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A comprehensive mathematical model of the multiphysics flow of blood and Cerebrospinal Fluid 
(CSF) in the brain can be expressed as the coupling of a poromechanics system and Stokes’ 
equations: the first describes fluids filtration through the cerebral tissue and the tissue’s elastic 
response, while the latter models the flow of the CSF in the brain ventricles. This model describes 
the functioning of the brain’s waste clearance mechanism, which has been recently discovered to 
play an essential role in the progress of neurodegenerative diseases. To model the interactions 
between different scales in the porous medium, we propose a physically consistent coupling 
between Multi-compartment Poroelasticity (MPE) equations and Stokes’ equations. In this work, 
we introduce a numerical scheme for the discretization of such coupled MPE-Stokes system, 
employing a high-order discontinuous Galerkin method on polytopal grids to efficiently account 
for the geometric complexity of the domain. We analyze the stability and convergence of the 
space semidiscretized formulation, we prove a-priori error estimates, and we present a temporal 
discretization based on a combination of Newmark’s 𝛽-method for the elastic wave equation 
and the 𝜃-method for the other equations of the model. Numerical simulations carried out on 
test cases with manufactured solutions validate the theoretical error estimates. We also present 
numerical results on a two-dimensional slice of a patient-specific brain geometry reconstructed 
from diagnostic images, to test in practice the advantages of the proposed approach.

1. Introduction

In the brain, multiple fluid components play different roles: the blood supplies nutrients and oxygen and removes carbon dioxide, 
while the Cerebrospinal Fluid (CSF) and the glymphatic system [1,2] have the primary function of clearing the waste produced by 
brain activity. Also, it has been recently shown that waste clearance mechanisms play a major role in the evolution of neurodegener-

ative diseases [3–6]. These physical systems are strongly interconnected with one another and with the cerebral matter: for example, 
a large amount of the CSF is generated in the choroid plexus thanks to the high concentration of blood capillary vessels in it [7]; also, 
an auxiliary function of the CSF is to protect the brain from impact against the skull and to compensate blood pulsatility in terms of 
flow rate and pressure inside the braincase. For this reason, the modeling of the fluid dynamics in the brain requires a multiphysics 
perspective, able to capture these interactions and their mutual interplay.

From the modeling viewpoint, the brain can be described as a porous material (white and gray matter) with fluids both filtrating 
through it and flowing in hollow regions (brain ventricles). In terms of mathematical modeling, this can be represented as the coupling 
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Fig. 1. Domain scheme: poroelastic medium in Ωel (light grey), Stokes’ flow of CSF in Ωf (blue), interface Σ (red), and external boundaries Γw (dark grey) and Γout . 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

between a poromechanics system – described, e.g., by Darcy’s or Biot’s equations [8] – and Stokes/Navier-Stokes’ equations for the 
flow in the ventricles [9]. Numerical methods for such Fluid-Poroelastic Structure Interaction (FPSI) systems can be found in the 
literature: the most studied is the Biot-Stokes’ system [10–13], but also more complex models have been investigated, e.g. considering 
a multilayer structure of the porous medium [14,15], a non-linear constitutive model for either the structural or fluid part of the 
system [16], or Multi-compartment Poroelasticity (MPE) models coupled with Stokes’ equations [17,18]. This latter framework is 
the best suited to model brain poromechanics and CSF flow, since it can simultaneously represent cerebral tissue deformation, blood 
vessel networks at different scales, CSF flow, and waste clearance. Moreover, the dynamic formulation of MPE equations can describe 
the inertial forces associated with blood pressure pulsatility during a heartbeat, which affects vascular and tissue deformations and 
waste clearance [19,20].

The analysis of conforming Finite Element methods for FPSI problems has been addressed in several of the abovementioned works, 
with a discussion on the inf-sup requirements on the different components of the system (poroelastic, fluid, and coupling conditions). 
However, aiming at an accurate representation of the poromechanics and flow with low dispersion and dissipation errors, high-order 
discretization methods provide a better choice [21,22]. Polytopal Discontinuous Galerkin (PolyDG) methods fit in this framework, 
and they can also naturally account for complex geometries such as vessel networks and brain folds, thanks to their flexibility in 
terms of local refinement and agglomeration, hanging nodes treatment, and generality of mesh element shapes [23–28]. In addition, 
discontinuous Galerkin schemes provide a general framework to embed physically-consistent interface conditions directly in the 
weak form. So far, these methods have been mostly employed to solve porous media and poroelasticity problems for geophysical 
applications [29–31] and for fluid dynamics and fluid-structure interaction problems [32–37].

In this work, we introduce a high-order PolyDG method to spatially discretize a coupled model encompassing dynamic Multiple-

Network Poroelastic (MPE) equations for poromechanics [38] and Stokes’ equations [39,40], with physically-consistent coupling 
conditions inspired from the mass and stress balance at the interface between the brain tissue and the CSF. Moreover, we take full 
advantage of the DG framework to embed, directly in the physically consistent formulation, the coupling conditions at the interface 
between the poroelastic and fluid regions. We analyze the well-posedness and convergence of the semidiscrete numerical method, 
and we employ a combination of Newmark’s 𝛽-method and the 𝜃-method for time discretization.

The paper is organized as follows. In Section 2, we introduce the multiphysics problem, both in strong and weak form, and discuss 
the coupling conditions. Section 3 describes the PolyDG space discretization; stability and convergence properties are analyzed in 
Section 4. Then, time discretization is introduced Section 5. Verification tests are discussed in Section 6, corroborating the theo-

retical results of Section 4. Section 7 demonstrates the capabilities of the method on a two-dimensional brain section considering 
physiological settings.

2. Mathematical model

We introduce the mathematical model consisting of the coupling between a Multiple-Network Poroelasticity system and Stokes’ 
system: the former, introduced in [38], accounts for the poromechanics of the brain tissue and its interaction with different fluids 
compartments flowing in its pores, while the latter describes the flow of the CSF in the brain ventricles. To ease the presentation, 
we consider a simplified configuration whose two-dimensional representation is depicted in Fig. 1. The poroelastic medium occupies 
a portion Ωel ⊂ ℝ𝑑 (𝑑 = 2, 3) of the domain, while the CSF flows according to Stokes’ equations in the remaining portion Ωf ⊂ ℝ𝑑 . 
The interaction between the two systems occurs at the interface Σ =Ωel ∩Ωf , which we suppose to be a (piecewise) smooth (𝑑 −1)−
manifold. The source of CSF comes from an exchange of mass with the poroelastic medium and it exits from the domain at Γout, 
while the rest of the domain boundary is a solid wall Γw . We denote by Ω the interior of Ωel ∪ Ωf .

Given a final observation time 𝑇 > 0, we introduce the CSF velocity 𝒖 ∶ Ωf × [0, 𝑇 ] → ℝ𝑑 and pressure 𝑝 ∶ Ωf × [0, 𝑇 ] → ℝ, the 
solid tissue displacement 𝒅 ∶ Ωel × [0, 𝑇 ] →ℝ𝑑 , and the network pressures 𝑝j ∶ Ωel × [0, 𝑇 ] →ℝ, j ∈ 𝐽 , where 𝐽 is a given set of labels 
denoting the different fluid network compartments [38]. In particular, for the application at hand, we consider 𝐽 = {A, C, V, E}, 
where A, C, V correspond to the arterial, capillary, and venous blood compartments, respectively, while E denotes the extracellular 
2

CSF permeating the brain tissue.
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Table 1

Parameters of model (1) with corresponding physiological values.

parameter phys. values description

𝜌el 1000kg ⋅m−3 density of the solid tissue

𝜌f 1000kg ⋅m−3 density of the CSF

𝜇el 216Pa first Lamé parameter of the solid

𝜆 505Pa second Lamé parameter of the solid

𝜆 11567Pa second Lamé parameter of the solid [42]

𝜇j 3.5 ⋅ 10−3 Pa ⋅ s viscosity of the fluid in compartment j ∈ 𝐽

𝜇f 3.5 ⋅ 10−3 Pa ⋅ s viscosity of CSF

𝛼j ∈ [0,1) Biot-Willis coefficient of compartment j ∈ 𝐽

𝑐j 1 ⋅ 10−6 m2 ⋅N−1 storage coefficient of compartment j ∈ 𝐽

𝑘j 1 ⋅ 10−11 m2 𝐾j = 𝑘j𝐼 permeability tensor for compartment j ∈ 𝐽

𝑘j 1 ⋅ 10−16 m2 𝐾j = 𝑘j𝐼 permeability tensor for compartment j ∈ 𝐽 [42–44]

𝛽jk 1m2 ⋅N−1 ⋅ s−1 coupling transfer coefficient between compartments

(from k ∈ 𝐽 to j ∈ 𝐽 )

𝛽e
j 1m2 ⋅N−1 ⋅ s−1 external coupling coefficient for compartment j ∈ 𝐽

The coupled problem reads as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌el𝜕
2
𝑡𝑡𝒅 −∇ ⋅ 𝜎el(𝒅) +

∑
k∈𝐽 𝛼k∇𝑝k = 𝒇 el, in Ωel × (0, 𝑇 ], (a)

𝑐j𝜕𝑡𝑝j + ∇ ⋅
(
𝛼j𝜕𝑡𝒅 − 1

𝜇j
𝐾j∇𝑝j

)
+
∑

k∈𝐽 𝛽jk (𝑝j − 𝑝k) + 𝛽e
j 𝑝j = 𝑔j, in Ωel × (0, 𝑇 ], ∀j ∈ 𝐽, (b)

𝜌f𝜕𝑡𝒖−∇ ⋅ 𝜎f (𝒖) + ∇𝑝 = 𝒇 f , in Ωf × (0, 𝑇 ], (c)

∇ ⋅ 𝒖 = 0, in Ωf × (0, 𝑇 ], (d)

(1)

where the linear elastic and fluid (viscous) stress tensors are defined as 𝜎el(𝒅) = 2𝜇el𝜀(𝒅) +𝜆(∇ ⋅𝒅)𝐼 and 𝜎f (𝒖) = 2𝜇f𝜀(𝒖), respectively, 
with 𝜀(𝒘) =

(
∇𝒘+∇𝒘𝑇

)
∕2. The body forces 𝒇 el ∶ Ωel × (0, 𝑇 ] → ℝ𝑑 , 𝑔j ∶ Ωel × (0, 𝑇 ] → ℝ, 𝒇 f ∶ Ωf × (0, 𝑇 ] → ℝ𝑑 are supposed 

sufficiently regular. The parameters of the models are explained in Table 1, with their typical physiological values extracted from 
[38,41–44]. The initial and boundary conditions of problem (1) are defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
𝒅(0), 𝜕𝑡𝒅(0)

)
=
(
𝒅0, 𝒅̇0

)
, 𝑝j(0) = 𝑝j0, in Ωel, ∀j ∈ 𝐽, (a)

𝒖(0) = 𝒖0 in Ωf , (b)

𝒅 = 𝒅D = 𝟎, on Γw × (0, 𝑇 ], (c)
1
𝜇j
𝐾j∇𝑝j ⋅ 𝒏el = 0, on Γw × (0, 𝑇 ], ∀j ∈ 𝐽, (d)

𝒖 = 𝒖D = 𝟎, on Γw × (0, 𝑇 ], (e)

(𝜎f (𝒖) − 𝑝𝐼)𝒏f = −𝑝out
𝒏f , on Γout × (0, 𝑇 ], (f)

(2)

with suitable definition of the data function 𝑝out ∶ Γout × (0, 𝑇 ] → ℝ, that represents the external normal stress at the outlet, and of 
the initial conditions 𝒅0 ∶ Ωel →ℝ𝑑 , 𝒅̇0 ∶ Ωel →ℝ𝑑 , 𝒖0 ∶ Ωf →ℝ𝑑 , 𝑝j0 ∶ Ωel →ℝ, j ∈ 𝐽 .

On the interface Σ, we introduce the following coupling conditions, based on physiological considerations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎el(𝒅)𝒏el −
∑

k∈𝐽 𝛼k𝑝k𝒏el + 𝜎f (𝒖)𝒏f − 𝑝𝒏f = 𝟎, on Σ × (0, 𝑇 ], (a)
1
𝜇j
𝐾j∇𝑝j ⋅ 𝒏el = 0, on Σ × (0, 𝑇 ], ∀j ∈ 𝐽 ⧵ {E}, (b)

𝒖 ⋅ 𝒏f +
(
𝜕𝑡𝒅 − 1

𝜇E
𝐾E∇𝑝E

)
⋅ 𝒏el = 0, on Σ × (0, 𝑇 ], (c)

𝑝E = 𝑝− 𝜎f (𝒖)𝒏f ⋅ 𝒏f , on Σ × (0, 𝑇 ], (d)(
𝜎f (𝒖)𝒏f − 𝑝𝒏f

)
∧ 𝒏f = 𝟎, on Σ × (0, 𝑇 ]. (e)

(3)

Condition (3a) expresses the balance of total normal stress. Due to the blood-brain barrier [45,46], we assume that mass exchange 
between the poroelastic domain and the CSF only occurs through compartment E, as expressed by (3b)-(3c). Consistently, the normal 
stress of the CSF fluid is balanced by the pressure of compartment E, as in (3d), while we assume the tangential stress on the fluid 
to be negligible (cf. (3e)). Similar assumptions were made in [42], although we do not make use of the Beavers-Joseph-Saffman 
condition [47].

