

Q(sI1) :=

∫
T

2 · ks · sI1(t)dt = 2 · ks, (7)

that is equal to ks up to a constant and proportional to 2ks/|T |, i.e. the average
width of the prediction band over the domain T .

Formally, in the usual finite-dimensional setting the aim would be to find the
optimal modulation function that minimizes the risk functional E[ks]. Unfortunately,
in the functional setting even the concept of probability density function is generally
not well defined since there is no σ-finite dominating measure (Delaigle et al. 2010),
and so that minimization is not feasible for general P . As a consequence, the
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minimization problem must be simplified: by considering ks as a non-random
quantity depending on observed functions y1, . . . , yn instead of random functions
Y1, . . . , Yn, the aim becomes the direct minimization of ks. Although initially it may
seem like an oversimplification to some readers, it is important to underline that
this approach is made possible by a well-established principle representing the core
idea of many algorithms and methods (e.g. machine learning techniques) known as
empirical risk minimization principle (Vapnik 1992).

The proposed adjustment reduces the complexity of the optimization task, but
the problem still presents tricky aspects. Indeed, not only the minimization can
not be analytically addressed by calculus of variations given the complexity of ks,
but also the optimal modulation function can not be uniquely determined given the
specific structure of Rs

h, h ∈ I2. In fact, the dependency of sI1 only on the functions
of the training set and of the numerator of Rs

h (i.e. |yh(t)− gI1(t)| , h ∈ I2) also
on the functions of the calibration set makes the optimization unfeasible for all P
and the general problem ill-posed.

In such a non-standard context, the line of reasoning must necessarily be changed.
Therefore, in the discussion below we focus on finding a function - called c-function
hereafter for the sake of simplicity - satisfying the definition of modulation function
but depending also on the calibration set through {yh : h ∈ I2} and such that

1. For m, l→ +∞ it converges to a given function and its training counterpart
(i.e. the function - called t-function hereafter - equal to the c-function but
whose dependence on {yh : h ∈ I2} is replaced by the dependence on the
training set through {yh : h ∈ I1}) converges to the same function

2. it leads to prediction bands that are not wider (in the sense of (7)) than those
obtained by not modulating (i.e. by using s0)

If these two conditions are met, the use of the t-function as modulation function
ensures that valid prediction bands are obtained (due to its dependence only on
{yh : h ∈ I1}) and that asymptotically the second condition is satisfied. Specifically,
that condition represents a desirable and appealing property since, if violated, the
modulation process could represent a meaningless complication compared to the
original nonconformity measure (3).

In order to construct a c-function able to meet these two conditions, it is important
to focus on what ks is: ignoring just for now the contribution of the modulation
function, ks is a quantity derived by the d(l + 1)(1− α)eth least extreme function
between those in the calibration set, in which the concept of ”extreme” is naturally
induced by the supremum metric. In light of this, the guidelines we decided to follow
in the construction of a meaningful c-function are two. First of all, the behavior of
the l − d(l + 1)(1 − α)e most extreme functions in the calibration set should not
be taken into account since they do not affect the value of ks. Secondly, given the
specific nonconformity measure considered, the c-function should modulate data
considering the remaining d(l+ 1)(1−α)e functions on the basis of the most extreme
value observed ∀t ∈ T .

Inspired by these guidelines, we propose the following c-function:

s̄cI1(t) :=
maxj∈H2 |yj(t)− gI1(t)|∫
T maxj∈H2 |yj(t)− gI1(t)|dt

(8)
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with
H2 := {j ∈ I2 : sup

t∈T
|yj(t)− gI1(t)| ≤ k}

and k defined as in Section 3.2, i.e. the d(l + 1)(1− α)eth smallest value in the set
{Rh : h ∈ I2}. The corresponding t-function is

s̄I1(t) :=
maxj∈H1 |yj(t)− gI1(t)|∫
T maxj∈H1 |yj(t)− gI1(t)|dt

(9)

with H1 = I1 if d(m+ 1)(1− α)e > m, otherwise

H1 := {j ∈ I1 : sup
t∈T
|yj(t)− gI1(t)| ≤ γ}

with γ the d(m+1)(1−α)eth smallest value in the set {supt∈T |yh(t)−gI1(t)| : h ∈ I1}.
In order not to overcomplicate the notation, in the definition of s̄cI1 and s̄I1 we

quietly assumed that both numerators are different from 0 ∀t ∈ T almost surely. If
not, the adjustment described in Appendix A.3 is developed. From an operational
point of view, t-function s̄I1(t) ignores the most extreme functions (i.e. the functions
belonging to I1 \H1) and modulates data on the basis of the remaining non-extreme
functions. Specifically, the dependence of γ on α allows to provide carefully chosen
modulation process according to the specific level 1− α chosen for the prediction set.

The fulfillment of the two aforementioned conditions by the function (8) is proved
by the following two theorems.

Theorem 2. Let m/n = θ with 0 < θ < 1 and let Var[gI1(t)] → 0 when m → +∞.
Then s̄cI1 and s̄I1 converge to the same function when n→ +∞ and limn→+∞ C s̄n,1−α =
limn→+∞ C s̄

c

n,1−α ∀ α ∈ (0, 1).

Theorem 3. Q(s0) ≥ Q(s̄cI1). Specifically,Q(s0) = Q(s̄cI1) if and only if maxj∈H2 |yj(t)−
gI1(t)| is constant almost everywhere.

Both proofs are given in Appendix A.3. It is important to notice that Theorem
2 requires very mild conditions, an evidence that allows it to hold in many general
contexts.

In light of this, the function (9) represents an outstanding candidate in the
choice of the modulation function since the Conformal setting and the nonconformity
measure (5) guarantee valid prediction bands - as well as all the other desirable
properties highlighted in Section 3.2 - and at the same time to asymptotically obtain
prediction bands no less efficient than those induced by s0.

Remark 8. The fact that s̄cI1(t) leads to prediction bands that are not wider than
those obtained by not modulating is not the only relevant result that is possible
to obtain. The following Theorem shows that prediction bands induced by s̄cI1 are
also smaller than those induced by the functions belonging to a specific group. This
theorem provides a further theoretical justification for preferring function (9) to
other possible modulation functions.

