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Abstract—The lymphatic system is one of the main, but rela-
tively less understood, systems of the human (and animal) body.
As for other systems, having a usable model of the main elements
that compose this system can greatly help the process of under-
standing and modelling normal and pathological conditions. In
this paper a simple lumped model of the lymphangion, the basic
active building block of the lymphatic system, is presented and
is shown to be fully autonomous, describing pulsating behaviour
without the use of external periodic sources. The model is based
on the circuit analogy and has been implemented both using
Matlab and as a standard spice-like netlist including Verilog-A
code.

Index Terms—circuit based models, lumped biological models,
lymphatic system, simulation

I. Introduction
Most animals have, among their vital organs, a circulatory

system whose role is carrying nutrients and oxygen to all the
cells in the body. This is done through the components known
as plasma and red blood cells of the fluid that, in ”higher”
animals, is commonly called blood (haemolymph in simpler
animals such as arthropods). This system regulates pH levels
in the body and also plays a fundamental role as an aid to the
immune system since it also contains white blood cells and
platelets; blood also contributes to the elimination of waste
byproducts of cells by circulating through filtering organs such
as kidneys, liver and lungs. Vertebrates, and, as such, also
humans, are characterized by a subsystem complementary to
the circulatory system called Lymphatic System (LS). The LS
filters excess plasma in the blood through the lymph nodes and
recirculates lymph to the main circulatory system, this is done
to maintain homeostatic equilibrium by regulating the relative
volume of interstitial fluid; in humans this is set at about 20%
of the body weight, and this set point is held by returning fluid
in excess through the thoracic duct to the main circulatory sys-
tem. The LS has several components: in addition to the lymph
nodes with their filtering action, several lymphoid organs, such
as the thymus, the spleen, the tonsils, etc. are part of the
system; these organs do not have an active role in the transport
of the lymph but have the important role of generating and
distributing lymphocytes, major components of the immune
system, through the body. This distribution pathway is vital in
vertebrates, but, unfortunately, can in some cases also be used
by cancer cells [1] [2], and, in case of failure, may determine
dangerous health conditions such as lymphoedema. While in

the main circulatory system there is a centralized pumping
organ, the heart, the lymphatic system is characterized by a
distributed system of pumping elements, that, connected to
each other, are themselves the main constituents of the lymph
vessels called lymphatics. These distributed pumping organs
are called lymphangions and are capable, as the heart in the
main circulatory system, to pump against a pressure gradient
preventing most retrograde flow thanks to mono-directional
valves (called secondary valves, in contrast to the primary
valves that are present in the initial lymphatics and directly
collect interstitial fluid).
The pumping function of lymphangions is carried out

through active contraction and relaxation of its walls com-
plemented by valves that prevent retrograde flow. While valve
operation is essentially passive and determined by the pressure
of the fluid inside the lymphangion, the contraction effect
is active and is determined by both transmural pressure and
dynamic shear stress on the vessel itself; these causes are all
local and do not depend on an external action. Most lumped
models derived so far rely on an external control mechanism
that actually causes contraction. Some more advanced models
have some sort of regulation of contraction frequency based
on internal fluid parameters, but, also in this case, these
simply control an active external periodic source that forces
pumping activity. Considering the most recent literature this
source is modulated by internal pressure [3] or modeled con-
sidering the biochemical interactions that lead to contraction
and relaxation [4], where a periodic calcium concentration
leads to systolic/diastolic cycles. A similar approach, based
on the autonomous oscillations in the membrane voltage and
its interaction with calcium concentration, can be found in [5].
For a general introduction to this topic a very nice overview
of lymphatic system functions and a review of some of the
best known lumped models up to 2018 can be found in [6].
A more recent (2020) and general overview can be found in
[7].
In this paper a lumped model that is intrinsically au-

tonomous, i.e. where the only sources present are constant
and represent input, output and external pressure values, is
presented. It is shown that an appropriate modelling of the
lymphangion element yield oscillations that are compatible
with contractions observed in real lymphatic systems. The
model here presented is an extension of a simpler model
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Fig. 1. A lymphangion model based on the circuit analogy. Radius values
are controlled by pressure by the rctrl block. Pressures (pin and pout) are
modelled by voltages and fluid flux (qin and qout) by currents. Fluid inertia
effects, equivalent to an inductance, will be omitted.

previously described in [8] and [9], these previous models
did not consider maximum and minimum radius dependence
on internal pressure and did not provide modulate refractory
time modulation as a function of pressure and flow. In section
II the basic model is presented in all its parts; in Section III
results of optimization of the model parameters with respect
to real data is shown, along with model behaviour.