Aiming at solving problem (1) with the Finite Element method, we introduce its weak formulation. For the sake of generality, 
let ΓD,𝒅 , ΓD,𝒖, ΓD,𝑃j

, with j ∈ 𝐽 , denote the portions of 𝜕Ω where Dirichlet boundary conditions on 𝒅, 𝒖, 𝑝j are imposed, respectively. 
Then, we introduce the following functional spaces:

𝑾 = {𝒘 ∈ [𝐻1(Ωel)]𝑑 ∶ 𝒘 = 0 on ΓD,𝒅}, 𝑽 = {𝒗 ∈ [𝐻1(Ωf )]𝑑 ∶ 𝒗 = 0 on ΓD,𝒖},
3

𝑄j = {𝑞j ∈𝐻1(Ωel)∶ 𝑞j = 0 on ΓD,𝑃j
}, ∀j ∈ 𝐽, 𝑄 =𝐿2(Ωf ),
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where 𝐻1(Ω) denotes the classical Sobolev space of order 1 over 𝐿2(Ω). For the problem at hand, all Dirichlet boundary conditions 
on 𝜕Ω are homogeneous. We denote by (⋅, ⋅)Ω the 𝐿2-product over Ω and we define the following forms and functionals over the 
spaces introduced above:

𝑎el ∶𝑾 ×𝑾 →ℝ, 𝑎el(𝒅,𝒘) = (𝜎el(𝒅), 𝜀(𝒘))Ωel
,

𝑎j ∶𝑄j ×𝑄j →ℝ, 𝑎j(𝑝j, 𝑞j) =
(

1
𝜇j
𝐾j∇𝑝j,∇𝑞j

)
Ωel

∀j ∈ 𝐽,

𝐶j ∶

(⨉
k∈𝐽

𝑄k

)
×𝑄j →ℝ, 𝐶j({𝑝k}k∈𝐽 , 𝑞j) =

∑
k∈𝐽

(𝛽kj(𝑝j − 𝑝k), 𝑞j)Ωel
+ (𝛽e

j 𝑝j, 𝑞j)Ωel
∀j ∈ 𝐽,

𝑎f ∶ 𝑽 × 𝑽 →ℝ, 𝑎f (𝒖,𝒗) = (𝜎f (𝒖), 𝜀(𝒗))Ωf
,

𝑏j ∶𝑄j ×𝑾 →ℝ, 𝑏j(𝑞j,𝒘) = −(𝛼j𝑝j,div𝒘)Ωel
∀j ∈ 𝐽,

𝑏f ∶𝑄 × 𝑽 →ℝ, 𝑏f (𝑞,𝒗) = −(𝑞,div𝒗)Ωf
,

𝐹el ∶𝑾 →ℝ, 𝐹el(𝒘) = (𝒇 el,𝒘)Ωel
,

𝐹j ∶𝑄j →ℝ, 𝐹j(𝑞j) = (𝑔j, 𝑞j)Ωel
∀j ∈ 𝐽,

𝐹f ∶ 𝑽 →ℝ, 𝐹f (𝒗) = (𝒇 f ,𝒗)Ωf
,

𝔍 ∶𝑄E ×𝑾 × 𝑽 →ℝ, 𝔍(𝑝E,𝒘,𝒗) = ∫
Σ

𝑝E
(
𝒘 ⋅ 𝒏el + 𝒗 ⋅ 𝒏f

)
𝑑Σ.

Remark 1 (Derivation of the interface form 𝔍). The interface form 𝔍 ∶ 𝑄DG
E,ℎ ×𝑾 DG

ℎ
× 𝑽 DG

ℎ
→ ℝ introduced above naturally arises 

during the derivation of the weak form of problem (1). We test (1a)-(1b) against functions 𝒘∈𝑾 and 𝑞j ∈𝑄j, with j ∈ 𝐽 , over Ωel, 
and (1c) against 𝒗 ∈ 𝑽 over Ωf . Then, integrating by parts and summing all the contributions yield the following boundary terms on 
the interface:

∫
Σ

[
(𝑝𝐼 − 𝜎f (𝒖))∶ 𝒗⊗ 𝒏f +

(∑
k∈𝐽

𝛼k𝑝k𝐼 − 𝜎el(𝒅)

)
∶ 𝒘⊗ 𝒏el −

∑
j∈𝐽

1
𝜇j
𝐾j∇𝑝j ⋅ 𝑞j𝒏el

]
𝑑Σ. (4)

Using the interface conditions (3a)-(3b) and then (3c)-(3d)-(3e), we can rewrite (4) as follows:

∫
Σ

[
(𝑝𝐼 − 𝜎f (𝒖))∶ (𝒗⊗ 𝒏f +𝒘⊗ 𝒏el) −

1
𝜇E

𝐾E∇𝑝E ⋅ 𝑞E𝒏el
]
𝑑Σ

= ∫
Σ

[
𝑝E(𝒗 ⋅ 𝒏f +𝒘 ⋅ 𝒏el) − 𝑞E(𝒖 ⋅ 𝒏f + 𝜕𝑡𝒅 ⋅ 𝒏el)

]
𝑑Σ =𝔍(𝑝E,𝒘,𝒗) −𝔍(𝑞E, 𝜕𝑡𝒅,𝒖),

(5)

where we also used that 𝒂⊗ 𝒃∶ 𝐼 = 𝒂 ⋅ 𝒃 for any 𝒂, 𝒃 ∈ℝ𝑑 .

Denoting by 𝐿2(0, 𝑇 ; 𝐻), 𝐻1(0, 𝑇 ; 𝐻) the time-dependent Bochner spaces associated to a Sobolev space 𝐻 , and setting

𝒟 =𝐻2(0, 𝑇 ;𝑾 ), 𝒫 =
⨉
j∈𝐽

𝐻1(0, 𝑇 ;𝑄j), 𝒱 =𝐻1(0, 𝑇 ;𝑽 ), 𝒬 =𝐿2(0, 𝑇 ;𝑄),

the weak formulation of problem (1) reads as follows:

Find (𝒅, {𝑝j}j∈𝐽 , 𝒖, 𝑝) ∈𝒟 ×𝒫 ×𝒱 ×𝒬 such that, for all 𝑡 ∈ (0, 𝑇 ],

(𝜌el𝜕2𝑡𝑡𝒅,𝒘)Ωel
+ 𝑎el(𝒅,𝒘) +

∑
j∈𝐽

𝑏j(𝑝j,𝒘) − 𝐹el(𝒘)

+
∑
j∈𝐽

[
(𝑐j𝜕𝑡𝑝j, 𝑞j)Ωel

+ 𝑎j(𝑝j, 𝑞j) +𝐶𝑗 ({𝑝k}k∈𝐽 , 𝑞j) − 𝑏j(𝑞j, 𝜕𝑡𝒅) − 𝐹j(𝑞j)
]

+ (𝜌f𝜕𝑡𝒖,𝒗)Ωf
+ 𝑎f (𝒖,𝒗) + 𝑏f (𝑝,𝒗) + 𝑏f (𝑞,𝒖) − 𝐹f (𝒗)

+𝔍(𝑝E,𝒘,𝒗) −𝔍(𝑞E, 𝜕𝑡𝒅,𝒖) = 0

(6)

for all (𝒘, {𝑞j}j∈𝐽 , 𝒗, 𝑞) ∈𝒟 ×𝒫 ×𝒱 ×𝒬, and 𝒅(0) = 𝒅0, 𝜕𝑡𝒅(0) = 𝒅̇0, 𝒖(0) = 𝒖0, 𝑝j(0) = 𝑝j0 ∀j ∈ 𝐽 .

3. Semidiscrete formulation based on a polytopal discontinuous Galerkin method

In this section, we introduce a space discretization of problem (6) based on discontinuous Finite Element methods on polytopal 
4

grids.
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Fig. 2. Polygonal elements sharing an internal face (left) or a face on the interface Σ (right).

3.1. Notation

Let 𝒯ℎ,el, 𝒯ℎ,f be polytopal meshes discretizing the domains Ωel, Ωf , respectively. We define as faces of an element 𝐾 ∈𝒯ℎ,el ∪𝒯ℎ,f
the (𝑑 − 1)-dimensional entities corresponding to the intersection of 𝜕𝐾 with either the boundary of a neighboring element or the 
domain boundary 𝜕Ω:

• for 𝑑 = 2, the faces are always straight line segments;

• for 𝑑 = 3, the faces are generic polygons. We assume that each face can be decomposed into triangles.

With this definition, we denote by ℱel, ℱf the sets of element faces corresponding to each physical domain. We partition them 
into internal faces ℱI

el, ℱ
I
el, Dirichlet/Neumann faces ℱD

el ∕ℱ
N
el ⊂ 𝜕Ωel ⧵ Σ, ℱ

Dj
el ∕𝐹

Nj
el ⊂ 𝜕Ωel ⧵ Σ, ℱD

f ∕ℱN
f ⊂ 𝜕Ωf ⧵ Σ (for the elastic 

displacement, the pressure of the j-th compartment, and the fluid velocity, respectively), and interface faces ℱΣ ⊂ Σ. In the latter, 
we assume that the meshes 𝒯ℎ,el, 𝒯ℎ,f are aligned with Σ, namely that there is no gap or overlap between them, although hanging 
nodes are permitted.

We introduce the symmetric outer product 𝒗⊙ 𝒏 = 1
2 (𝒗⊗ 𝒏 + 𝒏⊗ 𝒗) and, for regular enough scalar-, vector- and tensor-valued 

functions 𝑞, 𝒗, 𝜏 , we define the following average and jump operators:

• On each internal face 𝐹 ∈ℱI =ℱI
el ∪ℱI

f we set

{{𝑞}} = 1
2
(𝑞+ + 𝑞−), {{𝒗}} = 1

2
(𝒗+ + 𝒗−), {{𝜏}} = 1

2
(𝜏+ + 𝜏−),

�𝑞� = 𝑞+𝒏+ + 𝑞−𝒏−, �𝒗� = 𝒗+ ⊙ 𝒏+ + 𝒗− ⊙ 𝒏−, �𝜏� = 𝜏+𝒏+ + 𝜏−𝒏−,

where 𝒏+, 𝒏− are defined as in Fig. 2 - left.

• On a Dirichlet face 𝐹 ∈ℱD
el ∪

(⋃
j∈𝐽 ∈ℱ

Dj
el

)
∪ℱD

f :

{{𝑞}} = 𝑞, {{𝒗}} = 𝒗, {{𝜏}} = 𝜏,

�𝑞� = 𝑞𝒏, �𝒗� = 𝒗⊙ 𝒏, �𝜏� = 𝜏𝒏,

where 𝒏 is the unit normal vector pointing outward to the element 𝐾 to which the face 𝐹 belongs.

• On a face 𝐹 ∈ℱΣ shared by two elements 𝐾el ∈𝒯ℎ,el and 𝐾f ∈𝒯ℎ,f :

{{𝑞}} = 𝑞|𝐾el
, {{𝜏}} = 𝜏|𝐾el

, �𝒘,𝒗� =𝒘|𝐾el
⊙ 𝒏el + 𝒗|𝐾f

⊙ 𝒏f ,

where 𝒏el, 𝒏f are defined as in Fig. 2 - right.

3.2. PolyDG semidiscrete problem

For a given integer 𝑚 ≥ 1, we introduce the following piecewise polynomial spaces:

𝑋DG
ℎ

(Ω⋆) = {𝜙 ∈𝐿2(Ω⋆)∶ 𝜙|𝐾 ∈ ℙ𝑚(𝐾) ∀𝐾 ∈𝒯⋆}, ⋆ = el, f

𝑄DG
j,ℎ =𝑋DG

ℎ
(Ωel), 𝑄DG

ℎ
=𝑋DG

ℎ
(Ωf ), 𝑾 DG

ℎ
= [𝑋DG

ℎ
(Ωel)]𝑑 , 𝑽 DG

ℎ
= [𝑋DG

ℎ
(Ωf )]𝑑 .

