
An FFT framework for simulating non-local ductile failure in

heterogeneous materials∗

M. Magri1, S. Lucarini1, G. Lemoine2, L. Adam2 and J. Segurado1,3
†

1 Fundación IMDEA Materiales, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain

2 e-Xstream Engineering, Axis Park-Building H, Rue Emile Francqui 9, B-1435 Mont-Saint-Guibert, Belgium

3 Department of Materials Science, Technical University of Madrid, E.T.S. de Ingenieros de Caminos, 28040, Madrid, Spain

March 9, 2021

Abstract

The simulation of fracture using continuum ductile damage models attains a pathological discretiza-
tion dependence caused by strain localization, after loss of ellipticity of the problem, in regions whose size
is connected to the spatial discretization. Implicit gradient techniques suppress this problem introducing
some inelastic non-local fields and solving an enriched formulation where the classical balance of linear
momentum is fully coupled with a Helmholtz-type equation for each of the non-local variable. Such
Helmholtz-type equations determine the distribution of the non-local fields in bands whose width is con-
trolled by a characteristic length, independently on the spatial discretization. The numerical resolution
of this coupled problem using the Finite Element method is computationally very expensive and its use
to simulate the damage process in 3D multi-phase microstructures becomes prohibitive.

In this work, we propose a novel FFT-based iterative algorithm for simulating gradient ductile damage
in computational homogenization problems. In particular, the Helmholtz-type equation of the implicit
gradient approach is properly generalized to model the regularization of damage in multi-phase media,
where multiple damage variables and different characteristic lengths may come into play. In the proposed
iterative algorithm, two distinct problems are solved in a staggered fashion: (i) a conventional mechanical
problem via a FFT-Galerkin solver with mixed macroscopic loading control and (ii) the generalized
Helmholtz-type equation using a Krylov-based algorithm combined with an efficient pre-conditioner.
The numerical implementation is firstly validated on simple two-dimensional microstructures, showing
identical responses for different spatial discretizations and reproducing a ductility change dependent on
the characteristic length. Finally, the robustness and efficiency of the algorithm is demonstrated in the
simulation of failure of complex 3D particle reinforced composites characterized by millions of degrees of
freedom.

1 Introduction

The fracture process of ductile metals has been profusely studied in the last decades and several well estab-
lished models are available for the prediction, in a more or less phenomenological manner, of nucleation and
evolution of damage [1]. Some of the most popular examples include the Gurson model [2] (or its adaptation
by Tvergaard and Needleman [3]), the Rousselier model [4], and other models based on damage mechanics
[5]. Nevertheless, it is well known that the numerical solution of boundary value problems with this class
of constitutive laws — for example using Finite Elements (FE) — results in a pathological discretization
dependence due to loss of ellipticity of the problem after strain softening [6]. Different regularization tech-
niques have been proposed to overcome this limitation and formulate well-posed failure models [7]. Among
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them, the approaches based on a non-local continuum [8], where additional averaging equations provide
extra unknown fields to the original mechanical problem, have been studied extensively. The interest of
these models is in their ability to control the size of the localization region through an uniform intrinsic
length scale associated with the considered averaging equations, `. Non-local continuum mechanics was first
applied to prevent damage localization in the 80s for quasi-brittle materials [9, 10], and since then it has
been widely used for the regularization of damage for different kinds of material response, including ductile
damage [11]. Non-local approaches can be formulated as integral or gradient models [6]. The latter is the
most used formulation since it exploits the differential form of the non-local approach and, therefore, is
more prone to the numerical implementation through techniques as FE. In their classical implementation
[7], higher-order or implicit gradient approaches enhance the constitutive equations through a non-local field,
typically the equivalent plastic strain ε̄eq, which is obtained from the corresponding local field εeq, by solving
the Helmholtz-type partial differential equation

ε̄eq − `2∇2ε̄eq = εeq . (1)

In this way, the resulting formulation consists of a system of two coupled partial differential equations:
the equation for the mechanical equilibrium – i.e. div[σ] = ~0 with σ denoting the Cauchy stress tensor
– and the additional equation for computing the non-local field, i.e. Eq. (1). It is worth nothing that,
from a mathematical view point, the implicit gradient regularization resembles phase-field fracture models
as a particular case of averaging equation [12, 13]. Non-local damage mechanics via the implicit gradient
approach has been mainly implemented in FE by means of a monolithic scheme of the overall problem as
pursued in many relevant works that studied the application of such a regularization technique on different
types of damage models [14, 15]. However, the elevated computational cost of the FE implementation limits
the geometrical complexity and the discretization level of the numerical simulations that, in most cases, are
restricted to two-dimensional problems [16, 17, 18].

Simulation of ductile damage has a lot of interest in micromechanics in order to capture the effect of
the microstructure – for example in metal matrix composites [19, 20] and metallic porous materials or
foams [21, 22, 23, 24] – on the nucleation and development of failure. In micromechanical simulations,
the boundary value problem is solved for a multi-phase representative volume element of the microstructure
(RVE). This RVE usually contains a complex geometrical arrangement of the phases to statistically represent
the microstructure, and this complexity typically requires a fine discretization in the numerical scheme.
In such a scenario, the computational cost of the non-local regularization of damage, in the realm of FE
solvers, becomes particularly expensive so that many studies just exploit standard local damage models that,
therefore, limit the validity of the results to the adopted level of the spatial discretization [19, 20, 23, 24].
Moreover, the use of periodic boundary conditions in micromechanics (the most accurate approach for
computational homogenization [25]) introduces additional conditions for meshing and further increases the
computational cost of FE models [26]. Only a few examples that implement non-local approaches in the
context of FE homogenization can be found in the literature [27, 28, 29]. An integral non-local regularization
of several ductile damage models is developed in [27, 28] to account for the effect of particle distribution
in the fracture of metal matrix composites. However, the resulting formulation only partially alleviates the
mesh dependence of the numerical predictions as it relies on an explicit integration of the non-local relation.
On the other hand, Reusch et al. [29] implemented a rate-dependent implicit gradient extension of the
Gurson model for the simulation of metal matrix composites of two dimensional RVEs in an embedded-cell
approach. In this case, the integration is implicit but limited to two dimensional problems containing only
a few particles.

Efficient alternatives to FE in the field of computational homogenization are the methods based on the
Fast-Fourier-Transforms (FFT) pioneered by H. Moulinec and P. Suquet in the 90s [30, 31]. FFT based
methods – also referred as spectral solvers – offer many advantages with respect to traditional FE and
currently represent well established and mature approaches for micromechanics. For instance, periodic
boundary conditions arise naturally in FFT solvers and no meshing is necessary so that digital images of the
microstructure can be directly used. Spectral solvers were first applied to computational homogenization
of linear elastic problems at small strains, where the resulting Lippmann-Schwinger equation was resolved
iteratively by means of the so-called basic scheme [30]. To accelerate the rate of convergence, particularly
poor in case of high phase stiffness contrast, the basic scheme has been object of modifications resulting in the
form of accelerated and augmented Lagrangian schemes [32]. In addition, this class of FFT iterative solvers
was also extended to the solution of mechanical problems with non-linear constitutive behavior [32] and in
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finite strains analysis [33], thus allowing the implementation of a broad class of mechanical problems in solid
mechanics. More recently, an alternative FFT approach was developed from the Galerkin method by Vondřejc
et al. [34] and later extended to non-linear problems [35, 36]. Such an approach is extremely advantageous
in the context of computational mechanics since it is derived starting from the same variational scheme that
FE solvers are based on. Indeed, upon algorithmic linearization, the FFT-Galerkin scheme results in the
same material residuals and tangent operators that characterize the counterpart FE implementation. This
simple adaptation of complex material models together with the extension of the method by Lucarini and
Segurado [37] to generic macroscopic loading histories combining stress or strain control, lead to a formally
identical computational homogenization framework to FE in terms of material models, microstructure, and
loading history.

In spite of the great potential of FFT-based solvers for fracture problems in a micromechanical context,
only a few works can be found in this regard [38, 39, 40, 41, 42]. Li et al. [38] proposes a model based
on non-local damage mechanics employing an integral approach to define non-local stresses. However, the
model is not properly a non-local approach since damage does not evolve naturally but is applied locally
to somehow reproduce a crack of a voxel width. On the other hand, Diehl et al. [39], Ernesti et al.
[40], and Ma et al. [41] focus on phase-field brittle fracture. In [39] it is proposed, in the context of
polycrystals, a hybrid FE–FFT method due to the numerical artifacts caused by oscillations in a pure
spectral approach. Nevertheless, a hybrid method does not fully exploit the numerical performance of a
pure spectral solver and implies the use of regular cubic meshes, thus losing the benefit of mesh adaptivity
of the finite element method. In [40, 41] pure FFT based solvers are proposed for phase-field fracture. In
both cases the formulation is implemented through a staggered scheme. In [41] the focus was made on
simulating the fracture propagation in three-dimensional polycrystals while in [40] the model was applied to
matrix brittle damage on composites. To our knowledge, the only spectral implementation of a non-local
ductile damage approach is presented in the paper of Boeff et al. [42]. In this work an iterative algorithm
is proposed for the solution of an implicit gradient regularization of a simple damage model. Despite the
undeniable innovative character of this work, the proposed algorithm presents significant limitations. Firstly,
the basic scheme of Moulinec and Suquet is exploited in the FFT implementation. This algorithmic choice
strongly limits the applicability of the proposed approach since, even for small phase property contrast,
the development of damage introduces regions with very low stiffness making the convergence really poor.
Due to this limitation, the proposed approach allows only for the simulation of relatively simple geometries
in a two-dimensional setting. Secondly, the framework does not account for the material heterogeneity at
microstructural level as the non-local regularization is applied to the full simulation domain, including the
regions occupied by phases which do not consider damage, and assuming a uniform characteristic length of
the regularization. This approximation simplifies the implementation of the regularized model but results
in a wrong spatial distribution of the non-local damage showing a non physical diffusion of damage through
the interface between damaged and undamaged phases.