II. The Lymphangion Model
The starting point to build any lumped model of fluid

transport rely on the characterization of vessel compliance,
fluid inertia and hydraulic resistance [10]. In our model effects
of fluid inertia can be shown to be negligible and, as such,
can be safely omitted.
If a cylindrical duct of length l and radius r is considered and
assuming a low Reynolds number, Puisseuille law can be used
to approximate its hydraulic resistance:

R ≡ pressure
flux

=
8µl

πr4
≡ R0r

−4 (1)

where µ is fluid, in our case lymph, viscosity; all these
parameters can be summarized by constant R0 .
If the duct being considered has, as in our case, some degree
of elasticity, it is possible to define its compliance as the ratio
of a volume differential dV (or mass dm) with respect to a
pressure differential dp; wall stiffness is modeled by Young’s
Modulus E and wall thickness s so that we have:

C ≡ dV

dp
=

2πr3l

sE
≡ C0r

3 (2)

the constant and geometry dependent parameters are summa-
rized by constant C0.
Lumped models of physical phenomena can be conveniently

represented using the “circuit analogy”. Using this analogy for
hydraulic systems it is common to represent mass m, flux q
and pressure p as, respectively, charge, current and voltage. As
a consequence compliance, hydraulic resistance and inertia are
modeled using equivalent circuit models, capacitors, resistors
and inductors, respectively.
The lymphangion equivalent circuit based on the electric

circuit analogy is shown in Fig. 1. The value of pc. i.e. the
voltage in the capacitor plus the pressure source Pext in this

model represents the internal pressure in the lymphangion.
The purpose of the source Pext is to model the external
pressure and, eventually, its variations that may be due to
movement, respiration etc. it is considered constant and in
nominal conditions it is simply set to zero, nonetheless this
source allows to introduce exogenous time varying pressure
variations if desired. The total vessel hydraulic resistance is
split in two parts, here represented by the two resistors R. The
unidirectional valves in the lymphangion are here modelled by
the two diodes kin and kout. In the most simple model these
can be ideal diode, in this case no retrograde flux is allowed.
If a more realistic model allowing some retrograde flux is
required, more complex nonlinear devices can be used.
In Fig. 1 there is also a box labelled rctrl that receives as
input the internal pressure pc, and thus transmural stress,
and controls the radius of the vessel, generating systole and
diastole events. To the author’s knowledge, most lumped
models available in literature force the onset and period of
systole/diastole cycles by means of an external generator. This
undoubtedly leads to much simpler models and more efficient
simulation times, on the other hand, if the dynamic behaviour
of networks of interacting lymphangions is considered a
fully autonomous system is needed, otherwise the network
behaviour would be forced by the time base in each one of its
elements.
The circuit in Fig. 1 can be described by a set of state

equations, note that all elements are linear except for the
valves, represented by diodes, this simplifies the problem but
an even more realistic model would require the introduction
of some nonlinearity in the resistors and capacitor (see e.g.
[11]). From Eq. (2) one can see that compliance depends on
radius, and, for this reason, the capacitor in our model is time
varying an this must be taken into account when writing its
constitutive relation:

m = Cp → d

dt
→ q = Cṗ+ Ċp (3)

Note that this effect is justified by conservation of mass. Given
Eq. (3) it is possible to write a first ODE describing the
behaviour of the equivalent circuit of Fig. 1:

Cṗ+ Ċp = kin

[
pin − p

R

]
− kout

[
p− pout

R

]
(4)

where the behaviour of the valves kin and kout will be discussed
later.
Note that elements C ≡ C(r(t)) and R ≡ R(r(t)), i.e. they
are both dependent on r, i..e. the radius of the vessel, whose
value depends on lymphangion contraction and relaxation
states.
The proposed lumped lymphangion model can be described
by two distinct states:

• passive: the element does not cause radius variations and
will change radius in a passive way as a function of pc,
the internal pressure; this happens, for instance, during
diastole, when the lymphangion expands and relaxes
while recovering after a systolic contraction.



• active: a systolic (contraction) event has been triggered
by conditions on pressure and/or flow. The radius of the
vessel reduces according to a relatively fast time constant
reaching its minimum possible radius. Whatever model
has been chosen for the valves, the one at the input
will close while that at the output will open allowing
lymph flow. This is due to the fact that, by reducing
the radius the internal pressure will rise and eventually
become larger than both input and output pressures.

