
A novel sufficient condition to avoid
subharmonic oscillations for buck
converters with constant on-time control

F. Bizzarri✉, P. Nora and A. Brambilla
ELECT
Fast transient response, simple control scheme and low cost are
features that distinguish constant-on-time buck converters from
others. Simplicity of the control scheme is reflected in a single require-
ment for power electronics engineers: a design that ensures enough
low amplitude resistive ripple component at the feedback to precisely
starts the on-time pulse. There are design rules that guide the selection
of the components. A well known one reported in the literature predicts
if the converter suffers of the sub-harmonic oscillations undesirable
phenomenon. The authors present a better simple design expression
to avoid the onset of this unwanted drawback.
Introduction: Constant ON-Time (COT) DC–DC converters are popular
for point-of-load (POL) regulation [1, 2]. Their excellent dynamic
response, simple control scheme and mainly low cost makes COT POL

regulators an attractive choice for powering demanding, high-speed
digital loads such as FPGAs, ASICs, and CPUs. For the same reasons,
COT converters are also largely used in low cost consumer electronics.
From a design perspective, a very important practical problem is to
ensure that the COT converter will operate without a pulse-bursting
[3], viz. avoiding sub-harmonic oscillations.

Avoiding pulse-bursting in steady-state operating conditions is nece-
ssary to prevent excessive ripple amplitudes in the inductor current and
output voltage waveforms, whose undesirable consequences may
include degraded efficiency, reduction of the output current capability
because of premature engagement of current limit protections, and,
most important, violation of the steady-state output voltage ripple speci-
fications (output voltage noise). Unpredictable Electro-Magnetic emis-
sions might also be a concern.

In this Letter, we provide a straightforward novel sufficient condition,
overcoming in term of reliability the popular one presented in [4], to
prevent the appearance of such dynamical behaviour. This condition
is valid not only when the COT converter works in steady state but
also during transient evolutions. We focus on the COT converter archi-
tecture reported in Fig. 1, which considers also the Rp resistors model-
ling both the ON-state resistance of the S high-side switch and the D
low-side switch.
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Fig. 1 Schematic of the COT converter

Circuit parameter reference values: Co = 35.3mF, Re = 12.3mV, Rp = 30mV,
L = 470 nH, E = 5V, vr = 1V, Dtmin

OFF = 177 ns and DtON = 118 ns

COT converter architecture: A key aspect of the COT converter is its
control algorithm implemented in the cntr block (see Fig. 1). It can
be summarised as follows:

Step 1: The S switch is closed for the DtON fixed time interval (ON-phase)
as soon as the controller catches the positive edge of the output of the
comparator. This occurs any time the vr − vo signal becomes positive.
Step 2: At the end of the ON-phase, S is opened and is kept open for the
Dtmin

OFF fixed time interval (minimum OFF-phase).
Step 3: At the end of the DtON + Dtmin

OFF time interval, the controller
checks the output of the comparator. If vr − vo , 0, the S switch
remains open (OFF-phase) until the condition at Step 1 becomes true.
Otherwise, if vr − vo . 0, i.e. the output of the comparator is still posi-
tive, the S switch is closed again and a new ON-phase starts immediately.
The overall duration of the OFF-phase is DtOFF ≥ Dtmin

OFF.

The role of the D diode in Fig. 1 is to avoid a negative ıL current.
Actually, in modern architectures such as synchronous buck converters,
to enhance converter efficiency the diode is replaced by a low-side
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MOSFET which is operated as a synchronous rectifier. Consequently,
‘diode’ D – that actually works as a controlled switch in perfect
‘diode emulation’ – is modelled as a piecewise-linear ideal component
with ıD = 0 for vD ≤ 0 and vD = 0 for ıD ≥ 0.

In the (ıL, vC) state plane (shown in Fig. 2) the vr − vo = 0 switching
condition induced by the cntr block leads to the straight line

rS(ıL, vC) : vr −
Ro(ıLRe + vC)

Re + Ro
= 0 (1)

whereas the effect of the D low-side switch defines

rD(ıL, vC) : ıL = 0 (2)
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Fig. 2 Basic geometrical elements on the ( ıL, vC) state plane

The Rm (resp.RM ) sub-region of the state space is made up of those points lying
both at the right of the rD line and below (resp. above) the rS line.Rm andRM are
separated by the half-line sS , rS that originates in z

Geometry of the steady-state solutions: Typical regular steady-state tra-
jectories of a well-behaving COT converter, in both continuous current
mode (CCM) and discontinuous current mode (DCM) are shown in
Figs. 3 and (4), respectively. They were obtained for the reference
circuit parameter values reported in the caption of Fig. 1, by setting
Ro = 0.59V and Ro = 2.43V, respectively (for all numerical results
presented in the following, only the circuit parameter values that
differ from the reference ones are reported).
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Fig. 3 Regular CCM steady-state solution of the COT converter. Ro = 0.59V
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Fig. 4 Regular DCM steady-state solution of the COT converter. Ro = 2.43V