Theorem 4. Let us define CH2 := I2 \ H2 and let t∗i be the value such that

|yi(t∗i )− gI1(t∗i )| = sup
t∈T
|yi(t)− gI1(t)| ∀i ∈ I2. (10)

If t∗i is not unique, it is randomly chosen from the values that satisfy (10).
Let sdI1 be a modulation function such that:
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1. sdI1 6= s̄cI1 in the sense of Lebesgue, i.e. ∃ T ∗ ⊆ T such that sdI1(t) 6= s̄cI1(t)
∀t ∈ T ∗ and µ(T ∗) > 0, with µ the Lebesgue measure

2. sdI1(t
∗
i ) ≤ s̄cI1(t

∗
i ) ∀i ∈ CH2

If |H2| = d(l + 1)(1− α)e, then Q(sdI1) > Q(s̄cI1).

The proof is given in Appendix A.3, along with the demonstration that Theorem
3 is not a direct consequence of Theorem 4 since s0 may not fulfill s0(t∗i ) ≤ s̄cI1(t

∗
i )

∀i ∈ CH2. Also in this case, the field of application of Theorem 4 is particularly wide
since the condition about the cardinality of |H2| is always met under the assumption
concerning the continuous joint distribution of {Rh : h ∈ I2} made in Section 3.1.

Remark 9. The definitions of functions (8), (9) and Theorems 2, 3 and 4 can be
easily generalized to hold also in the Smoothed Conformal framework. Technical
details are provided in Appendix A.4.

4 Simulation Study

4.1 Study Design

In this section, we summarize the results of a two-stage simulation study comparing
our approach with four alternative methods from the literature that will be detailed
in the following: Naive, Band Depth, Modified Band Depth, and Bootstrap. In
Section 4.2 the empirical coverage is evaluated for each approach in three different
scenarios, whereas in Section 4.3 the prediction bands obtained by the methods that
guarantee a proper coverage are compared in terms of efficiency. The hierarchical
structure of the simulation study reflects the “nested” nature of the two features we
are considering, i.e. coverage and size: indeed, the size of a prediction set should
be investigated only after verifying that the method which outputted that specific
prediction set guarantees the desired coverage, which represents the primary aspect
when assessing prediction sets.

Specifically, the three scenarios allow to compare the methods in three different
frameworks: when data show a constant variability over the domain (Scenario 1),
when data show a different variability over the domain (Scenario 2) and when data
are characterized by outliers (Scenario 3). Formally, the three scenarios are:

• Scenario 1. ∀i = 1, . . . , n

yi(t) = xi1 + xi2 cos(6π( t+ ui)) + xi3 sin(6π (t+ ui))

with T = [0, 1], (x11, x12, x13)T , . . . , (xn1, xn2, xn3)T i.i.d. realizations of

X ∼ N3

(
0,
[

1 0.6 0.6
0.6 1 0.6
0.6 0.6 1

])
and u1, . . . , un i.i.d. realizations of

U ∼ Unif

[
−1

6
,
1

6

]
.
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Figure 3. Graphical representation of the scenarios. The sample size is n = 18.

• Scenario 2. ∀i = 1, . . . , n

yi(t) =
13∑
j=1

cijB
ω
j (t)

with T = [0, 1], Bω
j (t) the b-spline basis system of order 4 with interior knots

ω = (0.1, 0.2, . . . , 0.9) and (c1,1, . . . , c1,13)
T , . . . , (cn,1, . . . , cn,13)

T i.i.d. realiza-
tions of C = (C1, . . . , C13) ∼ N13 (0,Σ) such that Var[Ci] = 0.032 ∀i 6= 7,
Var[C7] = 0.0032 and Cov[Ci, Cj] = 0 for i, j = 1, . . . , 13, i 6= j.

• Scenario 3. The scenario is the previous one after contamination with outliers.
Formally, (c1,1, . . . , c1,13)T , . . . , (cn,1, . . . , cn,13)T are i.i.d. realizations of a vector
random variable whose probability density function is a Gaussian mixture
density with weights (1− β, β), shared mean vector 0, the covariance matrix
defined as in Scenario 2 for the first group and such that Var[C7] = 0.32 instead
of Var[C7] = 0.0032 for the second group.

A graphical representation of a replication for each scenario with n = 18 is provided
in Figure 3. The Conformal approach presented in Section 3 is evaluated in the
non-smoothed framework and considering three different modulation functions: s0,
the normalized standard deviation function sσI1 as natural representative of functions
that capture data variability, and s̄I1 . Since the focus of the work is not on the
construction of sophisticated point predictors gI1 but rather on the construction
of valid prediction bands around any point predictor gI1 , we hereby simply set
gI1(t) = ȳI1(t).

The performance of our approach is compared to four alternative methods. These
are: Naive method, which outputs prediction bands defined as {y ∈ Y(T ) : y(t) ∈
[qα

2
(t) , q1−α

2
(t)] ∀t ∈ T } with qα (t) empirical quantile of order α for (y1(t), . . . , yn(t)).

Such approach represents a very naive solution to the prediction task we are consid-
ering and we expect it to suffer greatly from undercoverage; BD and MBD methods,
which output the sample (1−α) central region induced by the band depth (BD) and
the modified band depth (MBD) respectively (Sun & Genton 2011); Boot. method,
which outputs the band based on 2500 bootstrap samples, as proposed by Degras
(2011). We consider α = 0.1, β = 0.06 and three different sample sizes: n = 18,
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Conformal Method Alternative Methods
s0 sσI1 s̄I1 Naive MBD BD Boot.

n = 18 Sc. 1 0.902 0.900 0.900 0.409 0.504 0.547 0.875
(0.088) (0.085) (0.087) (0.092) (0.109) (0.111) (0.064)

Sc. 2 0.901 0.910 0.909 0.048 0.123 0.145 0.922
(0.089) (0.081) (0.083) (0.021) (0.044) (0.051) (0.042)

Sc. 3 0.904 0.904 0.907 0.049 0.124 0.148 0.932
(0.084) (0.089) (0.085) (0.023) (0.049) (0.055) (0.061)

n = 198 Sc. 1 0.901 0.902 0.901 0.625 0.861 0.900 0.865
(0.029) (0.030) (0.031) (0.031) (0.028) (0.028) (0.019)

Sc. 2 0.901 0.899 0.900 0.189 0.733 0.788 0.897
(0.029) (0.031) (0.029) (0.019) (0.036) (0.032) (0.015)

Sc. 3 0.897 0.900 0.899 0.197 0.742 0.798 0.892
(0.031) (0.030) (0.031) (0.020) (0.034) (0.030) (0.020)

n = 1998 Sc. 1 0.900 0.899 0.900 0.666 0.942 0.918 0.866
(0.010) (0.010) (0.010) (0.011) (0.006) (0.008) (0.008)