One of the fundamental aspects of any lumped model of a
lymphangion is describing the conditions that lead to a systolic
contraction event. For this reason we will initially consider
radius dynamic behaviour as an unknown non-linear function
of pressure and radius. One way to do this is to consider the
radius of the element as the solution of a nonlinear ODE. In
order to do this we need an equation that can be written in
the form ṙ = f(r, p), i.e. where radius variation depends on
pressure and the radius itself.
Using the initial equations Eqs. (1) and (2) that describe the
basic model parameters and substituting them in (4) we have,
using the chain rule for derivatives:

3C0r
2ṙp+ C0r

3ṗ =
r4

R0
[kin(pin − p)− kout(p− pout)]

ṙ = f(p, r)

(5)

that, solving for ṗ and ṙ yields:

ṗ =
r

C0R0
[kin(pin − p)− kout(p− pout)]−

3p

r
f(p, r)

ṙ = f(p, r)

(6)

A. Radius Behaviour Function
In passive conditions, internal pressure determines the ra-

dius value, this relation holds up to a limit point. If pressure is
constant so is the radius and, if the pressure changes in a non
dramatic way, the radius will evolve towards the new value
in a smooth way.
Contraction events, i.e. systole, occur when the lymphangion
is in active mode. Time constants are, in this case, faster then
in passive mode and are a function of the pressure and flow in
the element. Considering first passive mode, one may expect
that pressure will cause the radius to expand or contract up
to some limit value. Pressure is given by the state equations
in Eq. (6), but, to make notation simpler, we may disregard
this for the time being and describe this expected behaviour
through equation:

ṙ = α(rt(p)− r) (7)

with rt(p) the “correct” radius when pressure is p. It is
expected that rt(p) is a nonlinear function that has a minimum
value r0 when there is no pressure difference between inside
and outside the lymphangion [12], i.e. when the intramural
pressure Pext, is in equilibrium with the internal pressure p;
furthermore, it is assumed that only very large pressure values
can cause the radius to reach its maximum possible value.
Note that, given state equations Eq. (6) the model will prevent

divergent values for pressure. A simple function that satisfies
the conditions just stated is:

rt(p) = (r0 − rmax)eβ(Pext−p) + rmax (8)

where the constant value β is a parameter related to the
“elasticity” of the lymphatic vessel. By using equation (8) and
substituting in (7) we finally have:

ṙ = α(rmax + (r0 − rmax)eβ(Pext−p) − r) (9)

in this equation the parameter α is constant and defines, for
the passive mode of the lymphangion element, its natural
frequency
Nominal pressure Pext is the equilibrium pressure that
corresponds to the nominal radius value. Obviously changes
in radius affect resistance and compliance values of the vessel,
and, specifically for what concerns compliance, different
dynamic behaviours of the radius have different effects on
compliance.

The model described by the first equation in Eq. (6) com-
plemented by (9) represents the model behaviour only when
in passive mode. From observations it is possible to consider,
as a first approximation, the time width of a systolic event as
fixed. This is what we are assuming for this model, adding
pressure and/or flux dependence is anyway quite simple. The
condition that triggers a contraction event is:

pc > pth, with pth < pin < pout (10)

where pth a pressure threshold value for the internal pressure.
Above this value an impulse of fixed time length is generated
directly controlling the radius value.
It is possible to obtain this effect by adding a linear term

to (9):
ractive = γ(rmin − r) (11)

with γ >> α. This term is added only during the systolic
phase of the contraction/relaxation cycle, and it presence is
controlled by a “digital” state equation. The value of rmin is a
function of the output pressure in relation to the input pressure,
as shown in experimental work in [13]. The duration of the
systolic pulse is assumed constant, while the duration of the
following diastolic (relaxation) phase depends on transmural
pressure and on the pressure gradient between output and
input.
In order to achieve and verify active pumping, corre-

sponding to lymph being carried upstream against a pressure
gradient, it has been assumed, in (10), that pin < pout. In the
opposite condition, with pin > pout all valves will be open and
the element will allow simple fluid flow from input to output.
Note that pulse generation seems to depend, according to

literature, on two different effects: one due to pressure strain,
and the other due to strain caused by flow (shear strain). The
latter tends to inhibit pulse generation, the former causes pulse
generation. This means that the simple model used in this
paper should be complemented with shear strain effects.



The overall behaviour of several lymphangions connected to
one another in order to form a vessel can be easily inferred by
considering that each upstream element, if forced to contract
due to increased input pressure, will cause a pressure spike at
the input of the following element; in this ways it is expected
to observe a propagation of contraction events along the vessel
as observed in nature. Once a lymphangion has contracted and
transmitted the pressure spike to the following one, it will relax
an be ready for a new cycle after refractory period that also
depends on pressure and flow.