Motivated by the aforementioned limitations, in this work we present a general, robust and efficient
algorithmic implementation suitable for the numerical solution of non-local ductile fracture in heterogeneous
media by means of FFT. The proposed scheme is based on implicit gradient regularization, as discussed in
Section 2, and is applied to two different ductile damage models, i.e. the micro mechanical model by Gurson-
??Tvergaard-??Needleman (GTN) [3] and the Lemaitre [5] model. The problem consists of an enriched
continuum formulation where the classical balance of linear momentum is coupled with auxiliary equations
of Helmholtz-type. To model effectively the non-local extension of the considered damage laws for multi-
phase RVEs, the implicit gradient averaging equation is properly generalized to the case of heterogeneous
materials by prescribing a non-uniform characteristic length. The resulting model is solved by means of
the iterative staggered algorithm presented in Section 3 which exploits a sequential usage of FFT-Galerkin
and conjugate gradient schemes. In particular, the introduction of a non-uniform characteristic length in the
proposed non-local regularization implies that the Helmholtz-type equation becomes implicit. This particular
fact renders the solution of the associated problem far from being trivial and not yet attempted in a similar
framework to our knowledge. To get an efficient stable solver, the proposed conjugate gradient scheme
combines discrete Fourier derivatives, a Krylov solver, and an ad-hoc preconditioner. Finally, in Section 4,
numerical examples of representative two dimensional and three dimensional RVEs are carried out to study
the impact of the non-local regularization on heterogeneous materials.
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2 Non-local regularization of ductile damage

2.1 Review of some models for ductile damage

In this section, the original models for ductile fracture to which the non-local regularization will be applied
are recalled in their essentials. For further details the reader is invited to refer to the relevant literature. For
the scope of the present study the infinitesimal strain theory is employed. Therefore, we assume a standard
additive decomposition of the rate of strain tensor ε̇ of type

ε̇ = ε̇e + ε̇p

where εe and εp are the elastic and inelastic part of the strain respectively while a superposed dot indicates a
partial derivative with respect to time (or, more precisely, pseudo-time). Mechanical equilibrium is imposed
by the local form of the balance of linear momentum in the absence of inertial and body forces

div [σ] = ~0 , (2)

where σ is the nominal Cauchy stress tensor.

2.1.1 Gurson type model

We consider the phenomenological extension proposed by Tvergaard and Needleman [3] of the physically-
based model for void growth of Gurson [2]. The model is based on the definition of the so-called effective
porosity f∗, which quantifies the level of damage induced by the presence of voids in the material. The
mechanical degradation related to the presence of porosity is taken into account by the definition of the
following yield surface

φ (σ, εp0, f∗) =

(
s

σ0

)2

+ 2 f∗ q1 cosh

(
−3

2

q2 p

σ0

)
−
(
1 + q3 f

2
∗
)
, (3)

where εp0 is the matrix equivalent plastic strain and σ0 the matrix flow stress. Symbols q1, q2, q3 are
phenomenological coefficients, while s and p refer to the Mises equivalent stress and hydrostatic pressure,
respectively, i.e.

s =

√
3

2
s : s and p = −1

3
tr [σ] ,

being s = dev [σ] the deviatoric stress tensor. Equation (3) implies that the plastic behavior is pressure
dependent for non-zero values of the effective porosity. The latter affects the yield surface by decreasing
the set of admissible stress states as f∗ increases, leading eventually to a complete loss of bearing capacity
of the material matrix. This condition is reached for a limit value of the effective porosity f∗V that can be
estimated by imposing φ = 0 at zero stress, namely

fV ∗ =
q1 +

√
q2
1 − q3

q3
.

The stress tensor σ is defined according to an isotropic linear elastic law in rate form

σ̇ = K tr [ε̇− ε̇p] I + 2µdev [ε̇− ε̇p] , (4)

where K and µ are the bulk and shear moduli. The evolution of the plastic strain tensor εp is derived from
application of the normality rule

ε̇p = λ
∂φ

∂σ
= λ

[
∂φ

∂p

∂p

∂σ
+
∂φ

∂s

∂s

∂σ

]
, (5)

with λ being the plastic multiplier such that the persistency condition holds, i.e. φ̇ (σ, εp0, f∗) = 0 if λ > 0
[43]. Conversely, the evolution of εp0 does not follow a normality rule, but it is instead derived from the
identity
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σ : ε̇p = (1− f) σ0 ε̇
p
0 , (6)

where f is the actual void volume fraction defined in the spirit of Gurson [2]. Assuming a hardening law of
type σ0 = σ0 (εp0) for the undamaged material, equation (6) can be easily solved for ε̇p0 as

ε̇p0 =
σ : ε̇p

(1− f) σ0 (εp0)
. (7)

The kinetics of evolution of the effective porosity f∗ is established to model the physical processes taking place
in ductile fracture of metals, namely (i) void nucleation, (ii) void growth, and ultimately (iii) formation of
macro cracks due to void coalescence. The latter process is prescribed using the following phenomenological
law

f∗ ( f ) =


f if f < fC ,

fC +
f∗V − fC
fF − fC

(f − fC) if fC ≤ f < fF ,

f∗V if f ≥ fF ,

(8)

where fC is a critical void volume fraction above which void coalescence activates, while fF refers to the
void volume fraction at fracture. Finally, the evolution of f reflects the combination of the nucleation and
growth processes

ḟ = AN (εp0) ε̇p0 + (1− f) tr [ε̇p] , (9)

where AN is a strain rate controlled nucleation rate that, according to Chu and Needleman [44], can be
specified as

AN =
fN

sN
√

2π
exp

[
−1

2

(
εp0 − εN
sN

)2
]
. (10)

In equation (10), fN , εN and sN are material parameters. fN represents the volume fraction of void
nucleating particles while εN and sN are material parameters.

2.1.2 Lemaitre type model

According to the pioneering work of Lemaitre [5], the presence of microscopic defects, such as microcracks
and cavities, is described at the macroscale by defining an intrinsic damage variable D. For an undamaged
material D = 0, D = 1 implies a state of rupture, while 0 < D < 1 reflects a damaged material. The
influence of D on the mechanical response is specified through the definition of the so-called effective stress
σ̃

σ̃ =
σ

(1−D)
, (11)

which identifies the actual stress experienced by the pristine material that effectively carries a mechanical
load. The effective stress is then specified as function of the elastic deformation by means of a constitutive
equation. In the simple case of standard J2 plasticity with isotropic hardening it results

˙̃σ = K tr [ε̇− ε̇p] I + 2µdev [ε̇− ε̇p] ,

where the evolution of the plastic strain is derived from the yield function

φ(σ̃, εp) = ‖s̃‖ −
√

2

3
σ0 (εp) , (12)

being ‖s̃‖ =
√

dev[σ̃] : dev[σ̃], σ0 (εp) the flow stress, and εp the equivalent plastic strain. It thus follows
that
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ε̇p = λ
s̃

‖s̃‖
, (13a)

ε̇p = λ

√
2

3
. (13b)

A simple linear constitutive law is employed to describe damage evolution as function of the equivalent
plastic strain

D =


0 if εp < εC ,

εp − εC
εR − εC

if εC ≤ εp < εR ,

1 if εp ≥ εR ,

where εC is a damage strain threshold and εR a damage strain at failure.

2.2 Application of implicit gradient type regularization to ductile fracture

The aforementioned constitutive laws for ductile damage formulated in a conventional local framework suffer
from ill-posedness and lack of objectivity, which results in non-converging numerical solutions upon grid
refinement [6]. Generally speaking, the simulated strain field distributes in highly localized regions whose
size is connected to the spatial discretization of the problem, thus leading to a mesh dependence of the
obtained mechanical response. From a mathematical point of view, this aspect is related to the loss of
ellipticity of the associated boundary value problem that occurs when the projection of the tangent stiffness
tensor in some direction (the so-called acoustic tensor) becomes singular. It is well known that this condition
can be reached in the two ductile damage models reviewed.

In order to formulate well-posed failure models, several regularization techniques have been applied to the
original local models, including viscoplastic regularization, micro-polar and micro-morphic theories and the
use of a non-local continuum approach. Focusing the attention in the non-local continuum regularization,
three categories can be recognized in the context of damage mechanics [7], namely (i) non-local integral
type, (ii) explicit gradient type, and (iii) implicit gradient type. A common feature among them is that one,
or more, local internal variables are made non-local through the solution of additional equations of integral
or differential type. This artefact has been proven to inhibit spurious strain localization in the numerical
solution of damage models if the non-localization is applied to the appropriate variables.