Sc. 2 0.900 0.900 0.899 0.233 0.958 0.971 0.899
(0.009) (0.010) (0.010) (0.007) (0.006) (0.005) (0.008)

Sc. 3 0.900 0.899 0.900 0.240 0.959 0.973 0.884
(0.010) (0.010) (0.010) (0.008) (0.006) (0.005) (0.007)

Table 1. For each combination of sample size and scenario, the first line shows
the sample mean of the empirical conditional coverage, the second line the sample
standard deviation in brackets. A combination of mean and st. deviation is gray-
colored if the corresponding 99% confidence t-interval for the (unconditional) coverage
includes value 1− α.

n = 198, n = 1998. In order not to overcomplicate the simulation study, the ratio
ρ = l/n is kept fixed and equal to 0.5 as commonly suggested in the Conformal
literature. A deeper investigation about the possible effect of the ratio ρ = l/n on
efficiency - even though possibly interesting - is out of the scope of this work. The
atypical values of n in the simulations have been simply chosen to have a miscoverage
exactly equal to α (indeed in these cases b(l + 1)αc/(l + 1) = α) and consequently
making the simulation results easier to read. Similar results would have been attained
with rounded values of n (e.g. n = 20, n = 200, n = 2000) by evaluating the empirical
miscoverage considering the theoretical one: b(l + 1)αc/(l + 1) (see Theorem 1).
The simulations are achieved by using the R Programming Language (R Core Team
2018) and the computation of the band depth and the modified band depth by roahd
package (Tarabelloni et al. 2018). Finally, every combination of scenario and sample
size is evaluated considering N = 500 replications.

4.2 Coverage

In this section we focus on the sample mean and the standard deviation of the
empirical conditional coverage provided by the prediction bands generated by each
method for each combination of sample size and scenario (see Table 1).

Specifically, the empirical conditional coverage of a given prediction band (i.e.
the empirical coverage obtained conditioning on the prediction band obtained by
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s0 sσI1 s̄I1
Mean st.dev Mean st.dev Mean st.dev

n = 18 Sc. 1 8.113 (2.044) 10.088 (3.618) 11.638 (4.309)
Sc. 2 0.142 (0.025) 0.165 (0.041) 0.185 (0.049)
Sc. 3 0.246 (0.192) 0.448 (0.550) 0.505 (0.633)

n = 198 Sc. 1 7.175 (0.560) 7.295 (0.608) 7.556 (0.647)
Sc. 2 0.127 (0.006) 0.109 (0.005) 0.120 (0.006)
Sc. 3 0.139 (0.013) 0.139 (0.013) 0.137 (0.020)

n = 1998 Sc. 1 7.059 (0.179) 7.065 (0.176) 7.128 (0.184)
Sc. 2 0.125 (0.002) 0.106 (0.001) 0.117 (0.002)
Sc. 3 0.136 (0.003) 0.137 (0.004) 0.131 (0.003)

Table 2. Size of the prediction bands. For each row, the lowest value of the sample
mean is gray-colored.

the observed data) is computed as the fraction of times that 10,000 new functions -
independent from and identically distributed to the original sample - belong to such
prediction band. The purpose of this scheme is twofold: first of all, by averaging the
N = 500 empirical conditional coverages obtained for each combination of scenario
and sample size it is possible to obtain the empirical coverage, which is an estimate of
the (unconditional) coverage. Secondly, this scheme allows to evaluate the variability
of the conditional coverage when the observed sample varies, a particularly useful
indication in real applications. In order to facilitate the visualization of the results
and to allow inferential conclusions, a specific combination of sample mean and
standard deviation is gray-colored in Table 1 if the corresponding 99% confidence
t-interval for the (unconditional) coverage includes 0.90, i.e. the value 1− α.

The simulation study fully confirms the theoretical property concerning the
validity of split conformal prediction sets with 53 out of the 54 99%-confidence
intervals associated to conformal bands including the nominal value 1 − α. The
evidence provided is particularly appealing since the desired coverage is guaranteed
also when a very small sample size (n = 18) is considered, a framework in which such
property is traditionally hard to obtain. Vice versa, in almost all cases the alternative
methods do not ensure the desired coverage with some estimates dramatically far
from 1−α, especially for small sample sizes (i.e., n = 18). In view of this, in Section
4.3 only the efficiency of the Conformal methods is evaluated and compared.

4.3 Efficiency

In this section the sample mean and the standard deviation of the size defined as in
(7) of the prediction bands computed in the previous section are evaluated for each
combination of modulation function, sample size and scenario (see Table 2).

First of all, it is noticeable that when n = 18 the absence of modulation (i.e.
s0) seems to provide smaller prediction bands than those induced by sσI1 and s̄I1 ,
conceivably because the extremely low number of functions belonging to the training
set (m = 9) leads to an unstable and possibly misleading modulation function
supporting the statistical intuition that for small sample sizes simpler modulation
functions should be preferred.

More deeply, focusing now on each scenario separately and considering the
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Figure 4. The prediction bands obtained considering a combination of modulation
functions (s0 at the top, sσI1 in the middle, s̄I1 at the bottom) and sample (the
original one on the left, the contaminated one on the right). In all cases, the dashed
line represents gI1 .

remaining sample sizes, Scenario 1 represents a framework in which a constant width
prediction band is the ideal candidate since the horizontal shift due to the random
variable U induces constant variance along the domain. As a consequence, the
pointwise evaluations Y (t) are equally distributed ∀t ∈ T and so one is justified in
expecting sσI1 and s̄I1 to be of no practical use. The results confirm this conjecture,
but the differences between the three modulation functions seems to decrease as
the sample size grows (see, for example, the difference between s0 and s̄I1 when n
increases from 198 to 1998).

Scenario 2 represents a completely different setting, in which a modulation process
is appropriate since the curves highlight a reduction of variability in the central
part of the domain. As expected, s0 induces larger predictions bands (on average)
than those obtained by sσI1 and s̄I1 and it forces the band to be unnecessary large
around t = 0.5. On the other hand, the other two modulation functions (especially
sσI1) provide a better performance since they allow the band width to be adapted
according to the behavior of data over T .