Moreover, we denote by 𝐻𝑠(𝒯el), 𝐻𝑠(𝒯f ) the broken Sobolev spaces of order 𝑠 over the mesh of the poroelastic and fluid 
domains, namely 𝐻𝑠(𝒯⋆) = {𝑞 ∈𝐿2(Ω⋆)∶ 𝑞|𝐾 ∈𝐻𝑠(𝐾) ∀𝐾 ∈𝒯⋆} for ⋆ = el, f . We then introduce the following forms, for 𝒅, 𝒘 ∈
[𝐻1(𝒯ℎ,el)]𝑑 , 𝑝j, 𝑞j ∈𝐻1(𝒯ℎ,el), with j ∈ 𝐽, 𝒖, 𝒗 ∈ [𝐻1(𝒯ℎ,f )]𝑑 , 𝑝, 𝑞 ∈𝐻1(𝒯ℎ,f ):

el(𝒅,𝒘) = 𝜎el(𝒅)∶ 𝜀ℎ(𝒘) −
∑ (

{{𝜎el(𝒅)}}∶ �𝒘�+ �𝒅�∶ {{𝜎el(𝒘)}} − 𝜂�𝒅�∶ �𝒘�
)
, (7a)
5

∫
Ωel

𝐹∈ℱI
el∪ℱ

D
el

∫
𝐹
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el(𝒘) = ∫
Ωel

𝒇 el ⋅𝒘, (7b)

j(𝑝j,𝒘) = −∫
Ωel

𝛼j𝑝j divℎ𝒘+
∑

𝐹∈ℱI
el∪ℱ

Dj
el

∫
𝐹

𝛼j{{𝑝j𝐼}}∶ �𝒘�, (7c)

j(𝑝j, 𝑞j) = ∫
Ωel

𝜇−1j 𝐾j∇ℎ𝑝j ⋅∇ℎ𝑞j −
∑

𝐹∈ℱI
el∪ℱ

Dj
el

∫
𝐹

(
{{𝜇−1j 𝐾j∇ℎ𝑝j}} ⋅ �𝑞j�+ �𝑝j� ⋅ {{𝜇−1j 𝐾j∇ℎ𝑞j}} − 𝜁j�𝑝j� ⋅ �𝑞j�

)
, (7d)

j({𝑝k}k∈𝐽 , 𝑞j) = ∫
Ωel

∑
k∈𝐽

𝛽kj(𝑝j − 𝑝k)𝑞j + ∫
Ωel

𝛽e
j 𝑝j𝑞j, (7e)

j(𝑞j) = ∫
Ωel

𝑔j𝑞j, (7f)

f (𝒖,𝒗) = ∫
Ωf

𝜎f (𝒖)∶ 𝜀ℎ(𝒗) −
∑

𝐹∈ℱI
f ∪ℱ

D
f

∫
𝐹

(
{{𝜎f (𝒖)}}∶ �𝒗�+ �𝒖�∶ {{𝜎f (𝒗)}} − 𝛾𝒗�𝒖�∶ �𝒗�

)
, (7g)

f (𝑝,𝒗) = −∫
Ωf

𝑝divℎ 𝒗+
∑

𝐹∈ℱI
f ∪ℱ

D
f

∫
𝐹

{{𝑝𝐼}}∶ �𝒗�, (7h)

f (𝒗) = ∫
Ωf

𝒇 f ⋅ 𝒗, (7i)

(𝑝, 𝑞) = ∑
𝐹∈ℱI

f

∫
𝐹

𝛾𝑝�𝑝� ⋅ �𝑞�, (7j)

 (𝑝E,𝒘,𝒗) =
∑

𝐹∈ℱΣ
∫
𝐹

(
{{𝑝E𝐼}}∶ �𝒘,𝒗�

)
, (7k)

where ∇ℎ, 𝜀ℎ, divℎ denote the element-wise gradient, symmetric gradient, and divergence operators, respectively, and the stress 
tensors 𝜎el, 𝜎f are implicitly defined in terms of these piecewise operators. The parameters 𝜂, 𝜁j, 𝛾𝒗, 𝛾𝑝 appearing in these forms are 
defined as follows [38,40]:

𝜂 = 𝜂
ℂ
𝐾

el
{ℎ}H

, 𝜁j = 𝜁 j
𝑘
𝐾

j√
𝜇j{ℎ}H

, 𝛾𝒗 = 𝛾𝒗
𝜇

{ℎ}H

, 𝛾𝑝 = 𝛾𝑝{ℎ}H, (8)

where {ℎ}H denotes the harmonic average on 𝐾± (with {ℎ}H = ℎ𝐾 on Dirichlet faces) ℂ
𝐾

el = ‖ℂ1∕2
el |𝐾‖22, 𝑘𝐾j = ‖𝐾1∕2

j |𝐾‖22 are the 𝐿2-

norms of the symmetric second-order tensors appearing in the elasticity and Darcy equations, for each 𝐾 ∈𝒯el, and 𝜂, 𝜁j ∀j ∈ 𝐽, 𝛾𝒗, 𝛾𝑝
are penalty constants to be chosen large enough.

The form 𝐽 (⋅, ⋅, ⋅) is the piecewise discontinuous version of the interface form 𝔍(⋅, ⋅, ⋅) derived in Remark 1. Indeed, for any 
𝑝E ∈𝐻1(𝒯ℎel

), 𝒘 ∈ [𝐻1(𝒯ℎ,el]𝑑 , 𝒗 ∈ [𝐻1(𝒯ℎ,f )]𝑑 ,

𝔍(𝑞E,𝒘,𝒗) =
∑

𝐹∈ℱΣ
∫
𝐹

[
𝑝E𝐼 ∶ (𝒘⊙ 𝒏el + 𝒗⊙ 𝒏f ) − 𝑞E𝐼 ∶ (𝜕𝑡𝒅 ⊙ 𝒏el + 𝒖⊙ 𝒏f )

]
=

∑
𝐹∈ℱΣ

∫
𝐹

[
{{𝑝E𝐼}}∶ �𝒘,𝒗�− �𝜕𝑡𝒅,𝒖�∶ {{𝑞E𝐼}}

]
,

(9)

where we have used the identity 𝒂 ⋅ 𝒃 = 𝒂⊙ 𝒃 ∶ 𝐼, ∀𝒂, 𝒃 ∈ℝ𝑑 and then the definition of the average and jump operators introduced 
in Section 3.1.

Finally, the semidiscrete formulation reads as follows:(⨉ )

6

For any 𝑡 ∈ (0, 𝑇 ], find (𝒅ℎ, {𝑝j,ℎ}j∈𝐽 , 𝒖ℎ, 𝑝ℎ) ∈𝑾 DG
ℎ

× j∈𝐽 𝑄
DG
j,ℎ × 𝑽 DG

ℎ
×𝑄DG

ℎ
such that
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(𝜌el𝜕2𝑡𝑡𝒅ℎ,𝒘ℎ)Ωel
+el(𝒅ℎ,{𝑝k,ℎ}k∈𝐽 ;𝒘ℎ) −el(𝒘ℎ)

+
∑
j∈𝐽

[
(𝑐j𝜕𝑡𝑝j,ℎ, 𝑞j,ℎ)Ωel

+j({𝑝k,ℎ}k∈𝐽 , 𝜕𝑡𝒅ℎ; 𝑞j,ℎ) −j(𝑞j,ℎ)
]

+ (𝜌f𝜕𝑡𝒖ℎ,𝒗ℎ)Ωf
+f (𝒖ℎ, 𝑝ℎ;𝒗ℎ, 𝑞ℎ) −f (𝒗ℎ)

+  (𝑝E,ℎ,𝒘ℎ,𝒗ℎ) −  (𝑞E,ℎ, 𝜕𝑡𝒅ℎ,𝒖ℎ) = 0

∀𝒘ℎ ∈𝑾 DG
ℎ
,𝒗ℎ ∈ 𝑽 DG

ℎ
, 𝑞ℎ ∈𝑄DG

ℎ
, 𝑞j,ℎ ∈𝑄DG

j,ℎ .

(10)

Problem (10) is supplemented with suitable initial conditions 𝒅ℎ(0), 𝒅̇ℎ(0), {𝑝j,ℎ(0)}j∈𝐽 , 𝒖ℎ(0) that are projections of the initial data 
introduced in (1) onto the corresponding DG spaces. The bilinear forms appearing in (10) are defined as

el(𝒅,{𝑝k}k∈𝐽 ;𝒘) =el(𝒅,𝒘) +
∑
k∈𝐽

k(𝑝k ,𝒘), (11a)

j({𝑝k}k∈𝐽 , 𝜕𝑡𝒅; 𝑞j) =j(𝑝j, 𝑞j) + j({𝑝k}k∈𝐽 , 𝑞j) −j(𝑞j, 𝜕𝑡𝒅), ∀j ∈ 𝐽, (11b)

f (𝒖, 𝑝;𝒗, 𝑞) =f (𝒖,𝒗) +f (𝑝,𝒗) −f (𝑞,𝒖) + (𝑝, 𝑞). (11c)

3.3. Algebraic formulation

We introduce suitable sets of basis functions such that span{𝝋𝑖
el}

𝑁el
𝑖=0 = 𝑾 DG

ℎ
, span{𝝋𝑖

el}
𝑁f
𝑖=0 = 𝑽 DG

ℎ
, span{𝜓𝑖}𝑁𝑝

𝑖=0 = 𝑄DG
ℎ

, 

span{𝜓𝑖
j }
𝑁j
𝑖=0 = 𝑄DG

j,ℎ for j ∈ 𝐽 . Denoting by uppercase letters the d.o.f. vectors corresponding to the problem unknowns, the (for-

mal) algebraic form of (10) is the following:

Given 𝑫0, 𝑫̇0, 𝑼 0, 𝑷 j0, j ∈ 𝐽 , find 𝑫, 𝑼 , 𝑷 , 𝑷 j, j ∈ 𝐽 such that

⎡⎢⎢⎢⎢⎢⎢⎣

𝑀el𝜕
2
𝑡𝑡 +𝐴el 𝐵𝑇

A
⋯ 𝐵𝑇

E
+ 𝐽𝑇el 0 0

−𝐵A𝜕𝑡 𝑀A𝜕𝑡 +𝐴A +𝐶AA ⋯ 𝐶AE 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−(𝐵E + 𝐽el)𝜕𝑡 𝐶EA ⋯ 𝑀E𝜕𝑡 +𝐴E +𝐶EE −𝐽f 0
0 0 ⋯ 𝐽𝑇f 𝑀f𝜕𝑡 +𝐴f 𝐵𝑇

f
0 0 ⋯ 0 −𝐵f 𝑆

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝑫

𝑷 A

⋮
𝑷 E
𝑼

𝑷

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑭 el
𝑭 A

⋮
𝑭 E
𝑭 f
𝟎

⎤⎥⎥⎥⎥⎥⎥⎦
The matrices and vectors of this formulation are defined as follows (where ⋆ = el, f ):

[𝑀⋆]𝑖𝑗 = (𝜌⋆𝝋
𝑗
⋆,𝝋

𝑖
⋆)Ω⋆

, [𝑀j]𝑖𝑗 = (𝑐j𝜓
𝑗

j , 𝜙
𝑖
j )Ωel

, [𝑆]𝑖𝑗 = (𝜓𝑗,𝜙𝑖)

[𝐴⋆]𝑖𝑗 =⋆(𝝋
𝑗
⋆,𝝋

𝑖
⋆), [𝐴j]𝑖𝑗 =j(𝜓

𝑗

j , 𝜙
𝑖
j ), [𝐶j]𝑖𝑗 = j({𝜓𝑖

k}k∈𝐽 ,𝜓
𝑖
j ),

[𝐵f ]𝑖𝑗 =f (𝜓𝑖,𝝋
𝑗

f ), [𝐵j]𝑖𝑗 =j(𝜓𝑖
j , 𝜑

𝑖
el), [𝐽⋆]𝑖𝑗 =

∑
𝐹∈ℱΣ

∫
𝐹

{{𝑞𝑗
E
𝐼}}∶ 𝝋𝑖

⋆ ⊙ 𝒏⋆,

[𝐹⋆]𝑖 = ⋆(𝝋𝑖
⋆), [𝐹j]𝑖 = j(𝜓𝑖

j ).