In the class of non-local integral models [45], a generic local variable α, defined in a material point ~x, is
replaced by its non-local counterpart α obtained by means of weighted averaging over a surrounding volume
V of ~x, namely

α (~x) =

∫
V

g( ~x, ~z )α (~z) d~z , (14)

where g is a suitable non-local weight function such that∫
V

g( ~x, ~z ) d~z = 1 ∀~x ∈ V , (15)

in order to ensure that the non-local field corresponding to a uniform local field preserves its local value in
the vicinity of the boundary of V . If isotropy is assumed in the non-local averaging, the argument of the
weight function is the distance to the center

g( ~x, ~z ) = g(‖~z − ~x‖) . (16)

The weight function typically contains at least one parameter with the dimension of length that characterizes
the length scale of the resulting non-local model.

On the other hand, non-local gradient models are based on averaging equations of differential type that
can be simply obtained as approximation of the integral equation (14), as recalled next. Consider a second-
order Taylor expansion of the local field α
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α (~z ) ' α ( ~x ) +∇ [α ( ~x )] · (~z − ~x) +
1

2
∇ [∇ [α ( ~x )]] : (~z − ~x)⊗ (~z − ~x) . (17)

The non-local variable α, obtained through weighted volume averaging, can be approximated by substitution
of (17) into (14) as

α ( ~x ) '
∫
V

g( ~x, ~z ) d~z α ( ~x ) +

∫
V

g( ~x, ~z ) (~z − ~x) d~z · ∇ [α ( ~x )] +

+
1

2

∫
V

g( ~x, ~z ) (~z − ~x)⊗ (~z − ~x) d~z : ∇ [∇ [α ( ~x )]] .

(18)

Exploiting equations (15) and (16) and assuming that approximation (17) is sufficient, leads from (18) to
the characteristic averaging equation of explicit gradient models

α ( ~x ) = α ( ~x ) + `2∇2 [α ( ~x )] , (19)

where ` is the characteristic length, a constant parameter with units of length that is related with the size of
the averaging region V in Eq. (15). Such a parameter provides an internal length scale of the model which
is related to the ability of a local field to diffuse towards neighbouring grid points1.

In the context of explicit non-local damage models, the numerical solution of equation (19) requires
the usage of C1 continuous finite elements. Moreover, specific boundary conditions should be specified at
the elasto-plastic interface (i.e. the boundary between a plastified region and an elastic one) in order to
formulate physically admissible solutions, thus rendering explicit gradient models not well suited for damage
mechanics. These drawbacks can be avoided simply by considering the equality

α ( ~x )− `2∇2 [α ( ~x )] = α ( ~x ) + `2∇2 [α ( ~x )]− `2∇2
[
α ( ~x ) + `2∇2 [α ( ~x )]

]
,

which simplifies to give the implicit gradient equation of Helmholtz-type

α ( ~x )− `2∇2 [α ( ~x )] = α ( ~x ) , (20)

if the fourth-order term is considered negligible. Differently from the explicit gradient model (19), the
boundary condition of equation (20) is specified simply as a natural boundary condition, i.e.

∇α · ~n = 0 , (21)

where ~n denotes the external normal unit vector. This boundary condition is usually imposed in non-local
damage models in order to avoid artificial damage generation at the boundary of the body. The alternative
use of Dirichlet-type boundary conditions, typically exploited in regularized brittle damage models using
phase-field fracture, does not seem adequate in this class of problems as it implies spurious damage growth
not correlated with plastic deformation. In addition, it can be easily proved that the solution of the differential
problem (19) - (21) is equivalent to the non-local integral averaging with the Green function associated with
the Helmholtz-type equation playing the role of the weight function g.

2.2.1 Implicit gradient regularization in heterogeneous materials

In the derivation of the averaging partial derivative equations for gradient models, it has been made the
tacit assumption that the characteristic length of the non-local regularization, `, is uniform throughout the
domain. This assumption is valid only for macroscopically homogeneous media. However, while dealing
with micromechanics the behavior of each phase constituting the microstructure is modeled individually and
so does the damage regularization of each damageable material. Given a RVE of volume Ω containing Q
different phases, we denote with Ωq the the volume occupied by the q-th phase, so that

Ω =

Q⋃
q=1

Ωq .

1Here, the length parameter ` is treated exclusively as a parameter related to the non-local regularization of damage models.
However, ` might be specified in view of the physical mechanisms underlying ductile failure thus involving aspects that are out
of the scope of the present contribution.
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Under the assumption that each phase q can develop damage, let αq and αq be the local and non-local
variables characterizing damage in that phase. Note that each phase might be represented by a different
damage model and that the choice of the physical variable αq to be regularized can also be different for each
phase. The implicit gradient regularization – Eqs. (20) and (21) – applies separately to all the constituting
phases as follows 

αq − `2q∇2 [αq ] = αq in Ωq ,

∇αq · ~n = 0 on ∂Ωq ,

(22)

for q = 1, 2, ... Q. In Eq. (22), `q is the characteristic length involved in the regularization of the variable αq,
while ∂Ωq refers to the boundary of Ωq. It is assumed here that the local damage variables are independent
and only defined in their corresponding regions, i.e. αq = 0 in Ωp with p 6= q. Accordingly, the boundary
condition in Eq. (22) prescribes the normal derivative of the non-local variable αq to be zero at the material
interfaces thus preventing propagation of damage from Ωq to other phases. This is the typical case in
which either one of the two materials in contact is not damageable (e.g. in particle reinforced metal matrix
composites) or different damaging mechanisms rule the behavior of the materials at the interface (e.g. a
ductile metal in contact with a brittle material). A different scenario arises if two different phases share the
same damage mechanism, i.e. both materials follow the same constitutive laws but with different material
parameters. In such a case, damage can diffuse across their mutual interface and no interface condition is
needed for the Helmholtz-type equation of the non-local regularization.

The implementation of implicit damage regularization in FFT-based solvers requires an adaptation of
the differential problem Eq. (22) since the whole domain Ω have to be considered and regularly discretized.
Therefore, each non-local variable αq has to be defined in the whole domain of the RVE and Eq. (22) is
rewritten as

αq − div
[ ˜̀
q

2
(~x) ∇αq

]
= αq in Ω , (23a)

where

˜̀
q (~x) =

{
`q if ~x ∈ Ωq ,

0 otherwise ,
(23b)

for q = 1, 2, ... Q. Proving that Eq. (23) is equivalent to Eq. (22) is straightforward and it is addressed here
for the particular case of a two-phase medium as idealized in Fig. 1. To this end, it is convenient to rewrite
Eq. (23a), for q = 1, in the corresponding integral form∫

V

α1 − div
[ ˜̀

1

2
(~x) ∇α1

]
− α1 dV = 0 , (24)

where V ∈ Ω is a generic control volume. In a general scenario, V occupies both phase 1 and phase 2 so that
integral (24) can be split in the two different regions. By doing so, and after application of the divergence
theorem, Eq. (24) reduces to∫

V1

α1 − α1 dV +

∫
V2

α1 dV −
∫
∂V1

`21∇α1 · ~n1 dS +

∫
Γ

`21∇α1 · ~nΓ dS = 0 , (25)

where Eq. (23b) has been exploited along with the condition that α1 = 0 in Ω2. Since Eq. (25) must hold
for every V , and therefore for any Γ in the boundary between 1 and 2, the following local equations can be
derived 

α1 − `21∇2 [α1 ( ~x )] = α1 in Ω1 ,

∇α1 · ~n = 0 on ∂Ω1 ,

α1 = 0 in Ω2 ,
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which corresponds to Eq. (22), for q = 1, in the particular case of the considered biphasic medium along
with the additional condition for α1 in Ω2.

Remark - The zero value of the parameter ˜̀q out of region Ωq given by Eq. (23b) satisfies the condition
of no diffusion of αq in phases p 6= q but leads to convergence issues in the numerical solution of Eq. (23a) via

spectral solvers [46]. A practical solution consists in selecting non-zero values for ˜̀q in Ωp (p 6= q) such that
the prescribed contrast between different phases controls the diffusion of non-local variables at the interfaces.
Focusing on the biphasic medium of Fig. 1 for simplicity, we would write

˜̀
1 (~x) =

{
`11 if ~x ∈ Ω1 ,

`12 if ~x ∈ Ω2 ,

where the choice `12 = 0 recovers Eq. (23b). With this new definition of ˜̀1 the integral form of Eq. (23),
for q = 1, becomes∫

V1

α1 − α1 dV −
∫
∂V1

`211∇α1 · ~n1 dS +

∫
V2

α1 dV −
∫
∂V2

`212∇α1 · ~n2 dS+

+

∫
Γ

`211∇α11 · ~nΓ − `212∇α12 · ~nΓ dS = 0 ,

(26)

where

∇α11 = lim
~x∈V1→Γ

∇α1 and ∇α12 = lim
~x∈V2→Γ

∇α1 ,

Since Eq. (26) must hold for every V ∈ Ω, and therefore for any Γ in the boundary between 1 and 2, the
internal boundary integral must vanish (second line of Eq. (26)), leading to a relation between the gradients
of the non-local variable at the interface

∇α11 · ~nΓ

∇α12 · ~nΓ
=

(
`12

`11

)2

,

which depends on the ratio `12/`11. The multi-phase problem introduced in Eq. (22), which assumes
independent non-local fields for each phase and free Neumann boundary conditions on every interface, is
recovered when `12/`11 → 0. In this case the relevant interface condition reads

∇α11 · ~nΓ

∇α12 · ~nΓ
→ 0 ,

that corresponds to the free Neumann boundary for original Helmholtz-type problem at the interface Γ.
Therefore, to emulate this condition at a phase-interface is sufficient to chose `12 << `11 as it will force the
value of the smoothed non-local variable α1 to zero when approaching a point in the domain Ω2. Other
values of the ratio `12/`11 can be considered from a mathematical view point but do not have a physical
meaning since they allow for the diffusion of a variable out of the domain in which is defined.