Scenario 3 is obtained by contaminating Scenario 2 with outliers. Table 2 suggests
that s̄I1 outperforms both s0 and - unlike Scenario 2 - also sσI1 . In order to clarify
this evidence, let us consider a sample y1, . . . , y198 generated as in Scenario 2 that,
after being created, is exposed to a contamination process in which each function
yi, i = 1, . . . , 198, becomes an outlier as described in Scenario 3 with probability
β = 0.06. Figure 4 shows examples of prediction bands induced by the three
modulation functions (s0 at the top, sσI1 in the middle, s̄I1 at the bottom) obtained
by considering the original sample (on the left) and the contaminated one (on the
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right). Moving from Scenario 2 to Scenario 3 and focusing on sσI1 , it is possible
to notice that the increased variability in the central part of the domain due to
the contamination process involves an increase in the band width around t = 0.5.
This behavior, although not surprising, is counterproductive since the purpose of
the method is to create prediction bands with coverage at the level 1 − α = 0.9
and in this specific case ∼ 94% of the functions tends to be highly concentrated
around gI1 in the central part of the domain, and not overdispersed. By contrast,
s̄I1 by construction removes the most extreme (in terms of measure (3)) functions
and properly modulates data on the basis of the non-extreme functions keeping the
band shape unchanged. From a methodological point of view, this is due to the
dependency of s̄I1 on α which allows only a portion of the training set - chosen
according to the specific level 1− α - to be taken into account and the trend of the
“misleading” functions to be completely ignored. Overall, the evidence provided by
this example - together with the results provided by Table 2 - suggests that s0 is
not affected by the contamination process (pro) but does not modulate (con), sσI1
modulates (pro) but overreacts to the contamination process (con), whereas s̄I1 is
able to simultaneously modulate (pro) and manage the contamination process (pro).

In short, the three scenarios seem to highlight that s0 is an outstanding candidate
when the sample size is very small, whereas a modulation process is useful in the
very common case in which the variability over T varies and the sample size is either
moderate or large. Specifically, s̄I1 provides encouraging results in some complex
scenarios as it focuses on the specific behavior of the central (according to the level
1− α) portion of data.

5 Application

In order to show the wide generality of our approach, in this section we apply our
Conformal approach to a well known data set in the FDA community (i.e., the
Berkeley Growth Study data set (Tuddenham & Snyder 1954)) that is characterized
by features that cannot be trivially framed in a standard probabilistic parametric
model, i.e.: heteroscedasticity along the functional domain, phase misalignment,
presence of outlier curves, and positivity constraint. The specific data set contains in
detail the heights (in cm) of 54 female and 39 male children measured quarterly from
1 to 2 years, annually from 2 to 8 years and biannually from 8 to 18 years. We focus
on the first derivative of the growth curves, which are estimated in a standard fashion
by R function smooth.monotone of fda package (Ramsay et al. 2020) implementing
monotonic cubic regression splines (Ramsay & Silverman 2005, chap. 6). Specifically,
the prediction bands here reported refer to the growth velocity curves between 4 and
18 years for girls and boys separately comparing, in the Non-Smoothed Conformal
framework, the three modulation functions analyzed in Section 4 and with gI1 being
simply for each group the corresponding functional sample mean, α = 0.5, m = 27
for girls, m = 20 for boys.

The prediction bands are shown in Figure 5. Note that since the application at
hand does not allow the functions to be negative in any subset of the domain, the
prediction bands can be (and are indeed) truncated to 0 without decreasing their
coverage. The possibility of removing from the prediction bands regions which are
known - from the domain knowledge - to have null probability, without affecting
the coverage, is a desirable implication derived from using a fully nonparametric
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Figure 5. Berkeley Growth Study data: each panel shows the prediction band
obtained considering a different modulation function (s0 on the left, sσI1 in the middle,
s̄I1 on the right). In all cases, the dashed line represents gI1 . Predictions for girls at
the top and predictions for boys at the bottom.

Table 3. Berkeley Growth Study data: average width of the prediction bands.

s0 sσI1 s̄I1
Females 2.904 3.244 2.811
Males 3.334 3.107 2.690

approach to prediction since this takes away the burden of an explicit and possibly
non-trivial modeling of lower and/or upper bound constraints.

Focusing on Figure 5, the graphical representation of the prediction bands
highlights the well-known different growth path between girls and boys, in which the
latter group typically starts to grow later but achieves higher growth velocities. In
terms of the role of modulation functions, their impact on female growth velocity
prediction seems to be less than the one on the male bands. From a prediction
point of view, girls’ curves represent a simpler scenario in which the variance is lower
along the domain, while boys’ curves represent a more tricky scenario with strong
heteroscedasticity of the functions over T (due to the joint presence of misalignment
of data and a very localized high peak around 13 years of age). As expected from
these considerations, the prediction bands for a new girl’s velocity curve obtained
using the different modulation functions are relatively similar, with the prediction
band associated to s̄I1 being aslightly narrower due to the presence of outliers.
Instead focusing on boys’ curves, the strong heteroscedasticity forces the prediction
band induced by s0 to be uselessly large in some parts of the domain, whereas in
general the prediction band induced by sσI1 seems to be smoother than that induced
by s̄I1 , whose “bumps” are caused by the specific modulation function used. Both
for boys and girls s̄I1 outputs the smallest prediction band, as shown in Table 3
where the quantity Q(·)/|T | is reported.

Some useful information can be also provided by the comparison between the
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Figure 6. Berkeley Growth Study data: the prediction band represented at the
bottom right of Figure 5 (light blue) and the correponding pointwise conformal
prediction band (dark blue).

proposed approach and its pointwise counterpart, in which the prediction band is
constructed by applying a coherent univariate Conformal approach at each point
t separately. Indeed, by construction the former creates prediction bands larger
or equal than those obtained by the latter, but on the other hand it guarantees
simultaneous (and not pointwise) validity and of course it interprets a function as a
whole, a key aspect in the functional context. In order to clarify this concept, let us
consider Figure 6, in which the pointwise prediction band (dark blue) is overlaid to
the bottom-right panel of Figure 5. As expected, the pointwise prediction band is
simply modulated by the local variability of the 50% central curves. Differently, the
prediction bands here proposed instead take also into consideration the behavior of
the functions along the domain T with the effect of generating narrower or wider
bands also in presence of similar local variabilities and so not just obtaining a simple
expansion of the pointwise prediction band.

6 Conclusion

The creation of prediction sets for functional data is still an open problem of
paramount importance in statistical methodology research. In order to define and
compute them, the great majority of methods currently presented in the literature
rely on non-provable distributional assumption, dimension reduction techniques
and/or asymptotic arguments. On the contrary, the approach proposed in this article
represents an innovative proposal in this field: indeed, the Conformal framework
ensures that finite-sample either valid or exact prediction sets are obtained under
minimal distributional assumptions, whereas the specific family of nonconformity
measures introduced guarantees - besides prediction sets that are bands - also a
fast, scalable and closed-form solution. Moreover, despite the fact that our approach
works regardless the specific choice of sI1 (which can be chosen, for example, a
priori), we proposed a specific data-driven modulation function, namely s̄I1 , which
leads to prediction bands asymptotically no less efficient than those obtained by not
modulating. The focus of this article was on i.i.d. data, but we envision an extension
of the procedure to regression and classification problems.

