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Abstract
Telemonitoring is one of the most expedient answers to the strong need for preventive care imposed by the 
rapidly aging society. We propose an innovative solution to the detection of early signs of frailty by presenting 
a serious game controlled by a smart sensorized soft plastic ball, designed to achieve continuous home-based 
monitoring of muscle weakness in older adults. Design, development, and testing of the smart ball and of the 
game interface devised to guide the monitoring procedure are presented. Reliability and concurrent validity 
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of the system in measuring maximal grip strength against the clinical standard Jamar® were evaluated. Serious 
game usability and acceptance were investigated on 26 elderlies. Smart ball and Jamar measurements were 
well correlated (0.76 and 0.80 for dominant and non-dominant hands) and test–retest reliability of pressure 
measurements was excellent (intraclass correlation coefficient >0.94). The serious game was well accepted 
by the 96.1 percent of participants, who provided a strongly positive usability score (87.7/100). The smart 
ball–driven serious game demonstrated excellent reliability and good validity in measuring grip strength. The 
proposed smart ball–driven serious game can be used for home self-monitoring of grip strength in elderlies.
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Introduction

As fertility rates decline and life expectancy increases,1 the number of elderly people is projected 
to exponentially grow in most Western countries.2 It is evident that changes in age distribution have 
complex health, social, and economic consequences, both for the individual and the society. A 
rapidly aging population comes with an evident increase in the prevalence of chronic diseases, and 
the consequent need for more care and welfare burdens the healthcare costs.3 Against this back-
ground, the need to identify a new model of care able to anticipate potential problems through 
preventive programs and detection of the very first signs of age-related frailty conditions becomes 
clear. To this aim, assisted and independent living technologies for home telemonitoring can be 
adopted as possible solutions for preventive care in the aging population.4

Home telemonitoring is defined as the use of information technology to monitor the user’s status 
directly at home, where it is used to prevent hospitalization, to improve the feeling of safety, and to 
empower the patient to manage his or her chronic condition.5,6 Home telemonitoring presents sev-
eral advantages for community-dwelling elderlies. It offers senior users the possibility to stay in 
their familiar home environment where they feel safe and comfortable. In addition, the awareness of 
being under continuous monitoring has a positive impact on their sense of security and quality of 
life,7 since they become active participants and not mere passive recipients of health services.7 
Another undeniable advantage is that telemonitoring can identify abnormal behaviors earlier than 
during a routine screening visit or a medical emergency,7 thus allowing prompt intervention.

Although the potential benefits of telemonitoring have been well established, there are chal-
lenges to be faced before such approach goes mainstream. One of the key obstacles for the uptake 
of telemonitoring is represented by user’s acceptance.8 To face this problem, two useful approaches 
are transparency and user’s engagement; thus, effort should be made to develop systems able to 
collect reliable and accurate measurements in an unobtrusive and enthralling way. To increase 
transparency, a possible solution is represented by the use of smart objects, that is, the augmenta-
tion of everyday objects with sensing, communication, and networking technology to support spe-
cific tasks.9 In this framework, recent studies have been achieving monitoring of elder users 
through the implementation of instrumented daily-use objects, such as a cane10 or insoles.11 On the 
contrary, to boost user’s engagement, we have observed a surge of gameful design in the healthcare 
domain,12 including assessment, training, and rehabilitation. In this context, gamification, defined 
as the use of game design elements in non-game contexts,13 is leveraged to motivate the user and 
enhance his or her experience.14 In the context of aging, serious games, defined as games that do 
not have entertainment, enjoyment, or fun as their primary purpose,13 have shown their usefulness 
for both rehabilitation and assessment in the physical15 and cognitive16 domains.

In the aging society, an important and increasingly recognized pathology is the “frailty syn-
drome,” known as the reduction of the individual’s homeostatic reserve, which is the redundancy of 
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physiological functions used to overcome health insults.17 Age-related decline results in increased 
vulnerability for which minor stressors can trigger disproportionate changes in the person’s health 
status. As proposed by Fried et al.,18 a phenotype of frailty is identified by the presence of three or 
more of the following components: unintentional shrinking, muscle weakness, poor endurance and 
energy, slowness, and low physical activity level. As for muscle weakness, it is usually measured as 
the dominant hand’s maximal grip strength.19 Besides forming a key part of frailty, weak grip 
strength per se represents an important and powerful predictor of a range of health outcomes.20 
Indeed, several studies have shown a close relationship between a decrease in grip strength and age-
related functional decline,21,22 disability in the activities of daily living,23 and mortality rates.24 The 
most widely used instrument to quantitatively assess grip strength is the hydraulic Jamar® handheld 
dynamometer, which returns the maximal isometric force (in kilograms) exerted by the user while 
squeezing the handle of the dynamometer. In spite of the prevalent clinical use of the Jamar, which 
comes with the most extensive set of normative data, the isometric nature of the instrument may 
cause discomfort in patients experiencing conditions such as rheumatoid arthritis, lateral epicondy-
litis, or carpal tunnel syndrome.25 To overcome this problem and increase the comfort of use, recent 
studies have investigated the concurrent validity of pneumatic instruments, such as the Martin 
Vigorimeter, compared to the Jamar, reporting very positive results.26 The Vigorimeter, different 
from the Jamar, measures the pressure exerted on a bulb attached to a manometer via a tube. The use 
of both instruments, however, remains restricted to the clinical practice.27