2.2.2 Non-local extension of Gurson type model

In the context of ductile fracture, the implicit gradient regularization can be applied either to the damage
variable or to the scalar strain measures from which the evolution of damage is estimated. However, as
discussed by Jirásek et al. [47], the first type of regularization would lead to a locking effect that ultimately
renders the numerical solution unreliable. Additionally, a non-local averaging of plastic deformation would
provide a more efficient regularization scheme [15], and will be applied to the models considered in this
paper.

Therefore, the Helmholtz-type equation (23a) is exploited for the regularization of both the equivalent
plastic strain εp0 and the trace of plastic strain tr [εp]. In this way, the law defining the porosity rate of
non-local Gurson rewrites from (9) as

ḟ = AN
(
εp0

)
˙
εp0 + (1− f)

˙
tr [εp] , (27)
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Figure 1: Schematic of the microscopic arrangement of an idealized biphasic composite material. In the right
side of the figure it is reported an enlargement of the control volume V where there is specified the presence
of the subvolumes V1 and V2 along with and their mutual interface Γ.

where the non-local strain plastic strains εp0 and tr [εp] are solutions of

εp0 − div
[
`2 (~x) ∇εp0

]
= εp0 , (28a)

tr [εp]− div
[
`2 (~x) ∇tr [εp]

]
= tr [εp] . (28b)

The non-local extension of Gurson model discussed in Section 2.1.1 thus consists of balance equations (2)
and (28), completed by yield condition Eq. (3) and constitutive laws for stress (4), plastic strain tensor (5),
equivalent plastic strain (7), void volume fraction (27), and effective porosity (8).

2.2.3 Non-local extension of Lemaitre type model

Following the same reasoning adopted for the regularization of the Gurson model, the non-local extension
of the damage variable appearing in the simplified Lemaitre model discussed in Section 2.1.2 becomes

D =


0 if εp < εC ,

εp − εC
εR − εC

if εC ≤ εp < εR ,

1 if εp ≥ εR ,

(29)

where the non-local equivalent plastic strain εp is calculated from

εp − div
[
`2 (~x) ∇εp

]
= εp . (30)

Note that the same type of regularization has been pursued by Boeff et al. [42] for spectral solvers, but con-
sidering a uniform characteristic length in the Helmholtz-type equation. To sum up, the non-local extension
of the considered Lemaitre-type model consists of governing equations (2) and (30) with constitutive laws
(11), (12), (13), and (29).

3 Numerical implementation in FFT-based solvers

3.1 General form of the governing equations

In this section, the algorithm for the numerical solution of the non-local damage models analyzed in Section
2.2 will be described. For the sake of generality, the governing equations of non-local damage mechanics are
first rephrased in abstract setting. A single damaging phase will be considered and, following the reasoning of
the previous section, the variables that will be regularized, αj , are set to zero in the non-damaging regions.
In order to recover the free Neumann boundary conditions for the non-local variables αj in the internal
interphases, a non-homogeneous characteristic length `(~x) – as defined in Eq. (23b) – is introduced. Given
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a RVE of domain Ω and a time interval [t0, tf ] in which the macroscopic loading history is defined, the
problem consists of the following system of coupled partial differential equations

div [σ] = ~0 , (31a)

αj − div
[
`2j (~x) ∇αj

]
= αj j = 1, 2, ... J , (31b)

where αj is a general j-th non-local internal variable. Equations (31) are solved for a prescribed mixed loading
history given by a combination of components of the macroscopic strain E(t) and stress Σ(t) tensors, such
that

Ehk(t) =
1

VΩ

∫
Ω

εhk (~x, t) dV , ΣHK(t) =
1

VΩ

∫
Ω

σHK (~x, t) dV , h, k ∩H,K = ∅ ,

along with periodic boundary conditions for all the fields involved in the solution

ε(~x) = ε(~x+ ~nL) , (32a)

αj(~x) = αj(~x+ ~nL) j = 1, 2, ... J , (32b)

with ~nL referring to any vector with components obtained as the product of an integer number by the
periodicity of the cell L.

The stress tensor σ, plastic strain εp, and the generic i-th local internal variable αi follow their relevant
constitutive specifications of type

σ̇ = f
(
ε, εp, ~α, ~α, ε̇, ε̇p, ~̇α, ~̇α

)
, (33a)

ε̇p = g
(
ε, εp, ~α, ~α, ε̇, ε̇p, ~̇α, ~̇α

)
, (33b)

α̇i = hi

(
ε, εp, ~α, ~α, ε̇, ε̇p, ~̇α, ~̇α

)
i = 1, 2, ... I (33c)

which are completed by the choice of the following initial conditions

σ|t=t0 = σ0 ,

εp|t=t0 = ε0
p ,

αi|t=t0 = α0
i i = 1, 2, ... I .

The evolutive equations (33) are approximated according to the Backward Euler method. The (pseuo)
time interval [t0, tf ] is then divided in Nt increments, ∆tn = (tn+1− tn) for which the discretized fields read

(•)|n = (•) (t = tn) , ∆ (•) = (•)|n+1 − (•)|n n = 0, 1, 2, ... Nt − 1. (35)

Therefore, for any time step n = 0, 1, ... Nt − 1, the discretized form of equations (33) in time reads

∆σ = ∆tn f
(
ε|n+1 , ε

p|n+1 , ~α|n+1 , ~α
∣∣
n+1

, ε|n , ε
p|n , ~α|n , ~α

∣∣
n

)
, (36a)

∆εp = ∆tn g
(
ε|n+1 , ε

p|n+1 , ~α|n+1 , ~α
∣∣
n+1

, ε|n , ε
p|n , ~α|n , ~α

∣∣
n

)
, (36b)

∆αi = ∆tn hi

(
ε|n+1 , ε

p|n+1 , ~α|n+1 , ~α
∣∣
n+1

, ε|n , ε
p|n , ~α|n , ~α

∣∣
n

)
i = 1, 2, ... I . (36c)

Specification of the time discretization of the considered models is reported in Appendix A.
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3.2 Numerical Algorithm

The system of differential equations (31) is, in general, fully coupled because of the implicit form of equations
(33). In this system, the scalar Helmholtz-type equation (31b) has to be solved as many times as the number
of internal variables αj that are made non-local. In FE, this class of differential problems is usually solved in
a monolithic scheme, being the degrees of freedom per node the components of the displacement vector and
the non-local variables αj . Under this scheme, the governing equations are linearized with respect to all the
field variables, forming a unique tangent operator for each iteration of the Newton-Raphson algorithm. The
benefit of the monolithic implementation is in its efficiency, since using a consistent tangent theoretically
leads to a quadratic convergence of the numerical solver. Nevertheless, the algorithmic performance is
affected (i) by the increase of the number of unknowns N in the linear system, with a corresponding increase
of computational time of order O(N2 − N3)[48]; (ii) because of the resulting unsymmetric tangent matrix
[7, 13] that implies an increase of memory and number of operations required for the solution of the linearized
problem. Moreover, monolithic algorithms may not converge in static cases during the damage propagation,
as observed in [49] for phase-field fracture models. For these reasons, staggered approaches have also been
occasionally used in FE implementations of implicit gradient models [50].

In the context of FFT solvers, staggered approaches are the common choice for any type of coupled
problem, see for example [51, 52]. This type of solver is the common choice because spectral methods do
not necessarily rely on solving linearized systems of equations but might use a non-linear iterative approach.
Moreover, the use of a staggered solver allows combining different spectral methods for the solution of
different field equations. For these reasons, an iterated staggered scheme is proposed here to solve equations
(31) as schematically presented in Algorithm 1.

Assuming that the solution at time tn is known, the aim is to obtain the value of the strain and the non-
local fields at time tn+1, i.e. ε|n+1 and ~α

∣∣
n+1

, which fulfil (31), periodicity (32), and constitutive equations

(36). For the sake of readability, the subindex n+ 1 will be omitted from now on. The solution fields in
the considered time increment are calculated by exploiting an iterative staggered scheme where two different

spectral solvers are employed. Denoting with k the current iteration counter of the staggered procedure, ε|(k)

and ~α
∣∣(k)

refer to the solution fields obtained in this iteration. Then, a new iteration k+1 consists in solving
first the balance of linear momentum (31a) along with constitutive equations (36) in which the non-local

variables are taken as known fields from the previous iteration, i.e ~α=~α
∣∣(k)

. Such a problem has the same
mathematical structure of conventional continuum mechanics, so that its numerical solution can be pursued
by implementation of conventional algorithms as well. In this case, the Galerkin based FFT algorithm for
mixed control proposed by Lucarini et al. [37] has been employed. The outcomes of this purely mechanical

operation are the updated strain tensor ε|(k+1)
, plastic strain εp|(k+1)

, and local internal variables ~α(k+1).
The latter will enter in the set of the Helmholtz-type equations as source terms to provide the updated

non-local fields ~α
(k+1)

by means of the second FFT solver appearing in the proposed staggered scheme. For
this purpose, Eq. (31b) is transformed into a linear system that will be solved by means of a Krylov-based
algorithm as schematically reported in Algorithm 2 . Since equations (31b) are uncoupled, their numerical

solutions are computed independently. The updated non-local fields ~α
∣∣(k+1)

will be then plugged-in the
Galerkin based mechanical solver in the next iteration of the staggered scheme. Such a recursive algorithm
continues until convergence in the considered time step, which requires fulfilling mechanical equilibrium in
addition to having a correction of strain and non-local fields between two consecutive iterations sufficiently
small. For completeness, the FFT-based algorithms employed in the staggered scheme, along with the
adopted discretization of the Fourier space, will be described briefly below.