Our procedure is able to achieve encouraging results and could represent a promis-
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ing starting point for future developments, but at least two aspects, among others,
should be carefully investigated. First of all, the division of data into the training
and calibration sets induces an intrinsic element of randomness into the method and,
although this phenomenon is well known in the Conformal literature, a quantification
of the effect of the split process - and also of the values m and l - on the procedure
has not yet been properly analyzed. Secondly, the prediction sets proposed in this
article are purposely shaped as functional bands. This geometrical characterization
in most applicative scenarios can be considered well suited. Nevertheless, one can
think at more complicated scenarios (e.g., functional mixtures) where prediction set
made of multiple bands could be considered more suited from an application point
of view. This possible extension will be the object of future work.

Supplementary material

A.1 Proofs of Section 3.1

Proof of Theorem 1.
Since Cn,1−α := {y ∈ Y(T ) : δy > α}, then Cn,1−α := {y ∈ Y(T ) : (l + 1)δy > (l + 1)α}.

Under the hypothesis of the theorem, (l + 1)δY ∼ U{1, 2, . . . , l + 1} holds. As a
consequence:

P (Yn+1 ∈ Cn,1−α) = P ((l + 1)δY > (l + 1)α)

= 1− P ((l + 1)δY ≤ (l + 1)α)

= 1− b(l + 1)αc
l + 1

.

In addition, since
b(l + 1)αc
l + 1

≤ (l + 1)α

l + 1
= α

then P (Yn+1 ∈ Cn,1−α) ≥ 1− α, i.e. Cn,1−α is valid. Finally, since

b(l + 1)αc
l + 1

>
(l + 1)α− 1

l + 1
= α− 1

l + 1

then P (Yn+1 ∈ Cn,1−α) < 1− α + 1
l+1

.
Proof that smoothed split conformal prediction sets are exact.
Let us consider the hypothesis of Theorem 1. Let us notice that

δy,τn+1 :=
|{j ∈ I2 : Rj > Rn+1}|+ τn+1 |{j ∈ I2 ∪ {n+ 1} : Rj = Rn+1}|

l + 1

=
τn+1

l + 1
+
|{j ∈ I2 : Rj ≥ Rn+1}|

l + 1
.

Under the hypothesis of Theorem 1, |{j ∈ I2 : Rj ≥ Rn+1}| ∼ U{0, 1, . . . , l} holds.
As a consequence:

P
(
Yn+1 ∈ Cn,1−α,τn+1|τn+1

)
= P

(
δY,τn+1 > α|τn+1

)
= P (|{j ∈ I2 : Rj ≥ Rn+1}| > (l + 1)α− τn+1|τn+1)

= 1− P (|{j ∈ I2 : Rj ≥ Rn+1}| ≤ (l + 1)α− τn+1|τn+1)

= 1− b(l + 1)α− τn+1c+ 1

l + 1
.
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Let us call f(τn+1) = 1 · 1{τn+1 ∈ [0, 1]}. Then

P
(
Yn+1 ∈ Cn,1−α,τn+1

)
=

∫ 1

0

P
(
Yn+1 ∈ Cn,1−α,τn+1|τn+1

)
f(τn+1)dτn+1

=1−(∫ (l+1)α−b(l+1)αc

0

b(l + 1)α− τn+1c+ 1

l + 1
dτn+1+

∫ 1

(l+1)α−b(l+1)αc

b(l + 1)α− τn+1c+ 1

l + 1
dτn+1

)
.

Let us consider
∫ (l+1)α−b(l+1)αc

0
b(l+1)α−τn+1c+1

l+1
dτn+1. Since if τn+1 ≤ (l + 1)α −

b(l + 1)αc then b(l + 1)α− τn+1c = b(l + 1)αc, we can notice that∫ (l+1)α−b(l+1)αc

0

b(l + 1)α− τn+1c+ 1

l + 1
dτn+1

=

∫ (l+1)α−b(l+1)αc

0

b(l + 1)αc+ 1

l + 1
dτn+1

=
b(l + 1)αc+ 1

l + 1
· ((l + 1)α− b(l + 1)αc) .

Let us consider
∫ 1

(l+1)α−b(l+1)αc
b(l+1)α−τn+1c+1

l+1
dτn+1. Since if τn+1 > (l+1)α−b(l+

1)αc then b(l + 1)α− τn+1c = b(l + 1)αc − 1, we can notice that∫ 1

(l+1)α−b(l+1)αc

b(l + 1)α− τn+1c+ 1

l + 1
dτn+1

=

∫ 1

(l+1)α−b(l+1)αc

b(l + 1)αc
l + 1

dτn+1

=
b(l + 1)αc
l + 1

· (1− ((l + 1)α− b(l + 1)αc)) .

Then

P
(
Yn+1 ∈ Cn,1−α,τn+1

)
=1−(
b(l + 1)αc+ 1

l + 1
· ((l + 1)α− b(l + 1)αc) +

b(l + 1)αc
l + 1

· (1− ((l + 1)α− b(l + 1)αc))

)
=1− α.
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A.2 Proofs of Section 3.2

Proof that the concatenation of pointwise prediction intervals leads to a
prediction band that is a subset of the simultaneous prediction band (4).

Let Un,1−α be the pointwise prediction set. Let us define R̃j(t) := |yj(t)− gI1(t)|
∀t ∈ T , j ∈ I2, R̃n+1(t) := |y(t)− gI1(t)| for a given y ∈ Y(T ) and k̃(t) the
d(l + 1)(1 − α)eth smallest value in the set {R̃h(t) : h ∈ I2}. By construction
Rj = supt∈T R̃j(t), and so Rj ≥ R̃j(t) ∀t ∈ T , j ∈ I2 and then k ≥ k̃(t) ∀t ∈ T .
Let us consider y ∈ Un,1−α, i.e. y(t) ∈ [gI1(t) − k̃(t), gI1(t) + k̃(t)] ∀t ∈ T . Since
k ≥ k̃(t), also y(t) ∈ [gI1(t)− k, gI1(t) + k] ∀t ∈ T , i.e. y ∈ Cn,1−α.

