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Abstract
In this paper we deal with the inverse problem of determining cavities and inclusions
embedded in a linear elastic isotropic medium from boundary displacement’s mea-
surements. For, we consider a constrainedminimization problem involving a boundary
quadratic misfit functional with a regularization term that penalizes the perimeter of
the cavity or inclusion to be identified. Then using a phase field approach we derive a
robust algorithm for the reconstruction of elastic inclusions and of cavities modelled
as inclusions with a very small elasticity tensor.

Keywords Inverse problems · Cavity · Phase-field · Linear elasticity · Primal dual
active set method
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1 Introduction

The focus of this paper is the reconstruction of cavities and inclusions embedded in an
elastic isotropicmediumbymeans of boundary tractions anddisplacements. Identifica-
tion of defects fromboundarymeasurements plays an important role in non-destructive
testing for damage assessment of mechanical specimens, which are possibly defective
due to the presence of interior voids or cavities appearing during the manufacturing
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process, see, for instance, [33, 47, 55, 63] for possible applications to 3D-printing and
additive manufacturing. This kind of inverse problems has application also in medical
imaging and in particular in elastography, a modality mapping the elastic properties
and stiffness of soft tissue, [6–8, 31, 59, 60, 64] (to cite a few), and in reflection seis-
mology [20, 62], a non invasive technique used by the oil and gas industry to map
petroleum deposits in the Earth’s upper crust and based on seismic data from land
acquisition, see for example [61]. We also mention some applications in volcanology,
see for example [9, 10, 58] and references therein.

The underlying mathematical model is the following: Consider a bounded domain
� ⊂ R

d , with d = 2, 3, representing the region occupied by an elastic isotropic
medium and let ∂� = �D ∪ �N , with �D closed. Let the displacement field u
be solution to the following mixed boundary value problem for the Lamé system of
linearized elasticity:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(C0∇̂u) = 0 in � \ C,

(C0∇̂u)n = 0 on ∂C,

(C0∇̂u)ν = g on �N ,

u = 0 on �D,

(1.1)

where C � � is a cavity with Lipschitz boundary, and ∇̂u is the strain tensor. C0 is
a fourth-order isotropic elastic tensor, uniformly bounded and strongly convex, and
n and ν are the outer unit normal vector to ∂C and �N , respectively. The Neumann
boundary datum g is assumed to be in L2(�N ).

The forward problem consists in finding the elastic displacement u in the elastic
body occupying the region � induced by the tractions on �N , given the cavity C . The
inverse problem concerns the determination of the cavity C from partial observations
of u on the boundary. More precisely, given measurements of the displacement, i.e.
umeas ∈ L2(�N ), findC contained in�, such that u��N = umeas , where u ∈ H1

�D
(�\

C) is the solution to the forward problem.
It is well known that this problem is severely ill-posed and only a very weak loga-

rithmic conditional stability holds, assuming a-priori C1,α regularity of the unknown
cavities [53]. A similar weak stability result holds also in the case of the determination
of elastic inclusions, see for example [54]. Hence, in general, the reconstruction of
cavities and inclusions turns out to be a challenging issue.

To solve the problem we follow a similar strategy as in [14, 30] and the one in [13]
for the reconstruction of conductivity inclusions and cavities respectively. Specifically,
we consider the problem of minimizing the functional

J (C) = 1

2

∫

�N

|u(C) − umeas |2 dσ(x) + αPer(C), (1.2)

over a suitable set of cavities of finite perimeter and where u(C) is the solution of
(1.1) for a given cavity C , Per(C) indicates the perimeter of C , and α is a positive
regularization parameter.
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We first investigate the continuity of solutions to (1.1) with respect to perturbations
of the cavity C in the Hausdorff distance topology and prove it using the Mosco
convergence, see [21, 22, 37]. Similarly as in [13], continuity then allows us to prove
existence of minima of the functional J (C), stability with respect to noisy data and
convergence of the minimizers as α → 0 to the solution of the inverse problem.

In the second part of the paper, we use a suitable phase-field relaxation of the
functional J in order to overcome issues arising from non-convexity and non-
differentiability. To be more precise, we employ an idea adopted by Bourdin and
Chambolle, [18] in the context of topology optimization which consists in filling the
cavity with a fictitious elastic material described by an elastic tensor C1 := δC0,
where δ is a small positive parameter and C0 has been extended to the whole domain
�. In this way, we transform the original inverse problem in the one of reconstructing
an elastic inclusion. Then, since the identification of sharp interfaces is in general
difficult to be treated numerically, we use a phase-field approach. Instead of binary
(i.e., either 0 or 1) phase parameter v describing sharp interfaces between regions with
two different materials we use a phase parameter v as a H1 scalar field, taking values
in the interval [0, 1]. Then, we approximate the functional J in (1.2) by means of a
Ginzburg-Landau type functional (cf. [52])

Jδ,ε(v) := 1

2

∫

�N

|uδ(v) − umeas |2 dσ(x)

+4α

π

∫

�

(
ε|∇v|2 + 1

ε
v(1 − v)