It is worth nothing that the proposed staggered algorithm is fully implicit and its solution is identical
to the one obtained with a monolithic approach integrated implicitly using the Backward Euler. This type
of implicit schemes are also known as iterative staggered in contrast to other more relaxed approaches, such
as simple staggered [13]. In this second case the coupled problem is solved sequentially only once per time
step (first mechanical equilibrium and then non-local fields) and the resulting fields are directly passed to
the next time step. This numerical scheme is obviously faster but it provides just a rough approximation of
the solution since it does not ensure mechanical equilibrium at the end of the time step.
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(a) time incrementation
for n in Nt do

INPUT: ε|n , εp|n , ~α|n , ~α
∣∣
n

set macroscopic goal strain and stress components Ehk|n+1 , ΣHK |n+1

(b) staggered scheme mechanics/Helmholtz equations

set initial guess variables ε|(0)
n+1 , ε

p|(0)
n+1 , ~α|

(0)
n+1 , ~α

∣∣(0)

n+1

while ERR < TOL do
(i) Galerkin FFT solver for the mechanics

compute ε|(k+1)
n+1 , εp|(k+1)

n+1 , ~α|(k+1)
n+1 by solving

div
[
σ|(k+1)
n+1

]
= ~0

∆εp = ∆t g
(
ε|(k+1)
n+1 , εp|(k+1)

n+1 , ~α|(k+1)
n+1 , ~α

∣∣(k)

n+1
, ε|n , ε

p|n , ~α|n , ~α
∣∣
n

)
∆αi = ∆t hi

(
ε|(k+1)
n+1 , εp|(k+1)

n+1 , ~α|(k+1)
n+1 , ~α

∣∣(k)

n+1
, ε|n , ε

p|n , ~α|n , ~α
∣∣
n

)
i = 1, 2, ... I

(ii) Spectral solver for heterogeneous Helmholtz-type equations (see Algorithm 2)

compute αj |(k+1)
n+1 j = 1, 2, ... J by solving

αj |(k+1)
n+1 − div

[
`2j ( ~x ) ∇ αj |(k+1)

n+1

]
= αj |(k+1)

n+1

(iii) compute error

ERR = max

max
(∣∣∣ ε|(k+1)

n+1 − ε|
(k)
n+1

∣∣∣)
< ε|(k+1)

n+1 >
,
‖ αj |(k+1)

n+1 − αj |(k)
n+1 ‖

‖ αj |(k+1)
n+1 ‖

j = 1, 2, ... J


end

end

Algorithm 1: Staggered algorithm for the solution of a generic non-local problem.
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3.2.1 Discretization

The simulation domain is a periodic RVE of the microstructure embedded in a cuboidal domain Ω with
edges lengths L1, L2, L3. The RVE is discretized with a regular array of N1 × N2 × N3 voxels, where each
voxel belongs to any of the phases represented. The unknown discrete fields correspond to the value at the
center of each cell, with position ~x given by

xi = (
1

2
+ ni)

Li
Ni
, i = 1, 2, 3 and ni ∈ [0, Ni − 1] .

The Fourier transform of a discrete field corresponds to the discrete Fourier transform that can be obtained
with a very efficient FFT algorithm. The corresponding N1 × N2 × N3 discrete frequencies in the Fourier
space, ~ξ, are given by

ξi =
2π

Li


ni −

(Ni − 1)

2
if Ni odd

ni −
Ni
2

if Ni even

for i = 1, 2, 3 and ni ∈ [0, Ni − 1] . (37)

It must be noted that in order to improve the convergence and reduce the well-known Gibbs oscillation
phenomena in the presence of large contrast between phases, discrete derivative operators in the Fourier
space are used. In particular, the finite difference rule proposed by Willot [53] (rotated-scheme) is adopted
in this paper. The alternative definition of the Fourier frequencies can be found in [53].

3.2.2 Mechanical problem

The solution of equation (31a) consists in finding, for the current time tn+1, the compatible microscopic
periodic strain distribution in the RVE that is in equilibrium with the stress field. The Galerkin FFT method
[34, 35] is used to solve this problem together with the procedure to incorporate stress and mixed control
proposed by Lucarini and Segurado in [37]. This control technique sets a combination of components of the
macroscopic strain (h, k) and/or the macroscopic stress (H,K) history, i.e. Ehk(t) and ΣHK(t), respectively.
The boundary value problem is solved expressing the weak form of the linear momentum balance for the
current time increment 

∫
Ω
G∗ ∗ ζ(~x) : σ (ε(~x), ~α)) dV = 0 ,

〈σ〉HK = ΣHK |n+1 ,
〈ε〉hk = Ehk|n+1 ,

(38)

where 〈·〉 represents the volume average, ζ(~x) are second order tensor test functions, G∗ stands for the
projector operator that enforces the compatibility of the test functions, ∗ is the convolution operation, and
the indices of the macroscopic stress and strain obey i, j ∩ I, J = ∅. In (38) the original projection operator
for small strain proposed in [36] is replaced by a modified G∗ which includes modified zero frequencies to

enforce the value of stress averages and has a closed-form expression in the Fourier space Ĝ∗ [37].
After the problem discretization in voxels, the weak form of the equilibrium equation (38) can be expressed

as an algebraic system of non-linear equations [34]

G∗ (σ) := F−1
{
Ĝ∗ : F (σ (ε(~x), ~α))

}
= 0 , (39)

with symbol F indicating the Fourier transform. As customary, a Newton-Raphson algorithm is adopted
for the solution of the resulting non-linear problem so that the stress tensor is linearized with respect to the
total strain as

σ(r+1) = σ(r) +
∂σ

∂ε
: δε(r+1) . (40)

where δε(r+1) is the strain correction for Newton-Raphson iteration r+1. A linear problem is finally obtained
by substitution of (40) into (39)

G∗
(
∂σ

∂ε
: δε(r+1)

)
= −G∗

(
σ(r) −Σn+1

)
,
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where Σ
∣∣
n+1

is a tensor containing the non-zero HK components of the imposed stress at time tn+1. This
resulting linear system of equations is solved using the conjugate gradient method, whose convergence rate,
efficiency, and memory allocation are optimal for this problem.

3.2.3 Helmholtz equation

Consider the Helmholtz equation for heterogeneous materials

α− div
[
`2(~x)∇α

]
= α , (41)

where α is a known source term, while α is the solution function. Note that in the case of non-uniform length
parameter `, the Helmholtz-type equation of the considered non-local regularization becomes implicit. As
a result of that, the relevant solution cannot be computed directly, as for example pursued in [42] with a
uniform `, but an iterative solving scheme must be employed. It is convenient to rephrase Eq. (41) in a
more convenient form as

Find α such that L (α) = α , (42)

where L = (•) − div
[
`2(~x)∇ (•)

]
is a linear differential operator. In the context of FFT, problem (42) can

be easily solved in the frequency domain because it reduces to the following linear problem

F (L (α)) = F (α) (43)

with symbol F indicating the Fourier transform operator. The left hand side of equation (43) is simply
derived by application of the differentiation rule in Fourier space, leading to

F (L (α)) = F (α)− i ~ξ · F
(
`2(~x)F−1

(
i ~ξF (α)

))
= F (α) + ~ξ · F

(
`2(~x)F−1

(
~ξF (α)

))
,

where i refers to the imaginary unit, while ~ξ is the frequency vector. Therefore, the linear operator in the
Fourier space L̂ can be simply rewritten as

L̂ = (•) + ~ξ · F
(
`2(~x)F−1

(
~ξ (•)

))
. (44)

Accordingly, the linear problem (43) can also be written in the Fourier space as

L̂ (F (α)) = F (α) . (45)

The resulting linear system is symmetric and has a unique solution that can be easily obtained if the
characteristic length is uniform since the operator L̂ can be inverted analytically. On the contrary, if `(~x)
is not uniform, the inverse operator cannot be obtained in a closed-form expression and Eq. (45) has to be

solved numerically. Due to the properties of L̂, a conjugate gradient algorithm is exploited here to solve the
problem. In addition, following the approach derived in [54] for a displacement based FFT homogenization
algorithm, the conjugate gradient is sped up by using a preconditioner of type

M (F (α)) =

[
1

1+ < `2 > ~ξ · ~ξ

]
F (α) , (46)

with < `2 > indicating the average characteristic length of the non-local regularization. Note that, for a
uniform `, the preconditioner Eq. (46) corresponds to the inverse of the linear operator. It is worth nothing
that the usage of the proposed preconditioner is crucial since it significantly accelerates the solution of the
modified Helmholtz-type equation, thus making it possible its application to problems with a high number
of degrees of freedom (e.g. see Section 4.2).
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Data: αj |(k+1)
n+1 , `j ( ~x ), TOL

Result: non-local field αj |(k+1)
n+1

α̂j = F
(
αj |(k+1)

n+1

)
α̂j = ConjGrad ( GC, M, α̂j , TOL)