Since the converse is not necessarily true (in the sense that y ∈ Cn,1−α does not
imply y ∈ Un,1−α), we conclude that Un,1−α ⊆ Cn,1−α.

A.3 Proofs of Section 3.3

Proof of the prediction set induced by the nonconformity measure A({yh :

h ∈ I1}, y) = supt∈T

∣∣∣y(t)−gI1 (t)

sI1 (t)

∣∣∣.
For a given y ∈ Y(T ), let us define

δsy :=

∣∣{j ∈ I2 ∪ {n+ 1} : Rs
j ≥ Rs

n+1

}∣∣
l + 1

.

The split conformal prediction set is defined as Csn,1−α :=
{
y ∈ Y(T ) : δsy > α

}
. As

a consequence, y ∈ Csn,1−α ⇐⇒ Rs
n+1 ≤ ks, with ks the d(l + 1)(1− α)eth smallest

value in the set {Rs
h : h ∈ I2}. Then:

sup
t∈T

∣∣∣∣y(t)− gI1(t)
sI1(t)

∣∣∣∣ ≤ ks

⇐⇒
∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ≤ ks ∀t ∈ T

⇐⇒ y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T .

Therefore, the split conformal prediction set is

Csn,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T } .

Proof of Remark 6.
Let us define Cλ·sn,1−α the prediction set obtained by considering the modulation

function λ · sI1 . The nonconformity scores are

Rλ·s
j = sup

t∈T

∣∣∣∣yj(t)− gI1(t)λ · sI1(t)

∣∣∣∣ =
1

λ
Rs
j , j ∈ I2

Rλ·s
n+1 = sup

t∈T

∣∣∣∣y(t)− gI1(t)
λ · sI1(t)

∣∣∣∣ =
1

λ
Rs
n+1.

Let us also define

δλ·sy :=

∣∣{j ∈ I2 ∪ {n+ 1} : Rλ·s
j ≥ Rλ·s

n+1

}∣∣
l + 1

.
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The split conformal prediction set is defined as Cλ·sn,1−α :=
{
y ∈ Y(T ) : δλ·sy > α

}
.

As a consequence, y ∈ Cλ·sn,1−α ⇐⇒ Rλ·s
n+1 ≤ kλ·s, with kλ·s the d(l + 1)(1 − α)eth

smallest value in the set {Rλ·s
h : h ∈ I2}. In addition, since Rλ·s

j = Rs
j/λ ∀j ∈ I2,

then kλ·s = ks/λ. Then:

Rλ·s
n+1 ≤ kλ·s

⇐⇒ 1

λ
Rs
n+1 ≤

ks

λ
⇐⇒ Rs

n+1 ≤ ks,

and since y ∈ Csn,1−α ⇐⇒ Rs
n+1 ≤ ks, then Cλ·sn,1−α = Csn,1−α.

Adjustment procedure of s̄cI1 and s̄I1
If maxj∈H2 |yj(t)−gI1(t)| = 0 for at least one value t but the condition

∫
T maxj∈H2 |yj(t)−

gI1(t)|dt 6= 0 still holds, in order to ensure that s̄cI1(t) > 0 ∀t ∈ T it is sufficient to add
an arbitrarily (small) positive value to s̄cI1(t) ∀t ∈ T and to adjust the normalization
constant accordingly. The pathological case in which

∫
T maxj∈H2 |yj(t)−gI1(t)|dt = 0

is addressed only when yj(t) = gI1(t) ∀j ∈ H2 and almost every t ∈ T and it repre-
sents a case of no practical interest.

Should ∃ t ∈ T such that maxj∈H1 |yj(t) − gI1(t)| = 0, the same procedure is
developed.

Proof of Theorem 2.
Let us focus on s̄I1(t). Since m/n = θ with 0 < θ < 1, if n→ +∞ then m→ +∞.

By definition, the scalar γ is the empirical quantile of order d(m + 1)(1 − α)e) of
{supt∈T |yh(t)− gI1(t)| : h ∈ I1}. First of all note that

lim
m→+∞

d(m+ 1)(1− α)e
m

= lim
m→+∞

m+ 1− b(m+ 1)αc
m

and since
(m+ 1)α− 1

m
≤ b(m+ 1)αc

m
≤ (m+ 1)α

m
∀m ∈ N

and

lim
m→+∞

(m+ 1)α− 1

m
= lim

m→+∞

(m+ 1)α

m
= α

then by the squeeze theorem (also known as the sandwich theorem) we obtain
that

lim
m→+∞

b(m+ 1)αc
m

= α

and then

lim
m→+∞

d(m+ 1)(1− α)e)
m

= 1− α.

As a consequence, γ is the empirical quantile of order 1− α when m→ +∞.
For convenience, let us define xi := supt∈T |yi(t)− gI1(t)| ∀ i ∈ I1. The random

variables {Xh : h ∈ I1} from which {xh : h ∈ I1} are drawn are continuous and they
are asymptotically i.i.d. as Var[gI1(t)]→ 0. The Glivenko-Cantelli theorem ensures
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that the empirical distribution function of these variables converges uniformly (and
almost surely pointwise) to its distribution function, and then also the empirical
quantiles converge in distribution (and so in probability) to the corresponding
theoretical quantiles, as shown for example by Van der Vaart (2000, chap. 21).
Specifically, empirical quantile γ converges to q1−α, the theoretical quantile of order
1− α. As a consequence, when m→ +∞:

H1 := {j ∈ I1 : sup
t∈T
|yj(t)− gI1(t)| ≤ q1−α}

with q1−α deterministic quantity. Let us focus on the numerator of s̄I1(t) since the
denominator is just a normalizing constant. ∀t ∈ T , the sequence {maxj∈H1 |yj(t)−
gI1(t)|}m is eventually bounded by q1−α and is eventually increasing since {|H1|}m is
eventually increasing. By the monotone convergence theorem, the sequence converges
to its supremum.