4. A priori analysis of the semidiscrete problem

For the analysis contained in this section, we consider a generic set 𝐽 of 𝑁𝐽 ∈ ℕ0 compartments and we assume that all the 
physical parameters of the model (defined in Table 1) are piecewise constant. For 𝑟 ≥ 1, we introduce the following broken norms 
[38,40]:

‖𝒅‖2DG,D = ‖ℂ1
el2[𝜀ℎ(𝒅)]‖2𝐿2(𝒯el)

+ ‖√𝜂�𝒅�‖2
ℱI
el,ℎ∪ℱ

D
el,ℎ

∀𝒅 ∈𝑯 𝑟(𝒯ℎ), (12a)

‖𝑝‖2DG,Pj = ‖𝜇−1∕2j 𝐾
1∕2
j ∇ℎ𝑝‖2𝐿2(𝒯el)

+ ‖√𝜁j�𝑝�‖2
ℱI
el,ℎ∪ℱ

Dj
el,ℎ

∀𝑝 ∈𝐻𝑟(𝒯ℎ), (12b)

‖𝒖‖2DG,U = ‖√2𝜇 𝜀ℎ(𝒖)‖2𝐿2(𝒯f )
+ ‖√𝛾𝒗�𝒖�‖2

ℱI
f ,ℎ

∀𝒖 ∈𝑯 𝑟(𝒯ℎ), (12c)

‖𝑞‖2DG,Pf = ‖𝑞‖2
𝐿2(Ωf )

+ ‖√𝛾𝑝�𝑞�‖2ℱI
f ,ℎ∪ℱ

D
f ,ℎ

∀𝑞 ∈𝐻𝑟(𝒯ℎ). (12d)

We introduce the energy norms at time 𝑡 ∈ (0, 𝑇 ]

‖(𝒅,{𝑝j}j∈𝐽 )‖el,𝑡 = ⎡⎢‖√𝜌el𝜕𝑡𝒅(𝑡)‖2 + ‖𝒅(𝑡)‖2

7

⎢⎣ Ωel DG,D
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+
∑
j∈𝐽

⎛⎜⎜⎝‖
√
𝑐j𝑝j(𝑡)‖2Ωel

+

𝑡

∫
0

(‖𝑝j(𝑠)‖2DG,Pj + ‖√𝛽e
j 𝑝j(𝑠)‖2Ωel

)
𝑑𝑠

⎞⎟⎟⎠
⎤⎥⎥⎦
1∕2

,

‖(𝒖, 𝑝)‖f ,𝑡 = ⎡⎢⎢⎣‖
√
𝜌f𝒖(𝑡)‖2Ωf

+

𝑡

∫
0

(‖𝒖(𝑠)‖2DG,U + ‖𝑝(𝑠)‖2DG,Pf)𝑑𝑠⎤⎥⎥⎦
1∕2

,

and set

‖(𝒅,{𝑝j}j∈𝐽 ,𝒖, 𝑝)‖EN,𝑡 = [‖(𝒅,{𝑝j}j∈𝐽 )‖2el,𝑡 + ‖(𝒖, 𝑝)‖2f ,𝑡]1∕2 . (13)

For the sake of simplicity, in the inequalities appearing in the following analysis, we neglect the dependencies on the model 
parameters and the polynomial degree 𝑚, and we use the notation 𝑥 ≲ 𝑦 to indicate that ∃𝐶 > 0 ∶ 𝑥 ≤ 𝐶𝑦, where 𝐶 is independent of 
the mesh discretization parameters. Moreover, we make the following assumption on the mesh [25,26]:

Assumption 1. For each ℎ > 0, the two meshes 𝒯ℎ,el, 𝒯ℎ,f are aligned with Σ, namely there is no gap nor overlap between them 
(hanging nodes are allowed). Moreover, denoting by 𝒯ℎ the union of 𝒯ℎ,el and 𝒯ℎ,f , we consider a sequence of meshes {𝒯ℎ}ℎ>0
satisfying the regularity requirements of [38]:

• {𝒯ℎ}ℎ>0 is ℎ-uniformly polytopic-regular, namely for each 𝐾 ∈ 𝒯ℎ there exists a set {𝑆𝐹
𝐾
}𝐹⊂𝜕𝐾 of non-overlapping 𝑑-

dimensional simplices contained in 𝐾 such that

∀𝐹 ⊂ 𝜕𝐾 ∶ 𝐹 = 𝜕𝐾 ∩𝑆𝐹
𝐾

it holds that ℎ𝐾 ≲ 𝑑|𝑆𝐹
𝐾
||𝐹 |−1,

where ℎ𝐾 is the diameter of 𝐾 , and the cardinality of {𝑆𝐹
𝐾
}𝐹⊂𝜕𝐾 does not depend on ℎ > 0.

• There exists a shape-regular simplicial covering 𝒯̂ℎ of 𝒯ℎ such that, for each 𝐾 ∈𝒯ℎ, 𝐾 ∈ 𝒯̂ℎ with 𝐾 ⊆𝐾 ,

ℎ𝐾 ≲ ℎ
𝐾
, max
𝐾∈𝒯ℎ

card{𝐾 ′ ∈𝒯ℎ ∶ ∃𝐾 ∈ 𝒯̂ℎ such that 𝐾 ⊂𝐾 and 𝐾 ′ ∩𝐾 ≠ ∅} ≲ 1.

• The mesh size satisfies a local bounded variation property:

∀𝐾1,𝐾2 ∈𝒯ℎ ∶ |𝜕𝐾1 ∩ 𝜕𝐾2|𝑑−1 > 0 ℎ𝐾1
≲ ℎ𝐾2

≲ ℎ𝐾1
,

with | ⋅ |𝑑−1 denotes the (𝑑 − 1)-dimensional measure and all the hidden constants independent of ℎ and the number of faces of 
𝐾1 and 𝐾2.

Under these assumptions, we can prove the following stability result:

Theorem 1 (Stability estimate). Let Assumption 1 hold true and let us also assume that the penalty constants defined in (8) are chosen 
sufficiently large. Then, the semidiscrete solution (𝒅ℎ, {𝑝j,ℎ}j∈𝐽 , 𝒖ℎ, 𝑝ℎ) of (10) satisfies the following inequality for each 𝑡 ∈ (0, 𝑇 ]:

‖(𝒅ℎ,{𝑝j,ℎ}j∈𝐽 ,𝒖ℎ, 𝑝ℎ)‖EN,𝑡 ≲‖(𝒅ℎ,{𝑝j,ℎ}j∈𝐽 ,𝒖ℎ,0)‖EN,0
+

𝑡

∫
0

(
1√
𝜌el

‖𝒇 el‖Ωel
+
∑
j∈𝐽

1√
𝑐j
‖𝑔j‖Ωel

+ 1√
𝜌f

‖𝒇 f‖Ωf

)
𝑑𝑠,

(14)

where, according to the initial conditions of (1),

‖(𝒅ℎ,{𝑝j,ℎ}j∈𝐽 ,𝒖ℎ,0)‖EN,0 = [‖√𝜌el𝒅̇
0
ℎ‖2Ωel

+ ‖𝒅0
ℎ
‖2DG,D +

∑
j∈𝐽

‖√𝑐j𝑝
0
j,ℎ‖2Ωel

+ ‖√𝜌f𝒖
0
ℎ
‖2Ωf

]1∕2

.

Proof. Let us fix a time 𝑡 ∈ (0, 𝑇 ] and consider the following test functions in (6): 𝒘 = 𝜕𝑡𝒅(𝑡), 𝒗 = 𝒖(𝑡), 𝑞 = 𝑝(𝑡), 𝑞j = 𝑝j(𝑡) ∀j ∈ 𝐽 . With 
this choice of test functions, the terms  cancel out, as well as the  forms in the  terms.1 Therefore, (6) becomes

1 In the next steps, although the f terms cancel out due to the choice of test functions, we keep writing the complete form f to facilitate the application of a 
8

generalized inf-sup condition (see Appendix A, Theorem 5).
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(𝜌el𝜕2𝑡𝑡𝒅(𝑡), 𝜕𝑡𝒅(𝑡))Ωel
+el(𝒅(𝑡), 𝜕𝑡𝒅(𝑡))

+
∑
j∈𝐽

[
(𝑐j𝜕𝑡𝑝j(𝑡), 𝑝j(𝑡))Ωel

+j(𝑝j(𝑡), 𝑝j(𝑡)) + j({𝑝k(𝑡)}k∈𝐽 , 𝑝j(𝑡))
]

+ (𝜌f𝜕𝑡𝒖(𝑡),𝒖(𝑡))Ωf
+f (𝒖(𝑡), 𝑝(𝑡);𝒖(𝑡), 𝑝(𝑡))

= el(𝜕𝑡𝒅(𝑡)) +
∑
j∈𝐽

j(𝑝j(𝑡)) +f (𝒖(𝑡)).

(15)

Proceeding as in [38], we integrate (15) w.r.t. time and we can employ integration by parts in time in the following terms to obtain

𝑡

∫
0

(𝜌el𝜕2𝑡𝑡𝒅(𝑠), 𝜕𝑡𝒅(𝑠))Ωel
𝑑𝑠 = 1

2
‖√𝜌el𝜕𝑡𝒅(𝑡)‖2Ωel

− 1
2
‖√𝜌el𝒅̇

0‖2Ωel
,

𝑡

∫
0

el(𝒅(𝑠), 𝜕𝑡𝒅(𝑠))𝑑𝑠 =
1
2
el(𝒅(𝑡),𝒅(𝑡)) −

1
2
el(𝒅0,𝒅0)

𝑡

∫
0

(𝑐j𝜕𝑡𝑝j(𝑠), 𝑝j(𝑠))Ωel
𝑑𝑠 = 1

2
‖√𝑐j𝑝j(𝑡)‖2Ωel

− 1
2
‖√𝑐j𝑝

0
j ‖2Ωel

, ∀j ∈ 𝐽,

𝑡

∫
0

(𝜌f𝜕𝑡𝒖(𝑠),𝒖(𝑠))Ωf
𝑑𝑠 = 1

2
‖√𝜌f𝒖(𝑡)‖2Ωf

− 1
2
‖√𝜌f𝒖

0‖2Ωf
.

Using these identities and the definition of the bulk and broken norms introduced above, we can rewrite the left-hand side of (15)

(integrated over time) as follows, and use Cauchy-Schwarz’s and Young’s inequalities on the right-hand side:

‖√𝜌el𝜕𝑡𝒅(𝑡)‖2Ωel
‖√𝜌el𝒅̇

0‖2Ωel
+el(𝒅(𝑡),𝒅(𝑡)) −el(𝒅0,𝒅0)

+
∑
j∈𝐽

⎡⎢⎢⎣‖
√
𝑐j𝑝j(𝑡)‖2Ωel

− ‖√𝑐j𝑝
0
j ‖2Ωel

+ 2

𝑡

∫
0

(j(𝑝j(𝑠), 𝑝j(𝑠)) + j({𝑝k(𝑠)}k∈𝐽 , 𝑝j(𝑠)))𝑑𝑠⎤⎥⎥⎦
+ ‖√𝜌f𝒖(𝑡)‖2Ωf

− ‖√𝜌f𝒖
0‖2Ωf

+ 2

𝑡

∫
0

f (𝒖(𝑠), 𝑝(𝑠);𝒖(𝑠), 𝑝(𝑠))𝑑𝑠

≤
𝑡

∫
0

⎛⎜⎜⎝
‖‖‖‖‖‖ 1√

𝜌el
𝒇 el(𝑠)

‖‖‖‖‖‖
2

Ωel

+ ‖√𝜌el𝜕𝑡𝒅(𝑠)‖2Ωel
+
∑
j∈𝐽

‖‖‖‖‖‖ 1√
𝑐j
𝑔j(𝑠)

‖‖‖‖‖‖
2

Ωel

+
∑
j∈𝐽

‖√𝑐j𝑝j(𝑠)‖2Ωel
+
‖‖‖‖‖‖ 1√

𝜌f
𝒇 f (𝑠)

‖‖‖‖‖‖
2

Ωf

+ ‖√𝜌f𝒖(𝑠)‖2Ωf

⎞⎟⎟⎠𝑑𝑠.

(16)

We now consider continuity and coercivity results for the bilinear forms appearing in (16) with respect to the broken norms (12). 
These results, proven in [38,40], are reported in Appendix A (Theorem 5) and they include an inf-sup condition for the form f , 
with a constant 𝛽f ,ℎ independent of the mesh elements size. According to [40], if 𝛾𝒗 is large enough, there exists 𝛼 > 0 such that 
𝛼 =(𝛽−2f ,ℎ) and

f (𝒖(𝑠), 𝑝(𝑠);𝒖(𝑠), 𝑝(𝑠)) ≥ 𝛼(‖𝒖(𝑠)‖2DG,U + ‖𝑝(𝑠)‖2DG,Pf ).
Analogously, the coercivity results of the forms el, j, j and the continuity of el yield [38]

el(𝒅(𝑡),𝒅(𝑡)) −el(𝒅0,𝒅0) + 2
∑
j∈𝐽

𝑡

∫
0

(j(𝑝j(𝑠), 𝑝j(𝑠)) + j({𝑝k(𝑠)}k∈𝐽 , 𝑝j(𝑠)))𝑑𝑠
≳ ‖𝒅(𝑡)‖2DG,D − ‖𝒅0‖2DG,D +

∑
j∈𝐽

𝑡

∫
0

(‖𝑝j(𝑠)‖2DG,Pj + ‖√𝛽e
j 𝑝j(𝑠)‖2Ωel

)
𝑑𝑠.
9

We can use these results on the left-hand side of (16) to obtain
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‖√𝜌el𝜕𝑡𝒅(𝑡)‖2Ωel
+ ‖𝒅(𝑡)‖2DG,D +

∑
j∈𝐽

⎡⎢⎢⎣‖
√
𝑐j𝑝j(𝑡)‖2Ωel

+

𝑡

∫
0

(‖𝑝j(𝑠)‖2DG,Pj + ‖√𝛽e
j 𝑝j(𝑠)‖2Ωel

)
𝑑𝑠

⎤⎥⎥⎦
− ‖√𝜌el𝒅̇

0‖2Ωel
− ‖𝒅0‖2DG,D −

∑
j∈𝐽

‖√𝑐j𝑝
0
j ‖2Ωel

+ ‖(𝒖(𝑡), 𝑝(𝑡))‖2f ,𝑡 − ‖√𝜌f𝒖
0‖2Ωf

≲

𝑡

∫
0

⎛⎜⎜⎝
‖‖‖‖‖‖ 1√

𝜌el
𝒇 el(𝑠)

‖‖‖‖‖‖
2

Ωel

+
∑
j∈𝐽

‖‖‖‖‖‖ 1√
𝑐j
𝑔j(𝑠)

‖‖‖‖‖‖
2

Ωel

+
‖‖‖‖‖‖ 1√

𝜌f
𝒇 f (𝑠)

‖‖‖‖‖‖
2

Ωf

⎞⎟⎟⎠𝑑𝑠.
The definitions of ‖ ⋅ ‖EN,𝑡 and ‖ ⋅ ‖EN,0 and the fact that 𝜌el, 𝑐j, 𝜌f are constant conclude the proof. □

We now proceed to derive an a-priori error estimate for the error introduced by the space discretization of the problem. For any 
𝑡 ∈ (0, 𝑇 ], let (𝒅, {𝑝j}j∈𝐽 , 𝒖, 𝑝) denote the weak solution of problem (6) and let (𝒅ℎ, {𝑝j,ℎ}j∈𝐽 , 𝒖ℎ, 𝑝ℎ) denote the semidiscrete solution 
of problem (10), obtained with sufficiently large stability parameters as defined in (8).