αj |(k+1)
n+1 = F−1

(
α̂j

)
Function GC(α̂j):

Linear operator for the generalized Helmholtz-type equation in Fourier space (Eq. 44)

∇αj = F−1
(
~ξ α̂j

)
~h = `2j (~x )∇αj
~̂h = F

(
~h
)

return α̂j + ~ξ · ~̂h

Function M(α̂j):
Linear operator for the preconditioner of the Helmholtz-type equation in Fourier space (Eq. 46)

return
[

1

1+<`2> ~ξ·~ξ

]
α̂j

Function ConjGrad(A,M, b, TOL):
Conjugate gradient solver for linear operator A, preconditioner M and the independent term b

return α̂j | A( α̂j ) = b and ‖A( α̂j )− b‖ < TOL · ‖b‖

Algorithm 2: Spectral solver for the Helmholtz-type equation.
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4 Numerical examples

4.1 2D examples

The proposed algorithm is first tested on a simple two dimensional periodic microstructure under plane
strain condition. The geometry of the problem consists of a squared RVE of size L×L containing a circular
inclusion of radius L/

√
10π, thus occupying 10% of the total area. These particular conditions allow for

a readable evaluation of the impact of the non-local regularization as well as a sensible reduction of the
computational cost. A sketch of the geometry is reported in Fig 2. The sample is subjected to uniaxial
tensile loading in which a macroscopic strain is prescribed in the direction x1, while a stress free condition
is enforced in the remaining components, namely

E =

(
E11 ∗
∗ ∗

)
and Σ =

(
∗ 0
0 0

)
.

The macroscopic strain is prescribed incrementally until final failure of the matrix. Specification of the
adopted rate of applied strain is provided while analyzing the numerical outcomes.

Figure 2: Geometry of the composite material considered in the 2D numerical simulations.

The mechanical response of the material matrix is dictated by the theories described in Section 2. In
both models, the elastic constants, given in terms of Young’s modulus E and Poisson’s coefficient ν, are
taken as EM = 300 GPa and νM = 0.3, while the yield stress is σY = 1 GPa. For the Gurson model, the
damage related parameters are specified by q1 = 1.5, q2 = 1, q3 = 2.25, fC = 0.15, fF = 0.25, fN = 0.04,
εN = 0.3, and sN = 0.1. The initial void volume fraction is zero. The hardening law σ0 = σ0 (εp0) is
specialized according to Aravas [55] in the form

σ0

σY
=

(
σ0

σY
+

3µM
σY

εp0

)N
, (47)

where µM is the matrix shear modulus and N = 0.1. On the other hand, for the Lemaitre model, the material
parameters controlling damage are εC = 0.03 and εR = 0.2, while the flow stress holds σ0 (εp) = σY + k εp,
with k = 10 GPa.

The circular inclusion is idealized as an elastic reinforcement not subjected to damage. Its mechanical
behavior corresponds to an elastic isotropic solid with parameters EI = 900 GPa and νI = 0.3. Although
the elastic inclusion remains undamaged, a value for the characteristic length ` must be assigned to both
phases of the composite since equations (31b) are solved in the whole domain of the RVE. As discussed
in Section 2.2.1, to prevent undesired diffusion of plastic internal variables in the elastic phase, the length
parameter ` (~x), specialized as `M for the matrix material and `I for the inclusion, must obey the inequality
`I � `M . To avoid excessively penalizing the convergence of the Helmholtz-type problem, a large but finite
ratio `M/`I will be considered as discussed below.
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In the considered damage models, the local bearing capacity of the matrix material is lost as soon as
the damage indicator reaches its upper limit, i.e. f∗ = f∗V in Gurson model and D = 1 in the Lemaitre
model. If such a condition is attained, the convergence of the FFT-Galerkin scheme used to solve (31a) is
compromised since the contrast between the stiffness of matrix and inclusion becomes too high. Therefore,
for numerical convenience, the upper limit of the damage indicators are limited to f∗ = 0.9 f∗V = 0.6 and
D = 0.99. Accordingly, a low residual stress capacity is left to the material matrix allowing the simulation
of the entire macroscopic failure process.

4.1.1 Grid sensitivity

In this section, we analyze the impact of the considered non-local regularization via the proposed FFT
numerical implementation. To this end, different spatial discretizations have been adopted, i.e. 32 × 32,
64 × 64, and 128 × 128 grid points. To provide a fair analyses of the grid size dependence of the model, a
constant macroscopic strain rate Ė11 = 1× 10−4 1/s is applied to all the analyses.

Figure 3 gathers the simulated stress-strain curves in the cases of Gurson (a) and Lemaitre (b) models.
In order to highlight the effect of the non-local regularization, the results of the original local version of each
model have been plotted as well. The latter has been simply obtained by taking both `M and `I smaller
than the considered grid size for each spatial discretization, i.e. `M = `I = 1 × 10−4 L. On the other end,
`M = 0.05L and `I = 0.001L is considered for the non-local models since a regularizing effect in the matrix
can be obtained only for characteristic lengths ` greater than the grid size. Accordingly, `M/`I = 50.

(a) (b)

Figure 3: Plot of the normalized average stress component Σ11 against the average strain component E11

resulting from the considered Gurson (a) and Lemaitre models (b) for different grids. In each graph, the
curves obtained from the non-local models are plotted along with the results of the local counterparts for an
immediate understanding of the impact of the non-local regularization on the grid dependence of the outcomes.

The numerical outcomes demonstrate the benefit of the implicit gradient regularization for both non-local
models, as the stress-strain curve converges towards a unique solution upon grid refinement. Conversely, a
marked grid dependence results from the local models. In all the cases, the simulated stress-strain curve is
characterized by an initial elastic loading followed by a broad inelastic stage that results from the competing
processes of strain-hardening and damage evolution during the plastic degradation of the material matrix.
Once the damage mechanism prevails, a sudden stress drop results in correspondence to final rupture. It is
worth nothing that a low residual stress remains at the end of the simulation due to the assumptions made
on the damage parameters.

The characteristic grid independence of the solution of the non-local damage models can also be appreci-
ated by looking at the distribution of the damage variable at final fracture for different grids, as reported in
Fig. 4 and Fig. 5. For all the simulated grids, the damage eventually condensate in two slip bands oriented
at 45 degrees with similar width and location. Additionally, it can be observed how the localization band is
distorted in the neighborhood of the elastic inclusion as a result of the generalized Helmholtz-type equation
for a heterogeneous medium. This distortion is equivalent to the effect of having an internal Neumann-free
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(a) (b) (c)

Figure 4: Distribution of effective damage variable f∗ at final fracture (E11 = 0.5) simulated in case of the
non-local Gurson model with `m = 0.05L and `I = 0.001L for (a) 322, (b) 642, and (c) 1282 grid points.

(a) (b) (c)

Figure 5: Distribution of intrinsic damage variable D at final fracture (E11 = 0.08) simulated in case of the
non-local Lemaitre model with `M = 0.05L and `I = 0.001L for (a) 322, (b) 642, and (c) 1282 grid points.
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boundary for the non-local variable in the Helmholtz-type equation, and shows the ability of the approach
proposed to avoid artificial damage diffusion in non-damaging phases. Conversely, as shown in Fig. 6, the
final distribution of damage resulting from the original local models reflects the pathological grid dependence
due to loss of ellipticity of the problem. In this case the damage localizes in a slip band whose width is equal
to the selected grid size.

(a) (b) (c)

Figure 6: Distribution of effective porosity f∗ at final fracture simulated in case of the local Gurson model
for grids of (a) 322, (b) 642, and (c) 1282. For all the grids it has been prescribed `M = `I = 1× 10−4 L.

4.1.2 Impact of the characteristic length of the regularization

The considered implicit gradient regularization introduces an internal length scale in the non-local damage
models through the parameter ` in the Helmholtz-type equations (31b). Such a parameter basically affects
the magnitude of the spreading of a local variable towards neighbouring grid points. For the considered 2D
composite material, the characteristic length ` is not constant in space, but different values are assigned in
the matrix material, i.e. `M , and in the elastic reinforcement, i.e.`I . Figure 7 plots the average mechanical
response of the RVE for different assigned internal lengths in the matrix material at constant value `I =
0.001L. For both Gurson (Fig. 7a) and Lemaitre (Fig. 7b) models, the higher the parameter `M the higher
the attained strain at final failure, e.g. ductility is increased. Indeed, a higher internal length scale implies
a broader diffusion of the scalar plastic strain variables responsible of damage evolution. The latter thus
makes the matrix material capable of dissipating more mechanical energy during the combined damage-
plastic process.

The impact of `M on the spatial distribution of the damage variables at final fracture is reported in
Fig. 8 and Fig. 9 for the non-local Gurson and Lemaitre models, respectively. As expected, the simulated
slip band strongly depends on the matrix internal length resulting in thinner bands as `M decreases. The
characteristic length of the regularization seems to affect the shape of the slip band as well. It results that
higher `M promote the formation of bands with a more pronounced change in thickness along its longitudinal
axis. On the other hand, for `M = 0.025 the damage variable localizes in a band with approximately constant
thickness. Moreover, for large `M the damage distribution highlights a higher level of damage in the matrix
material in the surrounding of the inclusion with respect to the case of a small `M . Finally, the simulated
orientation and location of the longitudinal axes of the slip bands are independent on the characteristic
length `M .