Weakness, together with the other elements of frailty, tends to slowly but constantly progress 
over time and, with the current model of care, there is the risk that the onset of muscle weakness 
might go undetected or identified too late. To face this problem, home telemonitoring can be lever-
aged to alert formal or informal caregivers when possible early signs of frailty are detected. 
Concerning grip strength, a first example of a device for home-based self-monitoring of handgrip 
strength was conceived by Jaber and colleagues,28,29 who proposed to instrument an inflatable 
plastic ball with a pressure sensor. The sensor was tested without being inserted in the object, 
reporting a relatively low sensitivity that could hamper its use in detecting small yet relevant 
changes in handgrip strength.30,31 Most importantly, the work by Jaber and colleagues did not pro-
vide the user with a protocol that guaranteed the validity of the measurements. However, when it 
comes to home-based self-monitoring of maximal grip strength, it is hard to obtain a valid measure 
without any control on the modality of use.

The current work aims at implementing reliable and transparent home-based monitoring of hand-
grip strength, specifically envisaged for the early detection of frailty in independent older adults. To 
do so, we created a system consisting of a smart antistress ball that embeds absolute pressure and 
inertial sensors placed inside the closed device and transmits data wirelessly to control a serious 
game. The game was developed with the twofold aim of hiding the burden of the monitoring pur-
pose through a compelling activity and vouching for adherence to the clinical protocol.32 In the 
current work, first, design, development, and validation of the smart sensorized antistress ball are 
presented. The validated device was then used as an input tracker in the serious game implemented 
to monitor handgrip strength. Finally, the designed game was tested on 26 elderlies to investigate 
usability and validate the ability to effectively guide the monitoring procedure.

Materials and methods

The system

The system is devised to monitor handgrip strength in older adults, consisting of a smart sensorized 
plastic ball that controls a computer game.
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Smart ball. The smart ball is designed to measure the user’s pressure exerted with handgrip and is 
intended to be used as an input tracker for a computer game. To be effectively deployed, require-
ments and specifications have been identified in collaboration with clinicians.

To resemble as much as possible a real antistress ball, the object should have a diameter smaller 
than 8 cm to allow an ergonomic grasp. To look like a real daily-use object, the electronics should be 
placed entirely inside the ball. The Spordas ALLBall® soft plastic sphere was chosen for its deform-
ability, which permits to squeeze the ball with the maximum force without creating an excessive 
deformation, and its size (7.6 cm diameter), which allows an ergonomic grip. In addition, the chosen 
ball presents a valve to allow inflation, which is a necessary requirement for a close object.

As a second requirement, wireless data transmission should be provided with at least a 30-Hz 
frequency to obtain real-time interaction during gameplay. The Bluetooth Low Energy (BLE) pro-
tocol has been selected for wireless data transmission since low power consumption is key to 
reduce the charging frequency and enable long-lasting charge. In addition, BLE technology is 
characterized by short wake-up and connection times, which make it an optimal solution to increase 
usability during gameplay. A proprietary protocol was implemented for BLE transmission of all 
raw data. Application programming interfaces (APIs) have been implemented for data transfer 
from the ball to the host at 50 Hz.

In terms of sensors, the ball should be equipped with an absolute pressure sensor able to meas-
ure grasping pressures (i.e. the difference between the total absolute pressure and the initial pres-
sure of the ball) corresponding to a grip force in the range 0–60 N.33 To be used as an input tracker 
for computer games, the ball should also be instrumented with a tri-axial accelerometer and gyro-
scope to detect movement. The battery should be rechargeable and chosen as a trade-off between 
encumbrance minimization and duration maximization. An LED should be included to notify bat-
tery discharge. We looked for suitable electronics that could have been reliably inserted inside the 
ball plastic shell. Among the available solutions, the SensorTile evaluation kit (EVK) by ST indus-
tries (©STMicroelectronics) was selected since it combines three desirable features: compactness, 
modularity, and flexibility. The SensorTile is a tiny module (13.5 × 13.5 mm2) that packs all that is 
required for our application. In particular, the BlueNRG-MS single-mode network processor, com-
pliant with Bluetooth specification v4.1, was used to implement BLE connectivity. Among the 
wide spectrum of motion and environmental MEMS sensors included in the SensorTile, the three-
dimensional (3D) accelerometers and gyroscopes (LSM6DSM) and the absolute pressure sensor 
(LPS22HB: optimal pressure range: 260–1260 hPa; 24-bit pressure data output) were leveraged. 
Moreover, to acquire, filter, and transmit the signal, the 80-MHz STM32L476JGY microcontroller 
was used. Finally, the certified 100 mA h Li-ion rechargeable battery of the tile was selected.