B. Valve behaviour
In the model of Fig. 1 the valves are drawn as simple diodes.

Real valve behaviour is actually more complex than that
modeled by a diode (see e.g. [14] for some recent reference).
Nevertheless in our model the valves have been described with
different detail; in the simplest case they may be simply be
assumed to be ideal and described by equation:

kin =

{
0 p > pin
1 p ≤ pin

kout =

{
1 p ≥ pout
0 p < pout

(12)

equivalent to an ideal diode. In a more complex situation a
“softer” function, such as tanh(·) may be used, allowing also
some retrograde flux;

kin =
1 + tanh (pin − p)

2

kout =
1 + tanh (p− pout)

2

(13)

The observed behaviour of the secondary valves of lymphan-
gions seems to display some hysteresis effects, and a non
symmetric behaviour while opening and closing. This type
of valve has been implemented as a Matlab class and used for
all simulations and results shown in the next section.

III. Results
The model described in section II has been implemented

both in Matlab and using Verilog-A along with a standard
spice-like simulator netlist language. In both cases some ad-
justment due to the nature of the numerical methods employed
has been necessary. Numerical methods may have serious
convergence problems if large scale differences are present
among the values of parameters and variables, and this is our
case, in fact, if expressed using standard SI units, all parameter
values in Eq. (1) and Eq. (2) have numerical values ranging
through several orders of magnitude. For this reason all values
have been re-scaled avoiding floating point representation
problems.
In order to have some baseline data for comparison, model

behaviour has been compared with radius data obtained from
micro-photographic videos of lymphatic vessels*. A sample
frame of one of the videos used is shown in Fig. 2. All
data has been collected using the free ImageJ software [15]
that allows, among other things, the automatic collection
of geometric properties in a single picture or in a set of
consecutive frames. The radius data obtained from the video

*see Acknowledgment for credits.

Fig. 2. One sample frame of one of the video used to analyse real
Lymphangion radius behaviour

allowed optimization of the less obvious model parameters,
such as α, β, γ and the base value for the relaxation refractory
period using a standard least square non linear method. Results
of optimization are shown in Fig. 3. This optimization phase
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Fig. 3. Parameter optimization over two periods of in vivo measured data.

has been performed with standard input, output and transmural
pressure as expected in the specific situation of the micro-
photografic video.
After parameter optimization the model was tested by

comparing its behaviour with that available in recent literature
such as [16] [13]. To this end a pressure ramp is applied at
the output of the lymphangion model, while keeping the input
pressure fixed, the output pressure, in this case, is larger than
the input one, so that autonomous systolic/diastolic behaviour
can be observed. The values of input, output and internal
pressure expressed in mmHg units as a function of time is
shown in Fig. 4. The corresponding radius as a function of
time is shown in Fig. 5. As expected, and in accordance
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Fig. 4. Internal, input and output pressure in the lymphangion model. Input
pressure is kept constant, while a ramp of output pressure is applied.

0 100 200 300 400 500 600

time[s]

30

40

50

60

70

80

90

ra
d
iu

s
[u

m
]

Fig. 5. Radius of the lymphangion model as autonomous systolic events are
generated.

with data in literature, the maximum and minimum values
of internal pressure become larger as the output pressure
increases; moreover, the frequency of the systolic and diastolic
events also increases as a function of output pressure.
A zoomed in image of the relationship between radius and
internal pressure is shown in Fig. 6, note that internal pressure
sharply rises as the systolic event takes place causing the
input valve to close and the output one to open. Lymph
can then overcome the output pressure and flow, lowering
internal pressure at the same time. As the diastolic phase starts
internal pressure is at a minimum value, but soon rises to a
value just slightly higher than the input pressure, preparing
the lymphangion for another systolic event as soon as the
refractory period ends.

285 290 295 300 305 310 315

time[s]

30

40

50

60

70

80

90

ra
d
iu

s
[u

m
]

3

3.5

4

4.5

5

5.5

6

6.5

7

p
re

s
s
u
re

[m
m

H
g
]

Fig. 6. Radius and internal pressure in proximity of a systolic event.

IV. Conclusions
The main contribution of this work is the definition of a

circuit based model of one of the main components of the
lymphatic system. Unlike most lumped models available in
literature, the model here presented is a fully autonomous
dynamic system capable of generating spontaneous systole and
diastole events without the need of any external time base and
with a frequency that depends on pressure. The reaction to
exogenous inputs, such as pressure variation, are coherent with
the experimental data available. Due to its implementation it
is possible to use the model to build more complex networks
of lymphangions and use these to study the behaviour of the
lymphatic system in normal or pathological conditions.
While the model has the advantage of being fully autonomous
and, thanks to its simplicity, is well suited for the simulation
of complex networks of lymphangion elements, its main
drawback is that, if compared with models such as those in
[3] or [4], it does not directly model biochemical interactions
that are present in the real physical lymphatic systems. As
such this model can be considered as a black box model,
displaying correct input vs. output behaviour and capturing the
dynamic behaviour of real lymphatic vessels, but not giving
more insight on the biological processes. In the present version
of the model shear effects have not yet been included, these
effects will be included in future versions.
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