The impact of the internal length `I in the elastic inclusion is evaluated in Fig. 10 where the profiles of the
simulated non-local equivalent plastic strain εp0 and effective porosity f∗ are plotted for different ratios `M/`I .
Fig. 10a shows that `M/`I > 5 effectively prevents the non-local equivalent plastic strain from diffusing inside
the elastic matrix as desirable. On the contrary, a significant plastic deformation accumulates in the elastic
reinforcement for `M/`I = 1 providing a more gentle profile of εp0 at the matrix/inclusion interface. As
plotted in Fig. 10b, the simulated profile of the effective porosity f∗ obviously reflects the distribution of
the non-local equivalent plastic strain through the process of void nucleation. For higher values of the ratio
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(a) (b)

Figure 7: Impact of the matrix characteristic length `M on the simulated stress strain curves for non-local
Gurson (a) and Lemaitre (b) models. For all the reported results, `I = 0.001L has been assigned in the region
of the elastic reinforcement.

(a) (b)

Figure 8: Distribution of effective porosity f∗ at final fracture simulated in case of the non-local Gurson
model for (a) `M = 0.025L and (b) `M = 0.075 with 1282 grid points. For all the reported results, `I = 0.001
has been assigned in the region of the elastic reinforcement.
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(a) (b)

Figure 9: Distribution of the intrinsic damage variable D at final fracture simulated in case of the non-local
Lemaitre model for (a) `M = 0.025L and (b) `M = 0.075 with 1282 grid points. For all the reported results,
`I = 0.001 has been assigned in the region of the elastic reinforcement.

`M/`I = 1, the damage is more developed along the considered direction for the same applied macroscopic
strain. It is worth nothing that very large ratios of `M/`I lead to the appearance of Gibbs oscillations in

the profile of the averaged field εp0, although the magnitude of these oscillations is quite limited thanks to
the use of discrete derivatives in Fourier space [53]. Moreover, a closer look reveals that this oscillating

behavior mostly affects the profile of εp0 inside the elastic phase, where damage is not developing. Therefore,
the influence of these small oscillations in the damage nucleation/evolution in the matrix will be negligible.
To further improve the accuracy of the Helmholtz-type equation for very high phase contrasts, the use of
special enhanced FFT-formulations [46] might be used, but such aspects go beyond the scope of this paper
and they will be studied in a devoted publication.

(a) (b)

Figure 10: Plot of the profiles of the non-local equivalent plastic strain εp0 and effective porosity f∗ along
direction r (see Fig. 2) for different assigned ratios `M/`I . The reported curves refers to the non-local
Gurson model in correspondence of E11 = 0.5 for fixed `m = 0.05 and 1282 grid points. The dashed lines
mark the boundary of the elastic inclusion.

4.2 3D numerical examples

In this set of simulations the mechanical response of a three dimensional particle-reinforced composite is
analyzed. The numerical study presented in [20], which uses a local version of the Gurson model and finite
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elements, is reproduced here using the non-local FFT framework proposed. The RVE consists of thirty non-
overlapping identical elastic spheres immersed in an elasto-plastic matrix undergoing damage. A cubic unit
cell of size L×L×L is considered with the elastic reinforcement occupying 20% of the overall volume. The
arrangement of the elastic particles is generated randomly and discretized with different raster resolution,
namely 32× 32× 32, 64× 64× 64, and 128× 128× 128 grid points. A representation of adopted geometry
of the unit cell, for all the considered resolutions, is reported in Figure 11.

(a) (b) (c)

Figure 11: Periodic multi-particle RVEs adopted in the 3D numerical simulations for (a) 323, (b) 643, and
(c) 1283 grid points.

The sample is subjected to uniaxial tensile loading in which a macroscopic strain is prescribed in the
direction x1, while a stress free condition is enforced in the remaining components

E =

E11 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 and Σ =

∗ 0 0
0 0 0
0 0 0

 .

In the matrix material, EM = 70, νM = 0.33, and σY = 200 MPa are assigned as typical values for Al alloys.
As carried out in Section 4.1, the proposed algorithm is tested for both the considered Gurson and Lemaitre
models. In the former, the properties of the combined plastic-damage process specify as q1 = 1.5, q2 = 1,
q3 = 2.25, fC = 0.15, fF = 0.25, fN = 0.04, εN = 0.1, and sN = 0.05. The initial void volume fraction
is zero. Moreover, the same hardening law Eq. (47) adopted in the 2D simulations is considered. On the
other hand, the set of parameters characterizing the Lemaitre model are εC = 0.03 and εR = 0.2 along with
isotropic linear hardening σ0 (εp) = σY +k εp with hardening modulus k = 10 GPa. Following the same path
of reasoning of Section 4.1, the upper limit value of the damage indicators is set to f∗V = 0.6 and D = 0.99
for Gurson and Lemaitre models, respectively.

The elastic inclusions do not undergo damage and their elastic properties correspond to EI = 400 GPa
and νI = 0.2. In the non-local numerical simulations, the parameter appearing in the Helmholtz-type
equations is specified as `M = 0.05L for the matrix material and `I = 0.001L for the elastic inclusions. The
latter choice prevent spurious diffusion of inelastic fields through the interface between matrix and elastic
particles as demonstrated in the two dimensional examples.

4.2.1 Grid sensitivity

The simulated macroscopic response of the considered three-dimensional microstructure is plotted in Figure
12 for both Gurson (a) and Lemaitre (b) models. To emphasize the impact of the non-local formulation,
the results of the non-local damage models are plotted together with the classical local counterpart. The
latter are simply recovered by assigning a sufficiently small value of the characteristic length ` to avoid
spreading of plastic local variables to neighbouring grid points, i.e. `M = `I = 1× 10−4L. A variable strain
increment is applied due to requirements of smaller strain increments after a certain macroscopic strain
related to the softening part of the curve. It turned out that the model resolution affected the total number
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of increments needed to reach the final deformation. Considering the non-local Gurson model, the number
of increments necessary to achieve the final microscopic strain (E11 = 0.6) were 600, 605, and 730 for 323,
643, and 1283 grids, respectively. For the non-local Lemaitre model the strain increments grow from 109,
for the 323 grid, to 179 and 279 for 643 and 1283 discretizations. A similar trend in the convergence was
observed for the local models as well, and the average strain increment decreased with the number of voxels
of the model. Moreover, for the highest grid resolution the analyses of the local models could not reach the
target macroscopic strain since the strain increment was reduced below the minimum admissible value, i.e.
∆E11 = 1× 10−5.

(a) (b)

Figure 12: Plot of the average stress component Σ11 against the average strain component E11 resulting from
the 3D multi-particle RVEs reported in Fig. 11 for the considered Gurson (a) and Lemaitre models (b).
In each graph, the curves obtained from the non-local models are plotted along with the results of the local
counterparts.

The simulated macroscopic stress-strain curves (Figure 12) confirm the benefit of the non-local formula-
tion in the regularization of the mechanical response during softening for both damage models. In the case
of non-local Gurson model, the resulting stress strain curves were very close until the final fracture for all the
different discretization levels considered. In the Lemaitre model, the results using grids with 643 and 1283

voxels also lay very close to each other, while a significant difference at final rupture is found with the case
of the 323 grid. This dissimilarity is the consequence of the different evolution of the damage variable in the
323 resolution, as shown in Fig. 14, which might be attributed to a poor spatial discretization of the RVE for
the considered damage model. Nevertheless, the comparison between the final distribution of the variable D
between 643 and 1283 grids remarks a satisfactory grid independence of the non-local formulation. On the
other hand, the images reported in Fig. 13, testify a similar final distribution of the effective porosity for all
the considered grid sizes simulated in case of non-local Gurson model.

Figure 15 shows the three-dimensional evolution of the fracture simulated by the non-local Gurson model.
The fracture initially nucleates in the regions of the material matrix where the distance among the reinforce-
ments, along the loading direction, is small as observed in [20]. This fact reflects the plastic strain driven
mechanisms underlying the evolution of the porosity in the Gurson model, as the matrix region between
spheres closely packed along the deformation axis experiences higher plastic deformation. Subsequently,
the fracture spreads to neighbouring regions, following the percolation path given by the presence of the
elastic inclusions, to approximately resemble the shape of a plane at the end of the simulation. Such a plane
represents a sort of shear plane that characterizes the collapse mechanism of the composite material for the
considered loading condition. By the comparison between Figure 15 and 16, the nucleation of the fracture
simulated by the non-local Lemaitre model takes place similarly to the case of Gurson model. In addition,
the collapse mechanism of the composite is still characterized by the presence of a shear plane that forms an
angle of about 45 degrees with respect to the loading direction. However, the different fracture propagation
in the two models leads to a distinct final distribution of the damage variable. It thus follows that the type
of damage model, along with the choice of the relevant material parameters, can impact significantly on the
prediction of the fracture propagation in complex heterogeneous media.
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(a) (b) (c)

Figure 13: Distribution of the effective porosity f∗ at final fracture (E11 = 0.6) simulated in case of the
non-local Gurson model with `M = 0.05L and `I = 0.001L for (a) 323, (b) 643, and (c) 1283 grid points.
For all the considered grid resolutions, the black arrow indicates the loading direction.