A printed circuit board (PCB) was developed to connect the SensorTile with the external battery 
charger and to control the battery state (through the BLE battery level state characteristic). The 
PCB also activates two operational LEDs to indicate the state of the battery (red) and the keep alive 
status of the ball (green).

All the electronics are protected by a 3D-printed plastic case and inserted in the soft plastic 
sphere, which is cut on one side and then closed with a 3D-printed rigid plastic part, to which the 
plastic case is attached. The final weight of the smart ball is 54 g.

To recharge the battery enclosed inside the ball, induction charging has been chosen. A wireless 
charger has been designed and 3D printed to host the recharging circuit powered by a USB cable 
(Figure 1).

The game. The core of this work is the implementation of a serious game to mimic the American 
Society of Hand Therapists (ASHT)34 protocol required to assess maximum handgrip strength, 
consisting of three 3-s trials of maximal force with a minimum of 15-s between-trial rest. The game 
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is targeted to older users and it should thus follow some practical guidelines recommended when 
designing games for elderlies.35 The game should be engaging and rewarding, but at the same time 
simple, since elderly people often suffer from a reduced attention span. The game should be dis-
played on a large monitor or computer screen and allow to be played while sitting.

The game was developed in Unity 3D and the ball was used as the input tracker. The.NET 
Core libraries were used to set up the communication with the ball through BLE protocol, and 
the game was built as a Universal Windows Platform app to be run on a CPU device. Such 
choice was based on the need to display the game on a wide screen, such as a computer monitor 
or TV screen, to increase usability for the elder user.35 Nevertheless, the use of Unity 3D allows 
to build the game under several platforms, including iOS or Android, in order to obtain apps for 
tablet or smartphones.

Before gameplay, the user can select to visualize a tutorial to receive instructions about the 
game itself, the recommended posture, and the use of the ball. When the game is launched, once a 
connection with the smart ball has been established, the battery level of the object is checked. If the 
smart ball is running out of battery, gameplay is not allowed and a message is displayed to the user 
to inform him or her about the need to put the object under charge.

To replicate the ASHT protocol, the game includes three scenes. In the Rocket launch scene 
(Figure 2(a)), subjects are guided to squeeze the ball with their maximal strength for 3 s. The 
rocket’s size increases according to the exerted force (ΔP). At the end of the 3-s period, the rocket 
is launched (Hitting Stars scene; Figure 2(b)) and starts hitting stars and collecting score points. 
The greater the force exerted, the highest is the level reached by the rocket and the points gathered. 
An encouraging message “Good Job” is displayed. To implement the resting phase between two 
consecutive maximal force trials, as required by the ASHT protocol, the Wheel of Star scene is 
used (Figure 2(c)). In this scene, the rocket spins in the center of five stars of different sizes 
arranged in a circle. The highest score is associated with the smallest star. The user is instructed to 
turn the smart ball to shoot and hit a star. Such rotation is detected through the module of the angu-
lar velocity, acquired through the ball’s gyroscopes, based on a threshold algorithm. The sequence 
of the three scenes is repeated three times in a row as requested by the ASHT protocol, for a total 
duration of about 1 min.

Figure 1. From left right: The SensorTile mounted on the PCB, the WiFi battery charger, the 3D model 
of the prototype with the internal case to protect the electronics, and the final prototype of the ball placed 
in its charging station.
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At the end of gameplay, a message is displayed to show the user the final score and, since the 
game is envisaged for a longitudinal use, also to inform him or her whether the performance 
improved compared to the previous time. However, game score is not directly correlated to the 
user’s maximal grip strength, since it is composed by the sum of the points obtained from the three 
launches of the rocket (proportional to the force exerted) and the points earned when shooting at a 
star in the Wheel of Star scene. In this way, the user is encouraged to squeeze the ball as strong as 
possible to obtain a higher game score but, at the same time, he or she is not directly informed 
about the force exerted. On the other hand, for every game session, the user’s maximal grip 
strength, together with the raw data collected from the sensors of the smart ball, are collected and 
stored in a separate file. In this way, data collected during gameplay allow us to longitudinally keep 
track of the user’s muscle weakness.