Using the inverse trace inequality [25,48]

‖𝜙‖2
𝜕𝐾

≲ ℎ−1
𝐾

‖𝜙‖2
𝐾

∀𝜙 ∈ ℙ𝑚(𝐾),𝐾 ∈𝒯ℎ, (17)

we can state the following continuity result for the interface forms, whose proof is provided in Appendix B:

Lemma 2. Under Assumption 1, the following inequalities hold:

| (𝑞,𝒘ℎ,𝒗ℎ)| ≲ ‖𝜂1∕2𝑞‖ℱΣ
ℎ
‖𝒘ℎ‖DG,D + ‖𝛾−1∕2𝑝 𝑞‖ℱΣ

ℎ
‖𝒗ℎ‖DG,U

∀𝑞 ∈𝐻2(𝒯ℎ,el),𝒘ℎ ∈𝑾 DG
ℎ
,𝒗ℎ ∈ 𝑽 DG

ℎ
,| (𝑞ℎ,𝒘,𝒗)| ≲ ‖𝑞ℎ‖DG,Pf ‖𝜂1∕2𝒘‖ℱΣ

ℎ
+ ‖𝑞ℎ‖DG,Pf ‖𝛾1∕2𝒗 𝒗‖ℱΣ

ℎ

∀𝑞ℎ ∈𝑄DG
E,ℎ,𝒘 ∈ [𝐻2(𝒯ℎ,f )]𝑑 ,𝒗 ∈ [𝐻2(𝒯ℎ,f )]𝑑 .

We introduce the following additional norms for non-discrete functions:

⦀𝒘⦀2
D = ‖𝒘‖2DG,D + ‖𝜂−1∕2{{𝜎el(𝒘)}}‖2

ℱI
el,ℎ∪ℱ

D
el,ℎ

∀𝒘 ∈ [𝐻2(𝒯ℎ,el)]𝑑 ,

⦀𝑞j⦀2
Pj
= ‖𝑞j‖2DG,Pj + ‖𝜁−1∕2{{ 1

𝜇j
𝐾j∇ℎ𝑞j}}‖2

ℱI
el,ℎ∪ℱ

Dj
el,ℎ

∀𝑞j ∈𝐻2(𝒯ℎ,el), ∀j ∈ 𝐽,

⦀𝒗⦀2
U = ‖𝒗‖2DG,U + ‖𝛾−1∕2𝒗 {{𝜎f (𝒗)}}‖2ℱI

f ,ℎ∪ℱ
D
f ,ℎ

∀𝒗 ∈ [𝐻2(𝒯ℎ,f )]𝑑 ,

⦀𝑞⦀2
Pf

= ‖𝑞‖2DG,Pf + ‖𝛾1∕2𝑝 {{𝑞}}‖2
ℱI
f ,ℎ

∀𝑞 ∈𝐻1(𝒯ℎ,f ),

⦀(𝒘,{𝑞j}j∈𝐽 ,𝒗, 𝑝)⦀2 = ⦀𝒘⦀2
D +

∑
j∈𝐽

⦀𝑞j⦀2
Pj
+ ⦀𝒗⦀2

U + ⦀𝑞⦀2
Pf
.

Denoting by ℰ𝐾 ∶𝐻𝑠(Ω) →𝐻𝑠(ℝ𝑑 ) the Stein extension operator for a Lipschitz domain Ω defined in [49], the following inter-

polation result can be stated (cf. [38–40,50]):

Lemma 3. Under Assumption 1, the following estimates hold:

∀(𝒘,{𝑞j}j∈𝐽 ,𝒗, 𝑞) ∈ [𝐻𝑚+1(𝒯ℎ,el)]𝑑+𝑁𝐽 × [𝐻𝑚+1(𝒯ℎ,f )]𝑑+1

∃(𝒘𝐼 ,{𝑞j𝐼}j∈𝐽 ,𝒗𝐼 , 𝑞𝐼 ) ∈𝑾 DG
ℎ

×
⨉
j∈𝐽

𝑄DG
j,ℎ × 𝑽 DG

ℎ
×𝑄DG

ℎ
such that

𝑖) ⦀(𝒘−𝒘𝐼 ,{𝑞j − 𝑞j𝐼}j∈𝐽 ,𝒗− 𝒗𝐼 , 𝑞 − 𝑞𝐼 )⦀2

≲
∑

𝐾∈𝒯ℎ,el

ℎ2𝑚
𝐾

(‖𝐾𝒘‖2
[𝐻𝑚+1(𝐾)]𝑑

+
∑
j∈𝐽

‖j𝑞j‖2𝐻𝑚+1(𝐾)
+ ‖𝐾𝒅‖2[𝐻𝑚+1(𝐾)]𝑑

+ ‖𝐾𝑝‖2𝐻𝑚+1(𝐾)

)
,

𝑖𝑖) ‖𝒘‖2
ℱΣ +

∑
j∈𝐽

‖𝑞j‖2ℱΣ + ‖𝒗‖2
ℱΣ + ‖𝑞‖2

ℱΣ

≲
∑

ℎ2𝑚+1
𝐾

(‖𝐾𝒘‖2
[𝐻𝑚+1(𝐾)]𝑑

+
∑‖j𝑞j‖2𝐻𝑚+1(𝐾)

+ ‖𝐾𝒅‖2[𝐻𝑚+1(𝐾)]𝑑
+ ‖𝐾𝑝‖2𝐻𝑚+1(𝐾)

)
,

10

𝐾∈𝒯ℎ,el j∈𝐽
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where 𝐾 ⊇𝐾 , for each 𝐾 ∈𝒯ℎ, are shape-regular simplexes as in Assumption 1.

Combining the results above, we can prove the following optimal convergence result, whose proof is provided in Appendix C.

Theorem 4 (A priori error estimate). Under the same assumptions of Theorem 1, if the solution of problem (6) is sufficiently regular, and 
the initial conditions 𝒅0, 𝒅̇0

, 𝒖0, 𝑝0j , j ∈ 𝐽 are sufficiently regular, the following estimate holds for each 𝑡 ∈ (0, 𝑇 ] and for each 𝑚 ≥ 1:

‖(𝒆𝒅 ,{𝑒𝑃j }j∈𝐽 ,𝒆𝒖, 𝑒𝑃f )‖2EN,𝑡
≲

∑
𝐾∈𝒯ℎ,el

ℎ2𝑚
𝐾

{‖𝐾𝒅(𝑡)‖2[𝐻𝑚+1(𝐾)]𝑑
+

∑
k∈𝐽

‖𝐾𝑝k(𝑡)‖2𝐻𝑚+1(𝐾)

+

𝑡

∫
0

[‖𝐾𝜕𝑡𝒅(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑
+ ‖𝐾𝜕2𝑡𝑡𝒅(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑

]
𝑑𝑠

+

𝑡

∫
0

∑
k∈𝐽

(‖𝐾𝑝k(𝑠)‖2𝐻𝑚+1(𝐾)
+ ‖𝐾𝜕𝑡𝑝k(𝑠)‖2𝐻𝑚+1(𝐾)

)
𝑑𝑠

⎫⎪⎬⎪⎭
+

∑
𝐾∈𝒯ℎ,f

ℎ2𝑚
𝐾

𝑡

∫
0

[‖𝐾𝒖(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑
+ ‖𝐾𝜕𝑡𝒖(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑

+ ‖𝐾𝑝(𝑠)‖2𝐻𝑚+1(𝐾)

]
𝑑𝑠,

(18)

where 𝒆𝒅 = 𝒅 − 𝒅ℎ, 𝑒
𝑃j = 𝑝j − 𝑝j,ℎ ∀j ∈ 𝐽, 𝒆𝒖 = 𝒖 − 𝒖ℎ, 𝑒𝑃f = 𝑝 − 𝑝ℎ, and 𝐾 ⊇ 𝐾 , for each 𝐾 ∈ 𝒯ℎ, are shape-regular simplexes as in 

Assumption 1.

5. Fully discrete problem

We introduce a uniform partition {𝑡𝑛}𝑁𝑛=0 of the interval (0, 𝑇 ], with constant timestep Δ𝑡 = 𝑡𝑛+1−𝑡𝑛, for all 𝑛 = 0, … 𝑁−1. Starting 
from the algebraic form of the semi-discrete problem (10), introduced in Section 3.3, we discretize the elastic momentum equation 
(first row) with Newmark’s 𝛽-method, whereas we employ the 𝜃-method to discretize all the compartment pressure equations and 
the fluid problem. For Newmark’s discretization, we introduce two auxiliary vector variables 𝒁𝑛, 𝑨𝑛 representing the expansion 
coefficients of the approximate elastic velocity and acceleration at time 𝑡𝑛 . The resulting algebraic problem has the form

𝐴1𝑿
𝑛+1 =𝐴2𝑿

𝑛 + 𝑭 𝑛+1, 𝑛 = 1,… ,𝑁, (19)

where

𝑿𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑫𝑛

𝒁𝑛

𝑨𝑛

𝑷 𝑛
A

⋮
𝑷 𝑛

E
𝑼 𝑛

𝑷 𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑭 𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑭 𝑛
el
𝟎
𝟎

𝜃𝑭 𝑛+1
A

+ (1 − 𝜃)𝑭 𝑛
A

⋮
𝜃𝑭 𝑛+1

E + (1 − 𝜃)𝑭 𝑛
E

𝜃𝑭 𝑛+1
f + (1 − 𝜃)𝑭 𝑛

f
𝟎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

and the expression of the matrices 𝐴1, 𝐴2 are reported in Appendix D.

6. Verification tests – convergence

In this section, we verify the theoretical error bounds of Theorem 4. In all tests, we consider only one pressure compartment, that 
is j ∈ 𝐽 = {𝐸}. The constant coefficients of the penalty parameters defined in (8) are set as 𝜂 = 𝜁E = 𝛾𝒗 = 𝛾𝑝 = 10. Regarding time 
discretization, all the results were obtained with 𝛽 = 0.25 and 𝛾 = 0.5 for the Newmark scheme and 𝜃 = 0.5 for the 𝜃-method, both 
for Stokes’ problem and the pressure compartment of the poro-elastic system.

The tests have been implemented in the 2D version of lymph (https://lymph .bitbucket .io/) [51], an open-source MATLAB library 
for the solution of multiphysics problems with the PolyDG method, developed at MOX, Department of Mathematics, Politecnico di 
11

Milano.

https://lymph.bitbucket.io/
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Fig. 3. Test case 1. Left: computed relative errors in the energy norm (13) versus ℎ, for different choices of the polynomial degree 𝑚 = 1, 2, 3, 4, 5. Right: computed 
relative errors in the energy norm (13) versus 𝑚, with ℎ = 0.273 (corresponding to 𝑁 = 80 polygons).

6.1. Test case 1: steady solution

In this test, we consider a manufactured steady solution of problem (1)-(2)-(3), so that we can verify the convergence of the 
semidiscrete formulation without spoiling the results with time discretization error. In particular, we introduce the following exact 
solution on the 2D domain Ω =Ωel ∪ Ωf = (−1, 0) × (0, 1) ∪ (0, 1) × (0, 1), with interface Σ = {0} × (0, 1) depicted in Fig. 1:

𝒅steady = 𝜋𝜇
𝐾E

𝜇2E
(1 − 𝛼E)(cos(𝜋𝑥) cos(𝜋𝑦) − sin(𝜋𝑥) sin(𝜋𝑦))

[
−1
1

]
,

𝑝
steady

E = −𝜋𝑥 cos(𝜋𝑦) − 2𝜋2𝜇
𝐾E
𝜇E

sin(𝜋𝑦),

𝒖steady = 𝜋
𝐾E
𝜇E

(cos(𝜋𝑥) cos(𝜋𝑦) − sin(𝜋𝑥) sin(𝜋𝑦))
[
1
−1

]
,

𝑝steady = −𝑥 cos(𝜋𝑦) − 4𝜋2𝜇
𝐾E
𝜇E

sin(𝜋𝑦).