The ON-phase of the gICCM and gI , aDCM limit cycles starts on sS (Step 1
of the control algorithm) for ıL . 0 and ıL = 0, respectively. sS is the
half-line belonging to rS originating in z (see Fig. 2). In the DCM

regime, the trajectory hits sD during the OFF-phase and it slides on it
till z = rD > rS = 0, (vr(Re + Ro)/Ro)

( )
, where the OFF-phase ends

since sS is reached. sD is the half-line belonging to rD originating in
z (see Fig. 2). From the left panel of both Figs. 3 and (4), we can see
that the vo voltage (Fig. 1) keeps greater or equal to vr. This traduces
in trajectories in the (ıL, vC) state plane evolving in the RM region
only (see Fig. 2).
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In both cases, it is assumed that the COT converter controller is not
saturated at steady state, viz. the OFF-phase lasts more than Dtmin

OFF.
The gICCM and gI , aDCM limit cycles make regular the COT converter

steady-state behaviours in the sense that they do not exhibit sub-
harmonic oscillations, viz. such limit cycles is composed of a single
turn.

It is well-known that a bad selection of the COT converter parameters
leads to steady-state solutions much more complex than gICCM and

gI , aDCM. This is due to the fact that even if the COT converter dynamics is
governed by a piecewise linear vector field, the decisional process
implemented by its controller is articulated even if simple its design is
simple.

In Fig. 5, for instance the gIIDCM limit cycle is shown, which is charac-
terised by the presence of two turns. It is worth noticing that it is made
up of two ON-phases and two OFF-phases. The segments of trajectory
corresponding to the ON-phases starts on sS and evolve both in Rm

and RM . Thus in the left panel of Fig. 5 we observe the vo voltage
becoming lower than vr . Both such segments end in RM and conse-
quently the OFF-phase are expected to last more than Dtmin

OFF (see Step
3 of the control algorithm).
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Fig. 5 Sub-harmonic DCM steady-state solution of the COT converter with
tOLD = 59 ns and tNEW = 66.80 ns and t = 17.37 ns

Co = 7.06mF, Re = 2.46mV, L = 2.0mH and Ro = 7.5V

In Fig. 6, the g1CCM CCM steady-state chaotic trajectory is shown.
It evolves both in Rm and RM . We see segments of the trajectory
corresponding to ON-phases that do not end above sS (see, for instance
the black coloured segment from p1 to p2 in Fig. 6). For this
reason, according to Step 3 of the control algorithm, each one of
these segments is followed by a minimum OFF-phase (from p2 to p3

in Fig. 6).

1.000

1.003

1.006

1.000

1.003

1.006

0 5 10 0 0.25 0.50

vo [V]

t [μs]

vC [V]

σD

σS
π1

π1

π2 π2
π3 π3

γ ∞
CCM

m

M

L [A]

Fig. 6 Sub-harmonic (chaotic) CCM steady-state solution of the COT conver-
ter with tOLD = 54 ns, tNEW = 166.67 ns and t = 17.37 ns

The orbit in the right panel refer 30ms of time evolution. Co = 7.06mF,
Re = 2.46mV, L = 2.0mH, Ro = 3.0V and DtON = 108 ns

Both the gIIDCM and g1CCM steady-state behaviours exhibit undesired
sub-harmonic oscillations.

Avoiding sub-harmonic regime: The well-known condition to predict
the appearance of sub-harmonic regimes for COT buck converters

CoRe ; t .
DtON
2

; tOLD (3)

was provided in [4] and it can be used if the COT converter works in
CCM. Here we propose the novel constraint

CoRe ; t .
Lovr

Ro(E − vr)
; tNEW (4)
ELECTRONICS LETTERS
that represents a true sufficient condition to avoid sub-harmonic regimes.
It turns out to be more accurate than (4) and it works in DCM too.

Let us consider the gIIDCM and g1CCM steady-state behaviours presented
above. According to the values of t, tOLD and tNEW reported in the
caption of Figs. (5) and (6), we note that (3) and (4) are not satisfied
in both cases (we recall that actually (3) should be used only for
g1CCM since in [4] a condition for DCM operation is not provided).

As far as gIIDCM is concerned, to verify the effectiveness of (4) we
increased the E0 value in order to reduce tNEW keeping tOLD unchanged.
The result is shown in Fig. 7. The gI , bDCM limit cycle does not exhibit sub-
harmonic oscillations even if (3) is significantly violated.
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Fig. 7 DCM steady-state solution of the COT converter with tOLD = 59 ns and
tNEW = 15.23 ns and t = 17.37 ns

Co = 7.06mF, Re = 2.46mV, L = 2.0mH, Ro = 7.5V and Eo = 12.5V

Something similar can be done to regulate g1CCM, for instance redu-
cing the Lo inductance. In Fig. 8, it can be seen the gI , cDCM limit cycle,
which is regular even if (3) is not satisfied.