Protocol

The Ethical Committee of Politecnico di Milano approved the study protocol including both the 
concurrent validity tests against the Jamar (section “Validation against the Jamar dynamometer”) 
and the serious game usability tests (section “Game testing”).

Smart ball validation. To validate the use of the smart ball as a reliable device to monitor handgrip 
strength, a twofold validation test was carried out: (1) reliability of the measures provided by the 
smart ball at different initial pressures was studied using an electromechanical testing system and 
(2) concurrent validity of the smart ball in measuring the user’s maximal grip strength was tested 
against the clinical standard, using a Jamar dynamometer.

1. Validation against an electromechanical testing system

The force applied to the smart ball was quantified by means of the MTS Synergie 200 electrome-
chanical testing system. This system is controlled in displacement and is equipped with a load cell 

Figure 2. Computer game scenes implemented to test maximal grip strength. Panel a: Rocket launch 
scene - the user is guided to squeeze the ball with his(her maximal strength for three seconds while 
the rocket increases in size according to the exerted force. Panel b: Hitting Stars scene - the rocket is 
launched to a level proportional to the maximal grip strength and collects stars (score points). Panel  
c: Wheel of Star scene - the rocket spins in the center of five stars of different size (and value) and the 
user is instructed to turn the smart ball to shoot and hit a star.
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to measure the force provided with an accuracy of 0.56 percent in the range 50–1 kN. The force 
range used was limited between 50 and 200 N to avoid any possible damage to the internal electron-
ics, especially when the ball was highly deformable (as for low initial pressures). The smart ball was 
placed inside an ad hoc 3D-printed case, which tried to mimic the contact area of a hand (40 cm2) 
while squeezing a 7-cm diameter handle.33 The ball, fixed inside the case, was positioned between 
the two extremities of the actuator, as shown in Figure 3. Four levels of initial pressure (P0 = 1.0, 1.1, 
1.2, 1.4 bar) were used and each level was tested twice. In each trial, the MTS system exerted a 
compression to the ball that was increased in steps of 10 N. The variation in the pressure values 
measured by the ball (ΔP) in correspondence to the exerted force steps was stored. The acquired data 
were used to evaluate both the relative and the absolute reliability of the ΔP measured by the ball at 
different initial pressures and to support in the selection of the most appropriate initial pressure P0.

2. Validation against the Jamar dynamometer

Using both the Jamar dynamometer and the smart ball, each participant was asked to perform his 
or her maximal grip strength with both hands following the guidelines of ASHT.34 Subjects were 
asked to sit straight on a chair with the forearm at rest in neutral position and the elbow flexed at 
90°. Three 3-s trials of maximal force with a minimum of 15-s between-trial rest were performed 
for each of the two devices using both hands. Dominant and non-dominant hands were always 
alternated. The order of the devices and of the hands was randomized to avoid any possible system-
atic error due to fatigue or training.

Game testing. The serious game was tested with a twofold aim: to evaluate usability and acceptance 
of the game and to assess concurrent validity and reliability of the maximal handgrip strength 
measured during gameplay.

Each subject was asked to perform one game session using his or her dominant hand. After 
completion of the game, the subject was asked to fill out a questionnaire made up of two parts: (1) 
the Italian version of the System Usability Scale (SUS)36—original scores were converted into a 
0–100 range and a total score above 68 would be considered above average;36 (2) a set of questions 

Figure 3. The experimental setup used to validate the reliability of the measure of absolute pressure 
provided by the smart ball at different initial pressures (P0). The ball, fixed inside the 3D-printed plastic case, 
is positioned between the two extremities of the actuator. On the left, the unit to control the displacement 
of the actuator. On the right, the laptop with the software for acquiring data from the smart ball.
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related to gameplay which included Likert-type scale and open questions. More specifically, the 
following Likert-type scale questions were included: (a) I found the game interface amusing and 
intuitive, (b) I felt at ease when using the smart ball to control the game, (c) I would like to use this 
system at home, and (d) I am very satisfied with the experience. The open questions, instead, asked 
the user: (a) Is this the first time you practice a similar computer game? (b) List possible perceived 
discomfort in the use of the system, (c) Indicate the most appreciated aspects in the use of the sys-
tem, and (d) Indicate the least appreciated aspects in the use of the system.

Participants

Tests with adults were performed to study both the concurrent validity tests against the Jamar (section 
“Validation against the Jamar dynamometer”) and the serious game (section “Game testing”). The 
exclusion criterion was any diagnosis of neurological and vascular disorder affecting the upper limbs.

Sample size was calculated to test the concurrent validity of the use of the smart ball with the 
clinical standard; to do so, a population size of at least 50 subjects was estimated, considering a 
significant correlation coefficient (r) of 0.5, a statistical power of 80 percent, a type I error of 1 per-
cent, and allowing a 20 percent dropout rate. Among the total subjects, a subgroup of at least 25 
older adults (age ⩾65 years) was required to test the computer game on target users.