In order to prove the convergence of the numerator of s̄cI1 to the same limit
function, it is sufficient to consider the previous computations by noting that if
n→ +∞ then l = n(1− θ)→ +∞ and by substituting γ with k, m with l, H1 with
H2 and I1 with I2 (except for gI1 that is naturally not substituted by gI2). Since the
numerators of s̄I1 and s̄cI1 converge to the same function, also the two normalizing
constants converge to the same quantity. In view of this and since C s̄n,1−α and C s̄cn,1−α
are defined as

C s̄n,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− ks̄s̄I1(t), gI1(t) + ks̄s̄I1(t)] ∀t ∈ T } ,
C s̄cn,1−α :=

{
y ∈ Y(T ) : y(t) ∈ [gI1(t)− ks̄

c

s̄cI1(t), gI1(t) + ks̄
c

s̄cI1(t)] ∀t ∈ T
}

then limn→+∞ C s̄n,1−α = limn→+∞ C s̄
c

n,1−α.
Proof of Theorem 3.
The proof consists of two steps. At the first step we show that ks̄

c
=
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt, a fundamental result to obtain, at the second step, the proof of the theorem.
I step
In order not to overcomplicate the proof, first of all let us consider the case in

which |H2| = d(l + 1)(1− α)e. It is important to notice that under the assumption
concerning the continuous joint distribution of {Rh : h ∈ I2} made in Section 3.1
such condition is always satisfied. However, the result proved at this first step holds
also when this assumption is violated, and its proof requires just minor changes.
Therefore, for the sake of completeness such proof is addressed below.

• ∀i ∈ H2 the following relationship holds ∀t ∈ T :∣∣∣∣yi(t)− gI1(t)s̄cI1(t)

∣∣∣∣
=

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt ·
|yi(t)− gI1(t)|

maxj∈H2 |yj(t)− gI1(t)|

≤
∫
T

max
j∈H2

|yj(t)− gI1(t)|dt,

and then

Rs̄c

i := sup
t∈T

∣∣∣∣yi(t)− gI1(t)s̄cI1(t)

∣∣∣∣ ≤ ∫
T

max
j∈H2

|yj(t)− gI1(t)|dt.
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Specifically, ∃ i ∈ H2 such that Rs̄c

i =
∫
T maxj∈H2 |yj(t)−gI1(t)|dt since ∀t ∈ T

at least one function yi satisfies |yi(t)− gI1(t)| = maxj∈H2 |yj(t)− gI1(t)|.

• Let us define CH2 := I2 \ H2 and let t∗i be the value such that

|yi(t∗i )− gI1(t∗i )| = sup
t∈T
|yi(t)− gI1(t)| ∀i ∈ I2.

If t∗i is not unique, it is randomly chosen from the values that satisfy that
condition. ∀i ∈ CH2, by definition of H2 we obtain that |yi(t∗i )− gI1(t∗i )| >
maxj∈H2 |yj(t∗i )− gI1(t∗i )| and so the following relationship holds:∣∣∣∣yi(t∗i )− gI1(t∗i )s̄cI1(t

∗
i )

∣∣∣∣
=

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt ·
|yi(t∗i )− gI1(t∗i )|

maxj∈H2 |yj(t∗i )− gI1(t∗i )|

>

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt.

As a consequence,

Rs̄c

i := sup
t∈T

∣∣∣∣yi(t)− gI1(t)s̄cI1(t)

∣∣∣∣ > ∫
T

max
j∈H2

|yj(t)− gI1(t)|dt.

Since:

• |H2| = d(l + 1)(1− α)e

• ∀i ∈ H2 R
s̄c

i ≤
∫
T maxj∈H2 |yj(t) − gI1(t)|dt and ∃ i ∈ H2 such that Rs̄c

i =∫
T maxj∈H2 |yj(t)− gI1(t)|dt

• ∀i ∈ CH2 R
s̄c

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

we conclude that ks̄
c

=
∫
T maxj∈H2 |yj(t)−gI1(t)|dt, with ks̄

c
the d(l+1)(1−α)eth

smallest value in the set {Rs̄c

h : h ∈ I2}.
If |H2| > d(l + 1)(1 − α)e, then Rs̄c

i =
∫
T maxj∈H2 |yj(t) − gI1(t)|dt is valid

∀i ∈ H2 such that supt∈T |yi(t)− gI1(t)| = k and in the same way we can conclude
that ks̄

c
=
∫
T maxj∈H2 |yj(t)− gI1(t)|dt.

II step
Let us define ∀i ∈ I2

Rs0

i := sup
t∈T

∣∣∣∣yi(t)− gI1(t)s0(t)

∣∣∣∣ = |T | sup
t∈T
|yi(t)− gI1(t)| .

Since ks
0

is the d(l + 1)(1 − α)eth smallest value in the set {Rs0

h : h ∈ I2}, by
definition of H2 we obtain that

ks
0

= |T |max
j∈H2

(
sup
t∈T
|yj(t)− gI1(t)|

)
= |T | sup

t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)
.
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Since at the first step we proved that ks̄
c

=
∫
T maxj∈H2 |yj(t) − gI1(t)|dt, we

obtain that

ks
0 − ks̄c = |T | sup

t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)
−
∫
T

max
j∈H2

|yj(t)− gI1(t)|dt.

Since the right side of the equation is greater than or equal to 0 by the integral
mean value theorem, then Q(s0) ≥ Q(s̄cI1).

The same theorem ensures that

|T | sup
t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)

=

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt

⇐⇒ max
j∈H2

|yj(t)− gI1(t)| is constant almost everywhere,

i.e. if and only if s̄cI1(t) = s̄0(t) almost everywhere.
Proof of Theorem 4.
We have already shown at the first step of the previous proof that ks̄

c
=∫

T maxj∈H2 |yj(t) − gI1(t)|dt. Since by assumption sdI1(t
∗
i ) ≤ s̄cI1(t

∗
i ) ∀i ∈ CH2

and |H2| = d(l + 1)(1 − α)e, let us define ai ≥ 0 ∀i ∈ CH2 the value such that
sdI1(t

∗
i ) = s̄cI1(t

∗
i )− ai.