)
dx, (1.3)

where ε is a small positive parameter, 4
π
is a rescaled parameter in theModica–Mortola

relaxation of the perimeter, uδ(v) denotes the solution of the modified boundary value
problem:

⎧
⎪⎨

⎪⎩

div(Cδ(v)∇̂uδ(v)) = 0 in �,

(Cδ(v)∇̂uδ(v))ν = g on �N ,

uδ(v) = 0 on �D,

(1.4)

where

Cδ(v) = C0 + (C1 − C0)v, with C1 = δC0. (1.5)

Here C0 and C1 are the elasticity tensors in � \ C and C , respectively. Ideally, the
optimal phase variable v should be close to an ideal binary field. In fact, when ε is
small the potential term (

∫

�
1
ε
v(1 − v) dx) prevails and the minimum is attained by

a phase-field variable which takes mainly values close to 0 and 1 and the transition
occurs in a thin layer of thickness of order ε.

The phase-field approach to structural optimization problems has been successfully
used by different authors (cf., e.g., [12, 15, 25, 36]), the main advantage being the fact
that it allows to handle topology changes as well as nucleation of new holes.
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To implement our algorithm in Sect. 3.2 we provide first order necessary optimality
conditions for the minimization problem associated to Jδ,ε whose discretized version
is then employed in Sect. 4 in order to develop the reconstruction algorithm. Minima
of the functional Jδ,ε exist and the numerical experiments of Sect. 5 indicate that they
are accurate approximations of minima of J , for ε and δ sufficiently small. This fact
could be rigorously justified proving that the �-convergence, as ε and δ tend to 0, to
the functional J holds, but this is still an open issue and will be the subject of a future
research. Some attempts along this direction have been done in the scalar case for
example in [13, 56, 57].

The literature on reconstruction algorithms for identification of inclusions and cavi-
ties in elastostatic, viscoelastic and elasticwaves systems is very rich and of big impact.
In the case of small elastic inclusions or cavities, asymptotic expansions of the per-
turbed displacement have been used to detect position, size and shape from boundary
measurements, see for example [45] and [8]. The method followed in [5] is based on a
shape derivative approach, both for elastic and thermoelastic problems. A topological
gradient method has been applied in [24], for the detection of an elastic scatterer, and
in [50], for identification of a cavity in time-harmonic wave elastic systems. Ikehata
and Itou use the so-called enclosure method for the reconstruction of polygonal cavi-
ties in an elastostatic setting [42] and of a general cavity in a homogeneous isotropic
viscoelastic body [43].More recently, Doubova and Fernández–Cara proposed an aug-
mented Lagrangian method to identify rigid inclusions in a elastic waves system [31].
Eberle and Harrach applied the monotonicity method for the reconstruction of elastic
inclusions using themonotonicity property of theNeumann-to-Dirichlet map [32], and
in [46] the authors used the method of fundamental solutions for the reconstruction
of elastic cavities. For other reconstruction approaches we refer to the review paper
[17] and references therein. Identification of cavities and elastic inclusions could be
interpreted as a special case of the determination of Lamé parameters from boundary
measurements, see for example [7, 41] and [61].

The plan of the paper is the following. In Sect. 2 we investigate the continuity
of the solution to the direct problem with respect to perturbations of the cavity in
the Haussdorff topology and then derive the major properties of the misfit functional
J (C). In Sect. 3 we consider the approximation of the cavity with an inclusion of
small elasticity tensor, the corresponding misfit functional and its properties. We then
introduce its phase-field relaxation and analyze its differentiability and derive neces-
sary optimality conditions related to the phase-field minimization problem. In Sect. 4
we propose an iterative reconstruction algorithm allowing for the numerical approx-
imation of the solution and prove its convergence properties. Finally, in Sect. 5 we
present some numerical results showing the efficiency and robustness of the proposed
reconstruction algorithm.

Notation and Geometrical Setting

We introduce the principal notation used in the paper.
Notation We denote scalar quantities, points, and vectors in italics, e.g. x, y and

u, v, and fourth-order tensors in blackboard face, e.g. A,B.

123



Applied Mathematics & Optimization (2022) 86 :32 Page 5 of 41 32

The symmetric part of a second-order tensor A is denoted by Â := 1
2

(
A + AT

)
,

where AT is the transpose matrix. In particular, ∇̂u represents the deformation tensor.
We utilize standard notation for inner products, that is, u · v = ∑

i uivi , and A : B =∑
i, j ai j bi j (B is a second-order tensor). |A| denotes the norm induced by the inner

product on matrices:

|A| = √
A : A.