A total of 55 subjects (age 49.3 ± 24.7 years; gender: 22 males and 33 females; dominant hand: 
55 right-handed) were recruited to test the concurrent validity of the use of the smart ball with the 
Jamar dynamometer. Among them, gameplay was tested on the subgroup of older adults, com-
posed of 26 subjects (age: 73.96 ± 6.52 years; gender: 10 males and 16 females; dominant hand: 26 
right-handed; education: 13.9 ± 5.3 school years).

Statistical analysis

Smart ball validation

1. Validation against an electromechanical testing system

First, for each of the four P0 tested, a one-way repeated measures analysis of variance (ANOVA) 
was used to compare the ΔP measures in the two sessions in order to ensure the absence of any 
systematic error.37 Then, relative reliability was assessed computing the intraclass correlation coef-
ficients (ICC two-way mixed-effects model, absolute agreement). ICC values of 0.70–0.85 indi-
cate good and excellent reliability, respectively.38 Absolute reliability was assessed computing the 
standard error of measurement (SEM), estimated as the square root of the mean square error term 
in the repeated measures ANOVA.37,38 Then, the measurement error was estimated by the mini-
mum detectable change (MDC) calculated as follows

MDC SE 1.96 2= × ×M  (1)

where 1.96 is the z score associated with the 95 percent level of confidence, and the square root of 
2 reflects the additional uncertainty introduced by using difference scores based on measurements 
made at two time points.39

2. Validation against the Jamar dynamometer

Separately for dominant and non-dominant hand, concurrent validity between the smart ball and 
the Jamar measures was assessed through correlation analysis.40 Given the data normal distribution 
(Lilliefors test), the Pearson correlation coefficient was used.
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Separately for the four sets of measurements obtained from the two devices using both the 
dominant and the non-dominant hands, one-way repeated measures ANOVA was used to compare 
the values of maximum strength obtained from the three repetitions to assess the absence of any 
systematic error.37 Relative reliability was computed through ICC (two-way mixed-effects model, 
absolute agreement). For both devices, the measurement error was estimated through the MDC, 
given the three repetitions of maximal grip strength per condition (see section “Validation against 
an electromechanical testing system”). This value will be useful to discriminate real changes of 
grip strength when monitoring users over time.

In addition, separately for the two devices, two-way mixed design ANOVA was used to inves-
tigate the effect of hand and sex on the average of the maximal force (Jamar) and ΔP (smart ball) 
measured (“lme” function; 1 within-subject factor: hand (two levels: dominant, non-dominant); 1 
between-subject factor: sex (two levels: male, female)).

Game testing. A frequency analysis on the answers to the SUS and satisfaction questionnaire was 
carried out to evaluate usability and user’s acceptance.

To assess the validity of the game in measuring the maximum grip strength, a correlation analy-
sis was carried out between maximal grip force acquired using the Jamar dynamometer and the 
maximal ΔP registered during game execution. Given the data normal distribution (Lilliefors test), 
the Pearson correlation coefficient was used.

Relative reliability of the three ΔP measures registered during game execution was computed 
through ICC (two-way mixed-effects model, absolute agreement). Statistics was run using RStudio 
version 1.0.143 (RStudio Inc., Boston, MA). Significance level was set at 5 percent for all tests.

Results

Validation of the smart ball

Validation against the electromechanical testing system. For each of the four tested levels of initial 
pressure (P0), the pressure variation values (ΔP) measured by the smart ball at different force 
levels are reported in Figure 4. The slope of the regression lines increases as the ball deformability 
increases (i.e. as P0 decreases). Independently from the P0 tested, test–retest reliability of the ΔP 
measured by the smart ball was excellent (ICC > 0.99) (Table 1). Consequently, in terms of abso-
lute reliability, the estimated SEM increased with decreasing initial pressure, ranging from 
0.72 hPa for the ball inflated at 1.4 bar to 1.41 hPa for the ball inflated at 1.0 bar. Thus, the MDC 
ranged from 1.71 to 3.91 hPa, with lower values obtained when the smart ball was inflated at the 
highest initial pressures.

During such tests, the ball inflated at 1.0 bar showed high deformability which led to reach 
great ΔP values even when a low force level was exerted; such feature could easily cause damages 
to the internal electronics. On the other hand, the ball inflated at 1.4 bar resulted too rigid, thus 
reducing usability.

Such results and observations were used to support the selection of the most appropriate initial 
pressure to be used in the next steps of the work, which turned out to be 1.2 bar. Indeed, a P0 of 
1.2 bar resulted in low values of SEM (0.74 hPa) and MDC (2.06 hPa).