1.010

1.050

1.025

1.000

1.005

1.000

0 2.5 0 0.5 1.0 1.5 2.05.0

vo [V]

t [μs]

vC [V]
σD

σS

γ I,a
DCM

m

M

L [A]

Fig. 8 DCM steady-state solution of the COT converter with tOLD = 54 ns,
tNEW = 16.67 ns and t = 17.37 ns

Co = 7.06mF, Re = 2.46mV, L = 0.2mH, Ro = 3.0V and DtON = 108 ns

The numerical results that we illustrated clearly prove that the
condition presented in [4] as a tool for the prediction of sub-harmonic
oscillations may fail. Furthermore (4) is more articulated and depends
on more design parameters of the COT converter than (3). The next
section is devoted to the analytical derivation of (4) and to its peculiarity
of being a sufficient condition to avoid sub-harmonic oscillations.
Furthermore, it is shown how (4) can be approximatively reduced
to (3) in CCM.

Theoretical aspects: The dynamics of the COT converter (for ıL . 0) is
ruled by the state equations

v̇C = RoıL − vC
(Re + Ro)Co

,

ı̇L =− (Re(Ro + Rp)+ RoRp)ıL + RovC
(Re + Ro)Lo

+ j
E

Lo
,

(5)

where j = 1 in the ON-phase and j = 0 in the OFF one. The piecewise
linear dynamical system described by (5) admits the two

Pj = ERoj

Ro + Rp
,

Ej

Ro + Rp

( )

different equilibria for j [ {0, 1} (see Fig. 2). The generic orbit of (5) is
attracted by either P1 or P0 (see Fig. 2), during the ON-phase or the
OFF-phase, respectively.

Since the vector-field in the r.h.s. of equation (5) is autonomous, i.e. it
does not explicitly depend on time, previous theoretical results state that
17th March 2020 Vol. 56 No. 6 pp. 305–308



trajectories in the (ıL, vC) state plane are not allowed to intersect once
a given value of j is selected. This consideration is crucial since it
is the pillar condition equation (4) grounds on. Owing to the relative
position of sS and P1 it turns out that sub-harmonic oscillations may
appear only if ON-phase segments of trajectory are allowed to visit
Rm. In fact, this makes possible the folding mechanism clearly visible
in Fig. 5. Furthermore, as it can be realised from Fig. 6, owing to the
very nature of the control algorithm of the COT converter, if the
ON-phase ends below sS it is possible to observe sequence of segments
as the p1 − p2 − p3 one that generates a steady-state behaviour charac-
terised bymultiple turns. If the converter parameters are chosen in such a
way that trajectories originated on sS at the beginning of the ON-phase
are enclosed within RM , sub-harmonic oscillations can be avoided.

With this caveat in mind, let us introduce the unit-vector normal to rS

h = 1��������
1+ R2

e

√ ,
Re��������
1+ R2

e

√
( )T

(6)

and formulate the constraint

hT · v̇C , ı̇L|j=1

( )
(vC , ıL)[sS

. 0 (7)

that forces the vector-field in (5) (with j = 1), computed for any point
on sS at the beginning of the ON-phase, to ‘push’ the state of the
system in RM . Equation (7), which practically states that on sS the
tangent vector to the system trajectories always exhibit a non-null com-
ponent (the r.h.s. of (7)) that is oriented toward RM , recasts as

CoReRo(Eo − vr)+ ı̄LRo(Lo − CoReRp)− Lovr

RoCoLo
��������
R2
e + 1

√ . 0, (8)

where ı̄L = ıL|(vC , ıL)[sS
. Under the realistic assumption Lo − CoReRp .

0, a more restrictive condition can be obtained by fixing ı̄L = 0,
i.e. setting it to its lower value. So doing (4) is achieved. We recall
that at steady state in CCM operation assuming ı̄L = 0 is a restraint
since actually the ON-phase starts on sS for ıL . 0 (see gICCM in
Fig. 3). On the contrary, (4) becomes exact in DCM since the
ON-phase originates on sS for ıL = 0 (see gIDCM in Fig. 4).

Note that, once (7) is satisfied, sub-harmonic oscillations do not
appear both in transient evolution, for example when there is a step
change in load power demand, and at steady state.

By computing an approximation of the DıL current during the DtON
time interval through the assumption that the vo voltage remains con-
stant at vr, it is possible to write L0(DıL/DtON) = E − vr, from which
ELECTRONICS LETTERS 17th March 2020 Vol. 56
we have (L0/(E − vr)) = (DtON/DıL). In the CCM condition the ıo =
(vr/Ro) output current can be assumed equal to the average value
of ıL, which is a positive constant, plus (DıL/2). We can now write
(vr/Ro) ≥ (DıL/2). At the end we obtain

CoRe
|ffl{zffl}

t

≥ Lo
E − vr

vr
Ro

|fflfflfflfflffl{zfflfflfflfflffl}

tNEW

≥ DtON
DıL

DıL
2

= DtON
2

|ffl{zffl}

tOLD

These crude approximations have collapsed (4) in (3). Note that in DCM

condition (3) is incorrect since (vo/Ro) , (DıL/2) while condition (4)
is exact.

Conclusion: A novel modelling methodology of COT buck converters
based on state-space variables has been introduced. This method leads
to graphical representation and interpretation of the switching behaviour
of a buck topology under COT control. A new sufficient condition to
avoid pulse-bursting has been derived. Under simplifying assumptions,
it has been shown that the new condition includes and largely improves
the one already known in the literature.
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