(21)

The source terms of (1) corresponding to the exact solution above are

𝒇 el =

[
−2𝜋3𝜇𝐾E

𝜇E
(1 − 𝛼E)(cos(𝜋𝑥) cos(𝜋𝑦) − sin(𝜋𝑥) sin(𝜋𝑦)) − 𝜋𝛼E cos(𝜋𝑦)

2𝜋3𝜇 𝐾E
𝜇E

[(1 − 𝛼E)(cos(𝜋𝑥) cos(𝜋𝑦) − sin(𝜋𝑥) sin(𝜋𝑦)) − 𝛼E cos(𝜋𝑦)] + 𝜋2𝛼E𝑥 sin(𝜋𝑦)

]
,

𝑔E =
(
𝜋2

𝐾E
𝜇E

+ 𝛽e
E

)
𝑝E,

𝒇 f =

[
2𝜋3𝜇𝐾E

𝜇E
(cos(𝜋𝑥) cos(𝜋𝑦) − sin(𝜋𝑥) sin(𝜋𝑦)) − cos(𝜋𝑦)

−2𝜋3𝜇𝐾E
𝜇E

(cos(𝜋𝑥) cos(𝜋𝑦) − sin(𝜋𝑥) sin(𝜋𝑦) + 2cos(𝜋𝑦)) + 𝑝𝑖𝑥 sin(𝜋𝑦)

]
,

and the Neumann stress on Γout is:

−𝑝out
𝒏f =

(
cos(𝜋𝑦) + 6𝜋2𝜇

𝐾E
𝜇E

sin(𝜋𝑦)
)
𝒏f .

With these data, we performed spatial convergence tests setting 𝛼E = 0.5 and all the physical parameters 𝜌el, 𝜇el, 𝜆el, 𝑐E, 𝜇E, 𝐾E, 𝛽e
E,

𝜌f , 𝜇f equal to 1. In Fig. 3 we report the computed relative error. From the results, we can clearly observe that the error decays 
w.r.t. ℎ with a rate of order 𝑚, as predicted by our theoretical estimate (18). Moreover, we can observe spectral convergence of the 
12

error w.r.t. the polynomial approximation degree 𝑚.
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Fig. 4. Test case 2. Left: computed relative errors in the energy norm (13) versus ℎ, with different polynomial degrees 𝑚 (same for all variables). Right: computed 
relative errors in the energy norm (13) versus 𝑚, with ℎ = 0.273 corresponding to 𝑁 = 80 polygons.

6.2. Test case 2: unsteady solution

We consider the rectangular domain Ω = Ωel ∪ Ωf = (−1, 0) × (0, 1) ∪ (0, 1) × (0, 1) of Section 6.1 and we introduce the following 
functions of time:

𝑔el(𝑡) = cos(𝜂𝑡) − sin(𝜂𝑡), where 𝜂 =
𝜇el

𝜇f (1 − 𝛼E)
,

𝑔𝒖(𝑡) = 𝑔el(𝑡) −
𝑔̇el(𝑡)
𝜂

, 𝑔𝑝(𝑡) =
𝑔E(𝑡) + 𝑔𝒖(𝑡)

2
.

A time-dependent exact solution of problem (1)-(2)-(3) can be manufactured by combining these functions with the steady solution 
introduced in Section 6.1:

𝒅(𝑥, 𝑦, 𝑡) = 𝑔el(𝑡)𝒅steady(𝑥, 𝑦), 𝑝E(𝑥, 𝑦, 𝑡) = 𝑔el(𝑡)𝑝
steady

E (𝑥, 𝑦),

𝒖(𝑥, 𝑦, 𝑡) = 𝑔𝒖(𝑡)𝒖steady(𝑥, 𝑦), 𝑝(𝑥, 𝑦, 𝑡) = 𝑔𝑝(𝑡)𝑝steady(𝑥, 𝑦),
(22)

with suitable definitions of the source terms and boundary data. Again, we performed convergence tests setting 𝛼E = 0.5 and all other 
physical parameters to 1. We choose a time step Δ𝑡 = 1 ⋅ 10−3 s and a final time 𝑇 = 5 Δ𝑡. We report the computed relative errors 
in Fig. 4 (log-log scale). As predicted by Theorem 4, we observe that the error in the energy norm decays at a rate proportional to 
ℎ𝑚, for any 𝑚 ≥ 1. Moreover, even though not covered by our theoretical analysis, we observe exponential convergence of the error 
for fixed ℎ and increasing 𝑚. Finally, we observe that the value chosen for Δ𝑡 is small enough to prevent error saturation for the 
sequence of meshes considered in this test.

7. Numerical results on a 2D slice of the brain

In this section, we demonstrate the capability of the proposed method for the solution of a realistic problem on a 2D slice 
of the brain and its ventricles, shown in Fig. 5. The geometry of the problem is based on structural Magnetic Resonance Images 
(MRI) available in the OASIS-3 database (http://oasis -brains .org) [52]. By means of the Freesurfer toolkit (http://surfer .nmr .mgh .
harvard .edu/) [53], a three-dimensional brain geometry was segmented, and then sliced along the sagittal plane by VMTK (http://

www .vmtk .org/) [54]. The resulting triangular 2D meshes of the cerebral tissue and of the brain ventricles surrounded by it are 
composed of 25847 and 3286 elements, respectively (see Fig. 5). Yet, the flexibility of the PolyDG method allows to employ meshes 
with elements of generic shape: by agglomeration, we can thus considerably reduce the number of mesh elements while retaining 
the same geometrical detail of the original triangular grid. We agglomerate the grid by means of ParMETIS (https://github .com /
KarypisLab /ParMETIS) [55], obtaining the polygonal mesh shown in Fig. 5, consisting of 910 elements in 𝒯el and 101 in 𝒯f . This 
agglomeration is performed separately for the two physical domains, to preserve geometrical accuracy at the interface Σ.

Aiming at reproducing conditions in the physiological regime, we set the data and parameters of problem (1) as follows. We split 
the Dirichlet boundary Γw into Γw,el representing the pia mater membrane surrounding the brain tissue and the boundary Γw,f of 
the corpus callosum (the whole in the center of Fig. 5). In the poroelastic problem, we consider only the compartment related to the 
13

extracellular CSF, namely 𝐽 = {E}, and we assume no flow (∇𝑝E ⋅ 𝒏el = 0) through the pia mater Γw,el. Notice that, for the purpose 

http://oasis-brains.org
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://www.vmtk.org/
http://www.vmtk.org/
https://github.com/KarypisLab/ParMETIS
https://github.com/KarypisLab/ParMETIS
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Fig. 5. Triangular mesh of the 2D slice reconstructed from MRI (top left; zoom on top right to see the triangular elements), polygonal computational mesh obtained 
by agglomeration (bottom left), and topographic anatomy of the fluid domain Ωf (bottom right).

of this study, we neglect the subarachnoid space around the brain and the CSF it contains. The source of extracellular CSF is given 
by 𝑔E = 2 ⋅ 10−3 𝜋 sin(2𝜋𝑡)s−1 , representing the variations in the interstitial CSF due to blood pulsation [38,42], with a period of 1 s
representing a heartbeat. No additional external forces act on the poroelastic tissue or the ventricle flow, that is 𝒇 el = 𝒇 f = 𝟎. No slip 
conditions 𝒖 = 𝟎 are enforced on Γw,f , while a no-stress condition 𝑝out = 0 is imposed on the obex Γout of the fourth ventricle, where 
the CSF would flow into the central canal of the spinal cord. Zero initial conditions are imposed on all variables and the values of the 
remaining physical parameters of the problem are reported in Table 1, with the slight modifications 𝛼E = 0.49, 𝛽e

E = 0m2 ⋅N−1 ⋅ s−1 : 
these values are in the physiological range of the brain function [41,42]. For the PolyDG method we employ a polynomial degree 
𝑚 = 2 for all variables and the same penalty parameters 𝜂 = 𝜁E = 𝛾𝒗 = 𝛾𝑝 = 10 of Section 6, while for the time advancement based on 
Newmark’s (𝛽 = 0.25, 𝛾 = 0.5) and Crank-Nicolson’s (𝜃 = 0.5) methods we use a time step Δ𝑡 = 1 ⋅ 10−2 s.

To ensure that our results are representative of a periodic regime of the system and independent of the initial conditions, we 
simulate 30 heartbeats of period 1 s and we assess periodicity in terms of the outlet flowrate 𝑄 and the space-averaged pressure 𝑃
over the poroelastic domain. Taking both the maxima 𝑄𝑖, 𝑃 𝑖 and minima 𝑄𝑖, 𝑃𝑖 over each period 𝑖 = 1, 2, … , 30, we observe that 
the difference between subsequent periods is less than 5% for all these quantities, for 𝑖 ≥ 20. Therefore, we deem periodicity to be 
reached. In the following, we discuss the results of the twentieth period.

It is worth pointing out that, despite the large ratio 𝜆∕𝜇el between the Lamé coefficients (yielding a Poisson ratio 𝜈 = 0.479) no 
locking phenomena were observed in the solution, in the settings described above.

Selected snapshots of the computed solutions are reported in Figs. 6 and 7. Due to the choice of a zero outlet pressure 𝑝out
, 

pressures 𝑝E, 𝑝 should be interpreted as pressure differences (w.r.t. the fourth ventricle outflow) rather than absolute pressure values. 
We notice that the amplitude of the brain displacement 𝒅 is always below 0.25mm, thus justifying the choice of a linear elasticity 
modeling of the tissue, at least in the current settings. Due to such small displacements, the interstitial pressure 𝑝E at the interface 
14

and the ventricle CSF pressure 𝑝 are substantially equal through the whole simulation timespan, in accordance with the interface 
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Fig. 6. Brain simulation of Section 7 (periodic regime). Discrete tissue displacement 𝒅ℎ and pressures 𝑝E,ℎ, 𝑝ℎ in the whole domain Ωel ∪ Ωf at different times during 
a heartbeat. Same scale for 𝑝E,ℎ, 𝑝ℎ .

Fig. 7. Brain simulation of Section 7 (periodic regime). Velocity 𝒖ℎ and pressure 𝑝ℎ in the brain ventricles Ωf at different times during a heartbeat. The cerebral 
aqueduct is indicated by the box.

conditions (3). The ventricle pressure 𝑝 undergoes very small variations, which are better observable in Fig. 7. We can see that the 
CSF circulates in the third ventricle around the corpus callosum.

All the observations above are in general agreement with measurements and computational results in the literature. In particular, 
as shown in Table 2, the peak values of CSF velocity in the cerebral aqueduct and tissue displacement are in agreement with those 
reported in [42,56,57]. Some discrepancies with the literature can be found in the distribution of pressures 𝑝 and 𝑝E, which are 
underestimated. These discrepancies may be due to the fact that the computational domain of the simulation presented here is a 2D 
slice of the brain, and does not include the lateral ventricles: simulations in three dimensions, capturing the complete geometry of 
15

the brain, are envisaged to address this issue.
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Table 2

Comparison between the values obtained in our simulation with those reported in the 
literature. CA: cerebral aqueduct (see Fig. 7).

quantity computed value literature values references

peak |𝒅| [mm] 0.25 0.187 ± 0.050 [42,57]

peak |𝒖| in CA [mm ⋅ s−1] 17.6 16.7 − 37.5 [56]

8. Conclusions

We introduced a discontinuous Galerkin polytopal method for the discretization of a multiphysics fluid-mechanics model of the 
brain, encompassing a Multi-compartment Poro-Elastic (MPE) modeling of the tissue, perfused by blood and CSF, and Stokes’ flow 
of the CSF in the brain cavities. Our numerical method is particularly suitable for capturing the high geometrical complexity of the 
brain, thanks to the possibility of supporting high-order approximations and agglomerated grids. We proved stability and optimal 
error bounds for the semidiscrete formulation under standard assumptions in the PolyDG framework. Specific attention was paid to 
the modeling and numerical treatment of the interface conditions between the MPE and fluid domain. We implemented the method 
in our PolyDG library lymph [51].

We performed verification tests, validating the optimal order of convergence of our method with respect to the mesh element 
size and spectral convergence with respect to the polynomial degree. Then, we showed the capability of our computational model to 
represent the physiological clearance function of the CSF in physiological settings, on a two-dimensional sagittal slice of the brain 
and of its ventricles.