Validation against the Jamar dynamometer. Figure 5 shows the scatterplots comparing the mean grip 
strength measured by the smart ball and the Jamar dynamometer for dominant and non-dominant 
hands. The Pearson correlations (N = 55) between the ΔP measured by the smart ball and the grip 
strength measured by the Jamar dynamometer were 0.76 (p < 0.01) and 0.80 (p < 0.01) for the 
dominant and non-dominant hand, respectively. When considering only the older adult subgroup 
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(N = 26), the Pearson correlation coefficient slightly decreased to 0.61 (p < 0.01) and 0.68 (p < 0.01) 
for the dominant and non-dominant hand, respectively.

The ICCs obtained for the three consecutive trials of maximum grip strength performed with the 
two devices and the MDC are reported in Table 2. As expected, for both the smart ball and the 
Jamar, such values are way higher than the MDC emerged from multiple repetitions of the tests 
with the linear actuator, which did not include the intra-subject variability that typically character-
izes the human system.

Significant differences in maximal grip strength between dominant and non-dominant hands 
and between men and women were found when using both the Jamar and the smart ball (Table 3). 
No interaction between hand and sex was found, meaning that both men and women presented a 
greater maximal handgrip strength for the dominant side.

Game testing

The usability and satisfaction questionnaire reported strongly positive results. In terms of usability, 
the average SUS score obtained was 87.7 (±10.9), with the 92.3 percent of participants presenting 

Figure 4. Experimental data obtained for the four P0 tested. For each P0, the ΔP measured by the ball 
at each force level is indicated with a triangle and a cross for the first and second trials, respectively. The 
best-fit regression line is reported with dashed or solid line for the first and second trials, respectively.

Table 1. Relative reliability (ICC), absolute reliability (SEM), and minimum detectable change (MDC) of 
the ΔP measured by the smart ball during the validation against the linear actuator (N = 16 for each P0 
tested).

P0 (bar) ICC (95% CI) SEM (hPa) MDC (hPa)

1.0 0.9999 (0.9997–1) 1.41 3.91
1.1 0.9998 (0.9995–0.9999) 1.55 4.29
1.2 0.9994 (0.8372–0.9999) 0.74 2.06
1.4 0.9958 (0.2378–0.9993) 0.72 1.71

ICC: intraclass correlation coefficient; CI: confidence interval; SEM: standard error of measurement; MDC: minimum 
detectable change.
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a positive usability score (⩾68). Similar results emerged in terms of satisfaction. The majority of 
users (69.2%) was strongly satisfied with the overall experience, the 26.9 percent was satisfied, 
while the 3.9 percent only had no opinion. All subjects felt at ease when using the smart ball to 
control the game (76.9% strongly agree; 23.1% agree). In addition, 61.5 percent of subjects (46.1% 
strongly agree; 15.4% agree) would like to use the computer game at home, and 96.1 percent of 
them (69.2% strongly agree; 26.9% agree) appreciated the graphical interface (3.9% no opinion). 
Concerning the open questions, all subjects reported no perceived discomfort, except one who 
stated that the instructions of the Wheel of Star scene were not clear. It is important to point out 
that, during the protocol, the users did not leverage the game tutorial provided for home deploy-
ment of the game. According to the questionnaire, the most appreciated aspects were the ease-of-
use (three participants), the engagement (three participants), the Wheel of Star scene (three 
participants), the space theme of the graphic interface (two participants), and the amusement (one 
participant). On the other hand, no participant pointed out negative aspects. Importantly, from the 
questionnaire emerged that none of the users ever practiced a similar game before.

The Pearson correlation (N = 26) between the ΔP measured by the smart ball during game exe-
cution and the grip strength obtained through the Jamar dynamometer was 0.62 (p < 0.01) (Figure 
5(c)). The ICC obtained for the three consecutive trials of maximum grip strength performed dur-
ing game execution was 0.9046 (95% confidence interval (CI): 0.8230–0.9541).

Discussion

This work proposes an innovative and expedient solution for valid and continuous home-based 
monitoring of maximal grip strength, with the final aim of detecting early signs of frailty in com-
munity-dwelling elderlies. To this end, we devised a serious game controlled by a sensorized soft 
plastic ball to guide the user through the instructions of a clinical protocol typically used to assess 
muscle weakness.

The current work falls within the concept of telemonitoring, a new model of preventive care in 
which people live in their own environment surrounded by intelligent interfaces integrated into 
everyday objects.41 Such smart objects have the potential to transparently acquire useful informa-
tion about the users’ health status. In this framework, we designed and implemented a prototype of 

Figure 5. Scatterplots comparing the mean grip strength measured by the smart ball and the Jamar are 
reported (a) for the dominant hand, (b) for the non-dominant hand, and (c) for the dominant hand during 
gameplay. Circles and triangles indicate values obtained from the young and older adults, respectively. The 
best regression line is shown in each panel.
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a smart ball sensorized with an absolute pressure sensor able to measure grasping pressures and 
with tri-axial accelerometers and gyroscopes to detect movement.