• Case 1 : If ∃ x ∈ CH2 s.t. ax > 0, ∃ i ∈ H2 such that∣∣∣∣yi(t∗x)− gI1(t∗x)sdI1(t
∗
x)

∣∣∣∣
=

∣∣∣∣yi(t∗x)− gI1(t∗x)s̄cI1(t
∗
x)− ax

∣∣∣∣
=

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t∗x)− gI1(t∗x)|
maxj∈H2 |yj(t∗x)− gI1(t∗x)| − ax ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t∗x) at least one function yi satisfies |yi(t)−
gI1(t)| = maxj∈H2 |yj(t)− gI1(t)|.
Case 2 : If ai = 0 ∀i ∈ CH2, there exist at least two values t↓, t↑ ∈ T ∗ such that
sdI1(t↓) < s̄cI1(t↓) and sdI1(t↑) > s̄cI1(t↑) since otherwise sdI1(t) = s̄cI1(t) ∀t ∈ T

∗.
Let us define a↓ > 0 the value such that sdI1(t↓) = s̄cI1(t↓) − a↓. Therefore ∃
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i ∈ H2 such that∣∣∣∣yi(t↓)− gI1(t↓)sdI1(t↓)

∣∣∣∣
=

∣∣∣∣yi(t↓)− gI1(t↓)s̄cI1(t↓)− a↓

∣∣∣∣
=

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t↓)− gI1(t↓)|
maxj∈H2 |yj(t↓)− gI1(t↓)| − a↓ ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t↓) at least one function yi satisfies |yi(t)−
gI1(t)| = maxj∈H2 |yj(t)− gI1(t)|.
As a consequence, in both cases (∃x ∈ CH2 s.t. ax > 0 and ai = 0 ∀i ∈ CH2)
we obtain that ∃ i ∈ H2 such that

Rsd

i := sup
t∈T

∣∣∣∣yi(t)− gI1(t)sdI1(t)

∣∣∣∣ > ∫
T

max
j∈H2

|yj(t)− gI1(t)|dt.

• ∀i ∈ CH2, by definition ofH2 we obtain that |yi(t∗i )− gI1(t∗i )| > maxj∈H2 |yj(t∗i )−
gI1(t

∗
i )| and so the following relationship holds:∣∣∣∣yi(t∗i )− gI1(t∗i )sdI1(t

∗
i )

∣∣∣∣
=

∣∣∣∣yi(t∗i )− gI1(t∗i )s̄cI1(t
∗
i )− ai

∣∣∣∣
=

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t∗i )− gI1(t∗i )|
maxj∈H2 |yj(t∗i )− gI1(t∗i )| − aj ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T

max
j∈H2

|yj(t)− gI1(t)|dt.

As a consequence,

Rsd

i := sup
t∈T

∣∣∣∣yi(t)− gI1(t)sdI1(t)

∣∣∣∣ > ∫
T

max
j∈H2

|yj(t)− gI1(t)|dt.

Since:

• |H2| = d(l + 1)(1− α)e

• ∃ i ∈ H2 such that Rsd

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

• ∀i ∈ CH2 R
sd

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt
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we conclude that ks
d
>
∫
T maxj∈H2 |yj(t)− gI1(t)|dt, i.e. ks

d
> ks̄

c
, with ks

d
the

d(l + 1)(1− α)eth smallest value in the set {Rsd

h : h ∈ I2}. .
Proof that Theorem 4 does not imply Theorem 3.
Theorem 4 does not imply Theorem 3 since s0 may not fulfill s0(t∗i ) ≤ s̄cI1(t

∗
i )

∀i ∈ CH2. In fact, ∀i ∈ CH2:

s0(t∗i ) ≤ s̄cI1(t
∗
i ) ⇐⇒

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

|T |
≤ max

j∈H2

|yj(t∗i )− gI1(t∗i )|

and the condition on the right side is not always satisfied because no constraints are
imposed on yj(t

∗
i ), with j ∈ H2, i ∈ CH2.

A.4 Proofs about Smoothed Conformal Predictor

Proof of the smoothed conformal prediction set
By considering the notation of Section 3, first of all let us notice that, by definition,

Cn,1−α,1 = Cn,1−α.
Since δy,τn+1 can not be less than τn+1/(l + 1) and can not be greater than

(l + τn+1)/(l + 1), we consider the case in which α ∈ [τn+1/(l + 1), (l + τn+1)/(l + 1)).
Let us define w the dl + τn+1 − (l + 1)αeth smallest value in the set {Rh : h ∈ I2},
and rn (vn respectively) the number of elements in the set {Rh : h ∈ I2} that are
equal to w and that are to the right (left respectively) of w in the sorted version
of the set. Under the assumption concerning the continuous joint distribution of
{Rh : h ∈ I2} made in Section 3.1 rn = vn = 0 holds, but generally speaking we
assume rn, vn ∈ N≥0 such that rn + vn ≤ l − 1. By performing calculations similar
to those needed in the non-randomized scenario, we obtain that:

• if

τn+1 >
(l + 1)α− b(l + 1)α− τn+1c+ rn

rn + vn + 2

then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 ≤ w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈ [gI1(t)− w,
gI1(t) + w] ∀t ∈ T }

• if

τn+1 ≤
(l + 1)α− b(l + 1)α− τn+1c+ rn

rn + vn + 2

then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 < w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈
(
gI1(t)− w,
gI1(t) + w

)
∀t ∈ T }.

Also the introduction of the modulation function presented in Section 3.3 can
be easily generalized in the smoothed conformal context. Let us define for a given
y ∈ Y(T )

δsy,τn+1
:=

∣∣{j ∈ I2 : Rs
j > Rs

n+1

}∣∣+ τn+1

∣∣{j ∈ I2 ∪ {n+ 1} : Rs
j = Rs

n+1

}∣∣
l + 1

Csn,1−α,τn+1
:=
{
y ∈ Y(T ) : δsy,τn+1

> α
}
.
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By reconsidering the previous computations and by substituting δy,τn+1 with δsy,τn+1
,

w with ws, Rh with Rs
h, rn with rsn and vn with vsn it is possible to notice that

• if

τn+1 >
(l + 1)α− b(l + 1)α− τn+1c+ rsn

rsn + vsn + 2

then

Csn,1−α,τn+1
= {y ∈ Y(T ) : y(t) ∈ [gI1(t)− wssI1(t),

gI1(t) + wssI1(t)] ∀t ∈ T }

• if

τn+1 ≤
(l + 1)α− b(l + 1)α− τn+1c+ rsn

rsn + vsn + 2

then

Csn,1−α,τn+1
= {y ∈ Y(T ) : y(t) ∈

(
gI1(t)− wssI1(t),
gI1(t) + wssI1(t)

)
∀t ∈ T }.

Proof of Remark 9.
The functions s̄cI1 and s̄I1 are defined as in Section 3.3 except for k (γ respectively)

that is the dl + τn+1 − (l + 1)αeth (dm+ τn+1 − (m+ 1)αeth respectively) smallest
value in the corresponding set; similarly, if dm+ τn+1− (m+ 1)αe > m then H1 = I1

and if dm + τn+1 − (m + 1)αe ≤ 0 we arbitrarily set s̄I1 = s0. The theorems
of Section 3.3 still hold by substituting d(l + 1)(1 − α)e, d(m + 1)(1 − α)e with
dl + τn+1 − (l + 1)αe, dm+ τn+1 − (m+ 1)αe.
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