Several directions for further development of the present work should be addressed. First, in terms of modeling, nonlinear 
hyperelastic rheology could be considered to account for the extremely soft nature of the brain tissue [58–60]. This would require 
more detailed fluid-structure interaction conditions on the tissue-fluid interface, which have not been fully studied in the brain 
ventricles, but have been widely investigated in other biological systems such as the heart and blood vessels [61–65]. Second, 
to thoroughly analyze the effect of the complex brain geometry on waste clearance, the model could be applied to full three-

dimensional geometries of different subjects. To this aim, suitable geometry reconstruction techniques based on MRI data should be 
employed, such as those developed in [66–72]. Third, to better represent the effect of blood pulsation on CSF flow (here modeled 
by a homogeneous CSF generation term), the blood compartments of the MPE model should be coupled to models of the main brain 
arteries [73,74]. Finally, the coupling of the model proposed here with a suitable description of the generation, aggregation, and 
transport of misfolded proteins such as amyloid-𝛽 and tau, would allow the investigation of their clearance in different physiological 
and pathological conditions [75,76]. This would entail the development of numerical methods able to account for very different time 
scales, since the model presented here is defined on the scale of seconds (characteristic of blood pulsation) while prion aggregation 
and neurodegeneration occur over a timespan of decades.
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Appendix A. Continuity and coercivity in the discrete spaces

We collect the continuity and coercivity results of [38,40] in the following Lemma, which is instrumental to the proofs of stability 
(Theorem 1) and convergence (Theorem 4) of our numerical method (10).

Lemma 5. Under Assumption 1, the forms of (7) are continuous over the discrete spaces:

|el(𝒅,𝒘)| ≲ ‖𝒅‖DG,D‖𝒘‖DG,D ∀𝒅,𝒘 ∈𝑾 DG
ℎ
,|j(𝑝j, 𝑞j)| ≲ ‖𝑝j‖DG,Pj‖𝑞j‖DG,Pj ∀𝑝j, 𝑞j ∈𝑄DG

j,ℎ , j ∈ 𝐽,||||||
∑
j∈𝐽

j({𝑝k}k∈𝐽 , 𝑞j)
|||||| ≲

∑
j,k∈𝐽

‖𝑝k‖DG,Pk‖𝑞j‖DG,Pj ∀𝑝k ,∈𝑄DG
k,ℎ , 𝑞j ∈𝑄DG

j,ℎ , j,k ∈ 𝐽,

|j(𝑞j,𝒘)| ≲ ‖𝑞j‖DG,Pj‖𝒘‖DG,D ∀𝒘 ∈𝑾 DG
ℎ
, 𝑞j ∈𝑄DG

j,ℎ , j ∈ 𝐽,|f (𝒖,𝒗)| ≲ ‖𝒖‖DG,U‖𝒗‖DG,U ∀𝒖,𝒗 ∈ 𝑽 DG
ℎ
,|(𝑞,𝒗)| ≲ ‖𝑞‖DG,Pf ‖𝒗‖DG,U ∀𝒗 ∈ 𝑽 DG

ℎ
, 𝑞 ∈𝑄DG

ℎ
.

Moreover, provided that the penalty constants are chosen sufficiently large, the following coercivity and inf-sup inequalities hold (for any 
j ∈ 𝐽 ):

el(𝒘,𝒘) ≳ ‖𝒘‖2DG,D ∀𝒘 ∈𝑾 DG
ℎ
,

f (𝒗,𝒗) ≳ ‖𝒗‖2DG,U ∀𝒗 ∈ 𝑽 DG
ℎ
,∑

j∈𝐽
j({𝑞k}k∈𝐽 , 𝑞j) ≳

∑
j∈𝐽

‖√𝛽e
j 𝑞j‖2DG,𝑃j

and j(𝑞j, 𝑞j) ≳ ‖𝑞j‖2DG,Pj ∀𝑞j ∈𝑄DG
j,ℎ , j ∈ 𝐽,

sup
𝒗∈𝑽 DG

ℎ
⧵{0}

f (𝑞,𝒗)‖𝒗‖DG,U +
√(𝑞, 𝑞) ≥ 𝛽f ,ℎ‖𝑞‖Ωf

∀𝑞 ∈𝑄DG
ℎ
,

where 𝛽f ,ℎ is the discrete inf-sup constant [40].

Appendix B. Proof of Theorem 2

Let 𝑞 ∈𝐻2(𝒯ℎ,el), 𝒘 ∈𝐻2(𝒯ℎ,el), 𝒗 ∈𝐻2(𝒯ℎ,f ), and 𝑞 ∈𝑄DG
E,ℎ, 𝒘ℎ ∈𝑾 DG

ℎ
, 𝒗ℎ ∈ 𝑽 DG

ℎ
. For any 𝐹 ∈ℱΣ

ℎ
, we denote by 𝐾𝐹

el and 𝐾𝐹
f

the elements of 𝒯ℎ,el and 𝒯ℎ,f , respectively, sharing 𝐹 in their boundary. Then,

| (𝑞,𝒘ℎ,𝒗ℎ)| ≤ ∑
𝐹∈ℱΣ

ℎ

⎛⎜⎜⎝
|||||||∫𝐹 𝑞𝒘ℎ ⋅ 𝒏el

|||||||+
|||||||∫𝐹 𝑞 𝒗ℎ ⋅ 𝒏f

|||||||
⎞⎟⎟⎠

≲
∑

𝐹∈ℱΣ
ℎ

(‖𝜂1∕2𝑞‖𝐹 ‖𝜂−1∕2𝒘ℎ‖𝐹 + ‖𝛾−1∕2𝑝 𝑞‖𝐹 ‖𝛾1∕2𝑝 𝒗ℎ‖𝐹)
TR

≲
∑

𝐹∈ℱΣ
ℎ

(‖𝜂1∕2𝑞‖𝐹
�

�ℎ
1∕2
𝐾𝐹
el�

��ℎ
−1∕2
𝐾𝐹
el

‖𝒘ℎ‖𝐾𝐹
el
+ ‖𝛾−1∕2𝑝 𝑞‖𝐹

�
�ℎ
1∕2
𝐾𝐹
f �

��ℎ
−1∕2
𝐾𝐹
f

‖𝒗ℎ‖𝐾𝐹
f

)

17

≤ ‖𝜂1∕2𝑞‖ℱΣ
ℎ
‖𝒘ℎ‖DG,D + ‖𝛾−1∕2𝑝 𝑞‖ℱΣ

ℎ
‖𝒗ℎ‖DG,U,
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where, in line TR , we have used the inverse trace inequality (17) and the fact that 𝜂|𝐾 ∼ ℎ−1
𝐾

∀𝐾 ∈𝒯ℎ,el and 𝛾𝑝|𝐾 ∼ ℎ𝐾 ∀𝐾 ∈𝒯ℎ,f . 
An analogous argument (using 𝛾1∕2𝒗 in place of 𝛾−1∕2𝑝 ) allows to control |𝐽 (𝑞ℎ, 𝒘, 𝒗)|, thus concluding the proof.

Appendix C. Proof of Theorem 4

In this section, we prove the optimal convergence estimate stated in Theorem 4. This result is based on the inverse trace inequality 
(17), on Theorem 2 and on the following continuity results (proved in [31,39,40]), which extend Theorem 5 to consider also non-

discrete functions:

Lemma 6. Under the same assumptions of Theorem 5, the following inequalities hold:

|el(𝒅,𝒘ℎ)| ≲ ⦀𝒅⦀D‖𝒘ℎ‖DG,D ∀𝒅 ∈ [𝐻2(𝒯ℎ,el)]𝑑 ,𝒘ℎ ∈𝑾 DG
ℎ
,|j(𝑝j, 𝑞j,ℎ)| ≲ ⦀𝑝j⦀Pj‖𝑞j,ℎ‖DG,Pj ∀𝑝j ∈𝐻2(𝒯ℎ,el), 𝑞j,ℎ ∈𝑄DG

j,ℎ , ∀j ∈ 𝐽,|j(𝑞j,ℎ,𝒘)| ≲ ‖𝑞j,ℎ‖DG,Pj⦀𝒘⦀D ∀𝒘 ∈ [𝐻2(𝒯ℎ,el)]𝑑 , 𝑞j,ℎ ∈𝑄DG
j,ℎ , ∀j ∈ 𝐽,|j(𝑞j,𝒘ℎ)| ≲ ⦀𝑞j⦀Pj‖𝒘ℎ‖DG,D ∀𝒘ℎ ∈𝑾 DG

ℎ
, 𝑞j ∈𝐻2(𝒯ℎ,el), ∀j ∈ 𝐽,|f (𝒖,𝒗ℎ)| ≲ ⦀𝒖⦀U‖𝒗ℎ‖DG,U ∀𝒖 ∈ [𝐻2(𝒯ℎ,f )]𝑑 ,𝒗ℎ ∈ 𝑽 DG

ℎ
,|f (𝑞ℎ,𝒗)| ≲ ‖𝑞ℎ‖DG,Pf ⦀𝒗⦀U ∀𝒗 ∈ [𝐻2(𝒯ℎ,f )]𝑑 , 𝑞ℎ ∈𝑄DG

ℎ
,|f (𝑞,𝒗ℎ)| ≲ ⦀𝑞⦀Pf ‖𝒗ℎ‖DG,U ∀𝒗ℎ ∈ 𝑽 DG

ℎ
, 𝑞 ∈𝐻1(𝒯ℎ,f ).

We are now ready to prove our optimal convergence result.

Proof. (Theorem 4) Using the interpolators defined in Theorem 3, we split the error 𝒆𝒅 = 𝒆𝒅
𝐼
− 𝒆𝒅

ℎ
into an interpolation error 

𝒆𝒅
𝐼
= 𝒅 − 𝒅𝐼 ∈ [𝐻𝑚+1(𝒯ℎ,el)]𝑑 and an approximation error 𝒆𝒅

ℎ
= 𝒅ℎ − 𝒅𝐼 ∈𝑾 DG

ℎ
. An analogous notation is introduced for the errors 

𝑒𝑃j ∀j ∈ 𝐽, 𝒆𝒖, 𝑒𝑃f . We fix a time 𝑡 ∈ (0, 𝑇 ] and we proceed similarly to [38], namely we subtract equation (10) from (6), tested against 
(𝜕𝑡𝒆𝒅ℎ, {𝑒

𝑃j
ℎ
}j∈𝐽 , 𝒆𝒖ℎ, 𝑒

𝑃f
ℎ
), thus obtaining

(𝜌el𝜕2𝑡𝑡𝒆
𝒅 , 𝜕𝑡𝒆

𝒅
ℎ
)Ωel

+el(𝒆𝒅 , 𝜕𝑡𝒆𝒅ℎ ) +
∑
k∈𝐽

k(𝑒𝑃k , 𝜕𝑡𝒆𝒅ℎ )

+
∑
j∈𝐽

[
(𝑐j𝜕𝑡𝑒

𝑃j , 𝑒
𝑃j
ℎ
)Ωel

+j(𝑒
𝑃j , 𝑒

𝑃j
ℎ
) + j({𝑒𝑃k }k∈𝐽 , 𝑒𝑃jℎ ) −j(𝑒

𝑃j
ℎ
, 𝜕𝑡𝒆

𝒅)
]

+ (𝜌f𝜕𝑡𝒆𝒖,𝒖ℎ)Ωf
+f (𝒆𝒖,𝒆𝒖ℎ) +f (𝑒𝑃f ,𝒆𝒖ℎ) −f (𝑒

𝑃f
ℎ
,𝒆𝒖) + (𝑒𝑃f , 𝑒𝑃f

ℎ
)

+  (𝑒𝑃E , 𝜕𝑡𝒆𝒅ℎ,𝒆
𝒖
ℎ
) −  (𝑒𝑃E

ℎ
, 𝜕𝑡𝒆

𝒅 ,𝒆𝒖) = 0.