Key requirements for an instrument designed to measure handgrip strength are test–retest reliabil-
ity and concurrent validity with respect to the clinical standard. For this reason, maximal grip strength 
of dominant and non-dominant hands were measured, following the ASHT protocol, on 55 young and 
older adults using both the smart ball and the Jamar dynamometer. Results showed that test–retest 
reliability of the pressure measurements was excellent, with ICC values above 0.94 for both hands. 
Such results were comparable with the ones obtained from the Jamar, showing that the relative reli-
ability of the smart ball approaches the clinical standard. In addition, results revealed very high sig-
nificant correlations between measurements of the smart ball and the Jamar dynamometer which 
varied between 0.76 and 0.80 for dominant and non-dominant hand, respectively. These strong cor-
relations support the concurrent validity of measurements obtained with the smart ball with respect to 

Table 2. Relative reliability (ICC), absolute reliability (SEM), and minimum detectable change (MDC) of 
the force measured by the Jamar and the ΔP measured by the smart ball for all subjects (N = 55) and for 
the two subgroups of young (N = 29) and older (N = 26) adults.

Hand Subjects Mean and standard deviation values ICC (95% CI) SEM 
(kg)

MDC 
(kg)

Trial 1 (kg) Trial 2 (kg) Trial 3 (kg)

Jamar
D All

N = 55
28.7 ± 11.4 27.9 ± 11.5 27.6 ± 11.6 0.962 (0.941–0.977) 2.23 6.17

ND All
N = 55

26.5 ± 11.4 25.2 ± 10.8 24.0 ± 10.5 0.958 (0.906–0.978) 2.24 6.21

D Young adults
N = 29

33.0 ± 11.8 31.6 ± 12.2 30.8 ± 12.2 0.958 (0.914–0.980) 2.45 6.80

ND Young adults
N = 29

30.6 ± 11.9 28.7 ± 11.7 27.0 ± 11.7 0.959 (0.817–0.986) 2.37 6.56

D Older adults
N = 26

23.7 ± 8.6 23.7 ± 9.2 23.9 ± 9.9 0.957 (0.919–0.979) 1.95 5.41

ND Older adults
N = 26

21.9 ± 9.1 21.3 ± 8.2 20.6 ± 7.9 0.939 (0.886–0.970) 2.02 5.59

 Trial 1 (hPa) Trial 2 (hPa) Trial 3 (hPa) (hPa) (hPa)

Ball
D All

N = 55
269.5 ± 129.9 276.6 ± 132.0 270.6 ± 127.4 0.948 (0.920–0.968) 29.41 81.53

ND All
N = 55

258.4 ± 153.4 251.6 ± 141.3 242.7 ± 146.3 0.946 (0.917–0.966) 34.03 94.32

D Young adults
N = 29

319.0 ± 136.9 313.2 ± 144.4 304.8 ± 142.4 0.947 (0.905–0.973) 32.22 89.31

ND Young adults
N = 29

316.0 ± 172.0 295.2 ± 156.8 283.1 ± 167.2 0.934 (0.878–0.967) 42.03 116.51

D Older adults
N = 26

212.2 ± 94.9 234.0 ± 103.2 230.8 ± 95.5 0.932 (0.862–0.969) 23.30 64.59

ND Older adults
N = 26

194.2 ± 97.7 203.1 ± 104.4 197.6 ± 104.7 0.956 (0.919–0.979) 21.37 59.24

ICC: intraclass correlation coefficient; CI: confidence interval; SEM: standard error of measurement; MDC: minimum 
detectable change; D: dominant; ND: non-dominant.
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the Jamar dynamometer. Unfortunately, the different physical quantities measured by the two instru-
ments (i.e. pressure for the smart ball and force for the dynamometer) did not allow us to verify agree-
ment between the two instruments (e.g. through Bland–Altman plots). However, the results obtained 
from the comparison of the smart ball with the clinical standard improve the findings emerged from 
a previous research that conceived a first device for home-based self-monitoring of grip strength. 
Such device was tested in 88 older adults, reporting strong correlation (ranging between 0.69 and 
0.78) with the Jamar.30 However, the prototype tested by previous work was able to detect only larger 
grip strength differences, such as between-sex differences, while it could not distinguish between 
dominant and non-dominant hands. This result was probably due to the choice of the pressure sensor, 
which presented a resolution of 12 hPa. The reported lack of sensitivity could hamper the use of the 
device in monitoring the small strength changes that characterize the slow but continuous physical 
degeneration of elderly people. The pressure sensor inserted in our smart ball was instead character-
ized by a higher resolution (0.24 hPa), which allowed to discriminate the pressure exerted by domi-
nant and non-dominant hands, whose difference is typically in the range of 10–20 hPa.