(a) (b) (c)

Figure 14: Distribution of the intrinsic damage variable D at final fracture ((a) E11 = 0.1 - (b) and (c)
E11 = 0.09) simulated in case of the non-local Lemaitre model with `M = 0.05L and `I = 0.001L for (a)
323, (b) 643, and (c) 1283 grid points. For all the considered grid resolutions, the black arrow indicates the
loading direction.
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Figure 15: Three-dimensional propagation of ductile fracture predicted by the non-local Gurson model for the
1283 grid resolution. The distribution of the fracture has been identified by the collection of the grid points
for which f∗ = 0.6.

Figure 16: Three-dimensional propagation of ductile fracture predicted by the non-local Lemaitre model for
the 1283 grid resolution. The distribution of the fracture has been identified by the collection of the grid
points for which D = 0.99.
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4.2.2 Convergence for a fixed topology

In the RVEs considered in the aforementioned simulations, the spatial discretization strongly modifies the
digitalized geometry of the elastic inclusions so that different grid resolutions imply topological changes
as well (e.g. compare (a) and (c) in Fig. 11). As a result of this fact, the simulated macroscopic stress
strain curves reported in Fig. 12 show a slight grid dependence in the elastoplastic response, i.e. when
the applied deformation is low and the impact of damage has not yet come into play. In this section, for
the sake of completeness, we report an additional converge study of the propose FFT algorithm in the
case in which the level of the spatial discretization does not alter the topology of the RVE. This study is
carried out considering the digitalized RVE with the lowest resolution, i.e. Fig. 11a with 323 voxels, as
the actual geometry of the particle-reinforced composite to be simulated. The selected geometry was then
discretized with different resolutions, namely 323, 643, and 963 so that the RVE is perfectly discretized
for all the considered grids. The relevant mechanical response has been simulated for both Gurson and
Lemaitre models and the macroscopic stress strain curves are reported in Figure 17. As already observed
in Fig. 12, the non-local formulation effectively alleviates the grid sensitivity typical of classical damage
models. Nevertheless, when the topology is maintained and only the discretization is modified, the stress-
strain response of the three different discretization level are almost indistinguishable until certain level of
deformation (E11 ' 0.3 and E11 ' 0.5 for the Gurson and Lemaitre model, respectively). Subsequently, for
higher applied strain, the simulated curves no longer overlap but clearly show a convergence of the predicted
solution upon grid refinement.

(a) (b)

Figure 17: Comparison between the macroscopic stress-strain curves simulated considering the same topology
of the RVE (i.e. the one reported in Fig. 11a) for different spatial discretizations. For both Gurson (a) and
Lemaitre(b) non-local models, the results show a good convergence of the simulated mechanical behavior upon
grid refinement.

4.2.3 Numerical efficiency

The time required by each solver in the proposed iterative algorithm was analyzed in the considered 3D
examples. From this analysis, the fraction of the total simulation time devoted to evaluate the constitutive
equations is very limited and remained almost constant for all the discretization levels: below 1.5% of the
overall time for the Gurson model and below 0.2% for the Lemaitre model.

Regarding the time spent to solve the set of coupled partial differential equations of the problem, the
resolution of the mechanical equilibrium (a non-linear PDE solved using the FFT-Galerkin solver along with
a Newton-Raphson algorithm) took the majority of time. In particular, the mechanical solver for the non-
local Gurson model took from 84% (323 grid) up to 92% (1283 grid) of the total time while for the Lemaitre
model it took from 95% to 97%. The remaining time was spent by the conjugate gradient solver for the
heterogeneous Helmholtz-type equations. This difference in time is mainly due to the non-linearity of the
equation of the mechanical equilibrium, opposite to the linear nature of the Helmholtz equation. This large
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difference in the time spent for the two solvers also suggests that the use of a brittle fracture model, which
is linear for a fixed value of the damage parameter, could strongly reduce the computing time.

5 Summary and conclusions

A general, robust and efficient FFT algorithm for the solution of non-local ductile damage in the field of
computational micromechanics has been proposed and particularized to two classical ductile damage models,
namely Gurson [2] and Lemaitre [5] models.

To alleviate the typical grid dependence affecting the numerical results of classical local damage models,
an implicit gradient regularization has been exploited. In the context of micromechanics, where different
phases are found and some of them are not affected by damage, this approach needs to be modified. To
this aim, the Helmholtz-type equation of the implicit gradient approach has been properly generalized to
the case of heterogeneous media by prescribing a non-uniform characteristic length `(~x) in accordance to
the spatial arrangement of the microstructure. The choice of assigning different characteristic lengths to the
phases constituting the microstructure reflects the physical mechanism underlying the non-local regulariza-
tion in heterogeneous media. Indeed, it has been shown that the ratio of the characteristic length of the
regularization between two neighbouring phases dictates the relevant interface conditions for the non-local
variables. In this context, an interesting limit case is represented by the choice of an infinite contrast between
two material phases since it theoretically leads to a free Neumann interface condition for the generalized
Helmholtz-type equation.

The non-local extension of damage mechanics consists, in general, of an enriched continuum formulation
where the classical balance of linear momentum is coupled with auxiliary equations of Helmholtz type.
Accordingly, additional degrees of freedom arise with respect to the conventional local models, thus requiring
alternative solving schemes to be implemented. Therefore, a FFT based algorithm has been developed here
due to its computational efficiency in the field of micromechanics. The proposed algorithm consists of
an implicit iterative staggered scheme in which the governing equations are solved sequentially for any
time increment. This approach facilitates the implementation of this class of coupled problems, since it
allows for the usage of different spectral solvers for each different field equation. For the problem at hand,
a FFT-Galerkin solver has been exploited for the solution of the purely mechanical problem, while the
Helmholtz-type equation of the non-local regularization is solved using a conjugate gradient algorithm with
a preconditioner.

The proposed non-local extension in the field of micromechanics and its numerical implementation has
been analyzed on 2D and 3D numerical examples. In the 2D examples, the considered non-local damage
models have been tested on a simple square RVE made up of an elastoplastic matrix with a circular rein-
forcement. The numerical solutions of the non-local damage models show a successful regularization and grid
size independent results. It has also been shown how the characteristic length of the regularization impacts
on the ductility of the composite as well as on the diffusion of non-local variables across the interface be-
tween material matrix and reinforcement. The efficiency of the proposed algorithm has been demonstrated
in the simulation of the failure of a three dimentional multi-particle reinforced composite. To analyze the
effect of the non-local regularization for such a complex problem, three different grid resolutions have been
considered. Moreover, the development of the failure process, i.e. from nucleation to fracture propagation,
has been analyzed for the different damage models considered in this paper.

In conclusion, the FFT-based algorithm developed here constitutes a significant improvement in the
prediction of ductile failure in the field of computational homegenization. Indeed, the efficiency of the
proposed algorithm makes it possible the simulation of ductile damage evolution of complex microstructures
with millions of degrees of freedom in a non-local context as never presented in previous publications, to
the best of the author knowledge. Future possible developments of the present research may focus on the
extension of the non-local formulation to anisotropic materials, e.g. for the regularization of ductile failure
in polycrystals and fibres-reinforced composites. In addition, the present algorithm will be exploited for the
numerical study of the size effect in the mechanical response of particle-reinforced composites.
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Appendix A Time discretization

A.1 Gurson model

For any time step n = 1, 2, ... Nt, the time discretization of the non-local Gurson model presented in Section
2.2.2 yields 

div
[
σ|n+1

]
= ~0

εp0

∣∣∣
n+1
− div

[
`2 (~x) ∇ εp0

∣∣∣
n+1

]
= εp0|n+1 ,

tr [εp]
∣∣∣
n+1
− div

[
`2 (~x) ∇ tr [εp]

∣∣∣
n+1

]
= tr

[
εp|n+1

]
,

with

σ|n+1 = σ|n +K tr [∆ε−∆εp] I + 2µdev [∆ε−∆εp] ,

∆εp = ∆λ

[
∂φ

∂p

∣∣∣∣
n+1

∂p

∂σ

∣∣∣∣
n+1

+
∂φ

∂s

∣∣∣∣
n+1

∂s

∂σ

∣∣∣∣
n+1

]
,

∆εp0 =
σ|n+1 : ∆εp(

1− f |n+1

)
σ0

(
εp0|n+1

) ,
∆f = AN

(
εp0

∣∣∣
n+1

)
∆εp0 +

(
1− f |n+1

)
∆tr [εp] ,

and ∆λ such that

φ
(
σ|n+1 , ε

p
0|n+1 , f∗|n+1

)
=

(
s

σ0

∣∣∣∣
n+1

)2

+ 2 f∗|n+1 q1 cosh

(
−3

2

q2 p

σ0

∣∣∣∣
n+1

)
−
(

1 + q3 f∗|2n+1

)
= 0.

A.2 Lemaitre model

For any time step n = 1, 2, ... Nt, the time discretization of the non-local Lemaitre model presented in
Section 2.2.3 yields div

[
σ|n+1

]
= ~0

εp|n+1 − div
[
`2 (~x) ∇ εp|n+1

]
= εp|n+1 ,

with

σ|n+1 = σ|n +
(
1− D|n+1

)
∆ σ̃|n+1 −∆D σ̃|n+1 ,

σ̃|n+1 = σ̃|n +K tr [∆ε−∆εp] I + 2µdev [∆ε−∆εp] ,

∆ εp|n+1 = ∆λ
s̃|n+1

‖ s̃|n+1 ‖
,

∆εp = ∆λ

√
3

2
,

and ∆λ such that

φ( σ̃|n+1 , εp|n+1) = ‖ s̃|n+1 ‖ −
√

3

2
σ0

(
εp|n+1

)
= 0 .
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