According to the splitting introduced above, we separate the terms depending only on the discrete approximation errors from those 
involving the interpolation errors. Then, integrating in time from 0 to 𝑡 and proceeding as in the proof of Theorem 1, the coercivity 
inequalities of Theorem 5 yield

‖√𝜌el𝜕𝑡𝒆
𝒅
ℎ
‖2Ωel

+ ‖𝒆𝒅
ℎ
‖2DG,D +

∑
k∈𝐽

⎡⎢⎢⎣‖
√
𝑐k𝑒

𝑃k
ℎ

‖2Ωel
+

𝑡

∫
0

(‖𝑒𝑃k
ℎ

‖2DG,Pk + ‖√𝛽𝑒k𝑒
𝑃k
ℎ

‖2Ωel

)
𝑑𝑠

⎤⎥⎥⎦
+ ‖√𝜌f𝒆

𝒖
ℎ
‖2Ωf

+

𝑡

∫
0

𝛼
(‖𝒆𝒖

ℎ
‖2DG,U + ‖𝑒𝑃f

ℎ
‖2DG,Pf)𝑑𝑠

+

𝑡

∫
0

[
������
𝐽 (𝑒𝑃E

ℎ
, 𝜕𝑡𝒆

𝒅
ℎ
,𝒆𝒖

ℎ
) −������

𝐽 (𝑒𝑃E
ℎ
, 𝜕𝑡𝒆

𝒅
ℎ
,𝒆𝒖

ℎ
)
]
𝑑𝑠

≲

𝑡

∫
0

(𝜌el𝜕2𝑡𝑡𝒆
𝒅
𝐼
, 𝜕𝑡𝒆

𝒅
ℎ
)Ωel

𝑑𝑠+el(𝒆𝒅𝐼 ,𝒆
𝒅
ℎ
) −

𝑡

∫
0

el(𝜕𝑡𝒆𝒅𝐼 ,𝒆
𝒅
ℎ
)𝑑𝑠 (C.1)

+
∑ 𝑡 [

(𝑐k𝜕𝑡𝑒
𝑃k , 𝑒

𝑃k )Ω +k(𝑒
𝑃k , 𝑒

𝑃k ) + k({𝑒𝑃j }j∈𝐽 , 𝑒𝑃k )
]
𝑑𝑠
18

k∈𝐽
∫
0

𝐼 ℎ el 𝐼 ℎ 𝐼 ℎ
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+
∑
k∈𝐽

k(𝑒
𝑃k
𝐼
,𝒆𝒅

ℎ
) −

∑
k∈𝐽

𝑡

∫
0

[k(𝑒
𝑃k
𝐼
, 𝜕𝑡𝒆

𝒅
ℎ
) +k(𝑒

𝑃k
ℎ
, 𝜕𝑡𝒆

𝒅
𝐼
)
]
𝑑𝑠

+

𝑡

∫
0

[
(𝜌f𝜕𝑡𝒆𝒖𝐼 ,𝒆

𝒖
ℎ
)Ωf

+f (𝒆𝒖𝐼 ,𝒆
𝒖
ℎ
) +f (𝑒

𝑃f
𝐼
,𝒆𝒖𝑢 ) −f (𝑒

𝑃f
ℎ
,𝒆𝒖

𝐼
) + (𝑒𝑃f

𝐼
, 𝑒
𝑃f
ℎ
)
]
𝑑𝑠

+

𝑡

∫
0

[
𝐽 (𝑒𝑃E

𝐼
, 𝜕𝑡𝒆

𝒅
ℎ
,𝒆𝒖

ℎ
) − 𝐽 (𝑒𝑃E

ℎ
, 𝜕𝑡𝒆

𝒅
𝐼
,𝒆𝒖

𝐼
)
]
𝑑𝑠,

where no contribution arises from the initial conditions, due to the hypotheses. Using Theorems 2 and 6 and the inequality∑
k∈𝐽

|𝐶k({𝑒
𝑃j
𝐼
}j∈𝐽 .𝑒

𝑃k
ℎ
)| ≲ ∑

j,k∈𝐽
‖𝑐−1∕2j 𝑒

𝑃j
𝐼
‖Ωel

‖√𝑐k𝑒
𝑃k
ℎ

‖Ωel
≲

∑
j,k∈𝐽

⦀𝑒𝑃j
𝐼
⦀Pj‖√𝑐k𝑒

𝑃k
ℎ

‖Ωel

on the right-hand side of (C.1) yields

‖(𝒆𝒅
ℎ
,{𝑒

𝑃j
ℎ
}j∈𝐽 ,𝒆𝒖ℎ, 𝑒

𝑃f
ℎ
)‖2EN,𝑡

≲ ⦀𝒆𝒅
𝐼
(𝑡)⦀D‖𝒆𝒅ℎ (𝑡)‖DG,D +

𝑡

∫
0

[‖√𝜌el𝜕
2
𝑡𝑡𝒆

𝒅
𝐼
(𝑠)‖Ωel

‖√𝜌el𝜕𝑡𝒆
𝒅
ℎ
(𝑠)‖Ωel

+⦀𝜕𝑡𝒆𝒅𝐼 (𝑠)⦀D‖𝒆𝒅ℎ (𝑠)‖DG,D]𝑑𝑠
+

∑
k∈𝐽

⎡⎢⎢⎣⦀𝑒𝑃k𝐼 (𝑡)⦀Pk‖𝒆𝒅ℎ (𝑡)‖DG,D +

𝑡

∫
0

‖√𝑐k𝜕𝑡𝑒
𝑃k
𝐼
(𝑠)‖Ωel

‖√𝑐k𝑒
𝑃k
ℎ
(𝑠)‖Ωel

𝑑𝑠

⎤⎥⎥⎦
+

∑
k∈𝐽

𝑡

∫
0

[⦀𝑒𝑃k
𝐼
(𝑠)⦀Pk‖𝑒𝑃kℎ (𝑠)⦀DG,Pk + ⦀𝑒𝑃k

𝐼
(𝑠)⦀Pk‖𝜕𝑡𝒆𝒅ℎ (𝑠)‖DG,D]𝑑𝑠

+
∑
k∈𝐽

𝑡

∫
0

[‖𝑒𝑃k
ℎ
(𝑠)‖DG,Pk‖𝜕𝑡𝒆𝒅𝐼 (𝑠)⦀D +

∑
j∈𝐽

⦀𝑒𝑃j
𝐼
(𝑠)⦀Pj‖√𝑐k𝑒

𝑃k
ℎ
(𝑠)‖Ωel

]
𝑑𝑠

+

𝑡

∫
0

[‖√𝜌f𝜕𝑡𝒆
𝒖
𝐼
(𝑠)‖Ωf

‖𝒆𝒖
ℎ
(𝑠)‖Ωf

+ ⦀𝒆𝒖
𝐼
(𝑠)⦀U‖𝒆𝒖ℎ(𝑠)‖DG,U

+ ⦀𝑒𝑃f
𝐼
(𝑠)⦀Pf ‖𝒆𝒖ℎ(𝑠)‖DG,U]𝑑𝑠

+

𝑡

∫
0

[‖𝑒𝑃f
ℎ
(𝑠)‖DG,Pf ⦀𝒆𝒖𝐼 (𝑠)⦀U +

√
(𝑒𝑃f

𝐼
(𝑠), 𝑒𝑃f

𝐼
(𝑠))

√
(𝑒𝑃f

ℎ
(𝑠), 𝑒𝑃f

ℎ
(𝑠))

]
𝑑𝑠

+

𝑡

∫
0

[‖𝜂1∕2𝑒𝑃E
𝐼

‖ℱΣ
ℎ
‖𝜕𝑡𝒆𝒅ℎ‖DG,D + ‖𝛾−1∕2𝑝 𝑒

𝑃E
𝐼

‖ℱΣ
ℎ
‖𝒆𝒖

ℎ
‖DG,U]𝑑𝑠

+

𝑡

∫
0

[‖𝑒𝑃E
ℎ

‖DG,PE (‖𝜂1∕2𝜕𝑡𝒆𝒅𝐼 ‖ℱΣ
ℎ
+ ‖𝛾1∕2𝒗 𝒆𝒖

𝐼
‖ℱΣ

ℎ

)]
𝑑𝑠.

(C.2)

Regarding the interface terms, we can observe that the choice of 𝜂, 𝛾𝒗, 𝛾𝑝 made in (8) implies that 𝜂, 𝛾𝒗, 𝛾−1𝑝 scale as ℎ𝐾 in each 
element 𝐾 ∈𝒯ℎ. Thus, thanks to Theorem 3, we obtain

‖𝜂1∕2𝑒𝑃E
𝐼

‖ℱΣ
ℎ
≲

∑
𝐾∈𝒯ℎ,el

‖𝜂‖1∕2
𝐿∞(𝐾)‖ℎ𝑚+1∕2𝐾

‖𝐾𝑝E‖𝐻𝑚+1(𝐾) ≲
∑

𝐾∈𝒯ℎ,el

ℎ𝑚
𝐾
‖𝐾𝑝E‖𝐻𝑚+1(𝐾),

and similar optimal estimates for the other interpolation errors at the interface appearing in the last two lines of (C.2).

By Cauchy-Schwarz’s and Young’s inequalities, all the terms involving the discrete errors 𝒆𝒅
ℎ
, 𝑒
𝑃j
ℎ
, 𝒆𝒖

ℎ
, 𝑒𝑃f
ℎ

on the right-hand side 

of (C.2) can be moved to the left-hand side, whereas the interpolation errors 𝒆𝒅
𝐼
, 𝑒
𝑃j
𝐼
, 𝒆𝒖

𝐼
, 𝑒𝑃f
𝐼

can be controlled by the estimates of 
Theorem 3, yielding
19

‖(𝒆𝒅
ℎ
,{𝑒

𝑃j
ℎ
}j∈𝐽 ,𝒆𝒖ℎ, 𝑒

𝑃f
ℎ
)‖2EN,𝑡
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≲
∑

𝐾∈𝒯ℎ,el

ℎ2𝑚
𝐾

𝑚

{‖𝐾𝒅(𝑡)‖2[𝐻𝑚+1(𝐾)]𝑑
+

∑
k∈𝐽

‖𝐾𝑝k(𝑡)‖2𝐻𝑚+1(𝐾)

+

𝑡

∫
0

[‖𝐾𝜕𝑡𝒅(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑
+ ‖𝐾𝜕2𝑡𝑡𝒅(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑

(C.3)

+
∑
𝑘∈𝐽

(‖𝐾𝑝k(𝑠)‖2𝐻𝑚+1(𝐾)
+ ‖𝐾𝜕𝑡𝑝k(𝑠)‖2𝐻𝑚+1(𝐾)

)]
𝑑𝑠

}

+
∑

𝐾∈𝒯ℎ,f

ℎ2𝑚
𝐾

𝑚

𝑡

∫
0

[‖𝐾𝒖(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑
+ ‖𝐾𝜕𝑡𝒖(𝑠)‖2[𝐻𝑚+1(𝐾)]𝑑

+‖𝐾𝑝(𝑠)‖2𝐻𝑚+1(𝐾)

]
𝑑𝑠.

Observing that an estimate for ‖(𝒆𝒅
𝐼
, {𝑒

𝑃j
𝐼
}j∈𝐽 , 𝒆𝒖𝐼 , 𝑒

𝑃f
𝐼
)‖EN,𝑡 that is completely analogous to (C.3) can be proven by resorting to Theo-

rem 3, the triangle inequality

‖(𝒆𝒅 ,{𝑒𝑃j }j∈𝐽 ,𝒆𝒖, 𝑒𝑃f )‖2EN,𝑡 ≤ ‖(𝒆𝒅
ℎ
,{𝑒

𝑃j
ℎ
}j∈𝐽 ,𝒆𝒖ℎ, 𝑒

𝑃f
ℎ
)‖2EN,𝑡 + ‖(𝒆𝒅

𝐼
,{𝑒

𝑃j
𝐼
}j∈𝐽 ,𝒆𝒖𝐼 , 𝑒

𝑃f
𝐼
)‖2EN,𝑡

concludes the proof. □

Appendix D. Algebraic form of the fully discrete problem

The matrices 𝐴1, 𝐴2 of (19) have the following form:

𝐴1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴el 0 𝑀el 𝐵𝑇
A

⋯ 𝐵𝑇
E
+ 𝐽𝑇el 0 0

0 𝐼 −𝛾Δ𝑡𝐼 0 ⋯ 0 0 0
− 1
𝛽Δ𝑡2 𝐼 0 𝐼 0 ⋯ 0 0 0

− 𝜃𝛾

𝛽Δ𝑡 𝐵A 0 0 𝜃𝐾AA ⋯ 𝜃𝐶AE 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

− 𝜃𝛾

𝛽Δ𝑡 (𝐵E + 𝐽el) 𝜃𝐶EA ⋯ 𝜃𝐾EE −𝜃𝐽f 0
0 0 0 0 ⋯ 𝜃𝐽𝑇f

1
Δ𝑡𝑀f + 𝜃𝐴f 𝜃𝐵𝑇

f
0 0 0 0 ⋯ 0 −𝜃𝐵f 𝜃𝑆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝐴2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ⋯ 0 0 0
0 𝐼 (1 − 𝛾)Δ𝑡𝐼 0 ⋯ 0 0 0

− 1
𝛽Δ𝑡2 𝐼 − 1

𝛽Δ𝑡 𝐼
2𝛽−1
2𝛽 𝐼 0 ⋯ 0 0 0

− 𝜃𝛾

𝛽Δ𝑡 𝐵A

(
1 − 𝜃𝛾

𝛽

)
𝐵A 𝜃Δ𝑡

(
1 − 𝛾

2𝛽

)
𝐵A

1
Δ𝑡𝑀A − 𝜃𝐾AA ⋯ 𝜃𝐶AE 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

− 𝜃𝛾

𝛽Δ𝑡 (𝐵E + 𝐽el)
(
1 − 𝜃𝛾

𝛽

)
𝐵E 𝜃Δ𝑡

(
1 − 𝛾

2𝛽

)
𝐵E 𝜃𝐶EA ⋯ 1

Δ𝑡𝑀E + 𝜃𝐾EE −𝜃𝐽f 0
0 0 0 0 ⋯ 𝜃𝐽𝑇f

1
Δ𝑡𝑀f + 𝜃𝐴f 𝜃𝐵𝑇

f
0 0 0 0 ⋯ 0 −𝜃𝐵f 𝜃𝑆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 𝜃 = 1 − 𝜃, 𝐾jj =𝐴j +𝐶jj ∀j ∈ 𝐽.
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