When it comes to technologies for home care, providing a well-functioning system is not a 
pledge for success. Indeed, user’s acceptance is one of the main obstacles for the uptake of the 
solution, especially for elder users.8 For this reason, to increase usability, the plastic ball was cho-
sen for its soft and handy nature, in order to avoid possible discomfort in weak joints, such as those 
reported for the use of the Jamar dynamometer.25 The idea of instrumenting a soft tool to measure 
handgrip strength with the view to a daily use was first introduced by Vermeulen et al.30 However, 
the device tested was not a proper daily-life soft ball, but consisted of a modified Martin Vigorimeter 
in which the manometer was replaced by the electronics, which was then attached to the bulb via a 
cumbersome rubber tube. For our device, instead, sensors and electronics are placed inside the ball, 
thus creating a compact and easy-to-use solution that properly replicates a real antistress ball. The 
comfort of use of the developed device was confirmed by the positive results of the questionnaire, 
which showed that all the elder participants felt at ease when using the smart ball.

However, the main innovation introduced by our work in terms of usability is represented by 
the use of gamification to guide the elder through the proper use of the smart object. Valid home-
based self-monitoring of maximal grip strength is hard to obtain without any control on the 
modality of use, and no previous research ever tackled such nontrivial issue. To face this problem, 
we successfully devised and developed an innovative smart ball–driven computer game that 
reproduces the ASHT protocol, allowing to obtain meaningful information about the elder’s max-
imal grip strength while engaging him or her in a compelling activity. The game was tested on 26 
elderlies, reporting successful results. Test–retest reliability and concurrent validity of the smart 
ball in measuring maximal grip strength during game execution, with respect to the Jamar 
dynamometer, were comparable with the ones obtained from the stand-alone use of the smart ball 
during the standard ASHT protocol. The game was implemented following specific guidelines 
recommended when designing games for elderlies,35 thus obtaining an engaging yet simple activ-
ity, able to guide the user with clear and simple instructions. Moreover, game control was easily 
achieved by simply squeezing or rotating the ball. System usability and acceptance were con-
firmed by our results. A positive usability score was reported by the strong majority of users 
(92.3%). In terms of user’s acceptance, the vast majority of participants showed to be satisfied 
with the overall experience and would like to use the system at home. No negative aspects were 
pointed out by the users. Such positive results are even more striking if we consider that none of 
the users ever practiced any similar activity before.

The encouraging results, emerged in terms of both user’s acceptance and system reliability and 
validity, are of crucial importance to deploy the implemented system in a home setting, with the final 
aim of achieving transparent, continuous monitoring of handgrip strength in older adults. With the 
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view to long-term use, a useful result emerged here concerns the MDC computed during user’s per-
formance, to estimate whether a change between the user’s repeated tests represents random variation 
or a true change in performance. This value is a key requirement to discriminate real changes of grip 
strength when monitoring users over time, and it is thus crucial for longitudinal monitoring.

The developed serious game is now ready to be deployed at home to test the long-term usability 
of the system. To this end, useful information will be collected within the MoveCare Project (http://
www.movecare-project.eu),42 which aims at developing a comprehensive system for monitoring, 
assisting, and promoting activities to counteract decline and social exclusion in independent elder-
lies. Within this project, the present system will be deployed at home and integrated in a commu-
nity-based activity center that offers a number of different physical and cognitive activities. Diverse 
data will be acquired also from a heterogeneous net including environmental sensors and daily-use 
smart objects based on the new paradigm of the Internet of Things (IoT).43 The heterogeneous data 
transparently collected from the user will be fed to an intelligent virtual caregiver, a key entity in 
the cloud in charge of the reasoning. Obtaining a comprehensive picture of the physical and cogni-
tive status of community-dwelling elderlies from daily activities performed at home is key to 
detect possible early signs of decline and alert formal and informal caregivers. In this framework, 
it is crucial to keep in mind that MoveCare-like systems should not and cannot replace human care 
providers or clinicians, but they should rather provide possible recommendations of seeking fur-
ther professional help, thus representing cost-effective solutions.

Conclusion

In the current work, we devised a nifty system composed of a smart soft plastic ball to control a 
serious game specifically designed to measure age-related muscle weakness while engaging elder 
users in a compelling activity.

This study presents a step forward in the context of home telemonitoring for prevention of age-
related frailty, since we leverage smart objects and gamification to increase system reliability and 
acceptance, with the final aim of providing remote support to elder people in the detection of early 
alert situations. The innovative solution presented here paves the way toward the adoption of usa-
ble and well-accepted technology transparently integrated in daily-use objects, having the potential 
to make important contribution to research and practice in the field of preventive care.
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