Domains. To represent locally a boundary as a graph of function,we adopt the notation:
∀ x ∈ R

d , we set x = (x ′, xd), where x ′ ∈ R
d−1, xd ∈ R, with d = 2, 3. Given r > 0,

we denote by Br (x) ⊂ R
d the set Br (x) := {(x ′, xd)/ |x ′|2 + x2d < r2} and by

B ′
r (x

′) ⊂ R
d−1 the set B ′

r (x
′) := {x ′ ∈ R

d−1/ |x ′|2 < r2}.
Definition 1.1 (C0,1 regularity) Let � be a bounded domain in R

d . We say that a
portion � of ∂� is of Lipschitz class with constants r0, L0, if for any p ∈ � there
exists a rigid transformation of coordinates under which we have that p is mapped to
the origin and

� ∩ Br0(0) = {x ∈ Br0(0) : xd > ψ(x ′)},

where ψ is a C0,1 function on B ′
r0(0) ⊂ R

d−1, such that

ψ(0) = 0,

‖ψ‖C0,1(B′
r0

(0)) ≤ L0.

The Hausdorff distance between two sets �1 and �2 is defined by

dH (�1,�2) = max{ sup
x∈�1

inf
y∈�2

dist(x, y), sup
x∈�2

inf
y∈�1

dist(x, y)}.

Functional setting: Let � be a bounded domain. We set

BV (�) = {v ∈ L1(�) : T V (v) < ∞}, (1.6)

where

T V (v) = sup

{∫

�

vdiv(ϕ); ϕ ∈ C1
0(�), ‖ϕ‖L∞(�) ≤ 1

}

(1.7)

is the total variation of v. The BV space is endowed with the natural norm ‖v‖BV (�) =
‖v‖L1(�) + T V (v). We recall that the perimeter of � is defined as

Per(�) = T V (χ�), (1.8)

where χ� is the characteristic function of the set �.
Setting H1

∂�(�) := {υ ∈ H1(�) : υ�∂�= 0}, we recall the following inequalities.
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Proposition 1.1 Let � be a bounded Lipschitz domain. For every υ ∈ H1
∂�(�), there

exists a positive constant c = c(�) such that

(Korn inequality) ‖∇υ‖L2(�) ≤ c ‖∇̂υ‖L2(�). (1.9)

(Poincaré inequality) ‖υ‖H1(�) ≤ c ‖∇υ‖L2(�). (1.10)

Estimates (1.9) and (1.10) hold also in the case where υ is zero, in the trace sense,
only on a portion of ∂�.

2 Elastic Problem—Detection of a Cavity

The focus of thiswork is the reconstruction of a cavity in an elastic body fromboundary
measurements using a phase-field approach. We assume that � is a bounded domain
and that ∂� := �N ∪ �D , with |�N | > 0, |�D| > 0, �D closed, where ∂� is of
Lipschitz class with constants r0 and L0. Denoting by C the cavity, we consider the
mixed boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(C0∇̂u) = 0 in � \ C,

(C0∇̂u)n = 0 on ∂C,

(C0∇̂u)ν = g on �N ,

u = 0 on �D,

(2.1)

where n, ν are the outer unit normal vector to ∂C and ∂�, respectively.
We make the following assumptions.

Assumption 2.1 C0 = C0(x) is a fourth-order tensor such that

(C0)i jkh(x) = (C0) j ikh(x) = (C0)khi j (x), ∀1 ≤ i, j, k, h ≤ d, and x ∈ �.

Moreover, C0 is assumed to be uniformly bounded and uniformly strongly convex,
that is, C0 defines a positive-definite quadratic form on symmetric matrices:

C0(x) Â : Â ≥ ξ0| Â|2, a.e in �,

for ξ0 > 0.

Remark 2.1 We require that C0 is defined in �, and not only in � \ C , because we
employ, in the second part of the paper, a reconstruction algorithmbased on the strategy
of filling the cavity with a fictitious elastic material.

Assumption 2.2

g ∈ L2(�N ). (2.2)
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We assume Lipschitz regularity of the cavity (see Definition 1.1), which is a typical
requirement to prove uniqueness of the solution to the inverse problem, see [53]. More
precisely, we make the following assumption.

Assumption 2.3 Let

C ∈ C := {D ⊂ � : compact, simply connected ∂D ∈ C0,1with constants r0,

L0 and dist(D, ∂�) ≥ d0 > 0}.

We define

�d0/2 =
{

x ∈ � / dist(x, ∂�) ≤ d0
2

}

. (2.3)

For the class of admissible sets C, the following result holds.

Remark 2.2 C is compact with respect to the Hausdorff topology [29, 51].

Remark 2.3 From now on, we will denote with c any constant possibly depending on
�, r0, L0, d, ξ0, d0, c, and on the uniform bounds of the elasticity tensor.

Well-posedness of (2.1) in H1
�D

(� \ C) follows from an application of the Lax-
Milgram theorem to the weak formulation of Problem (2.1):

Find u ∈ H1
�D

(� \ C) solution to
∫

�\C
C0∇̂u : ∇̂ϕ dx =

∫

�N

g · ϕ dσ(x), ∀ϕ ∈ H1
�D

(� \ C), (2.4)

(see for example [28]). Moreover, it holds

‖u‖H1(�\C) ≤ c‖g‖L2(�N ). (2.5)

Choosing ϕ = u in (2.4), the last inequality follows from the strong convexity of
the elasticity tensor C0 (see Assumption 2.1), from an application of the Korn and
Poincaré inequality to the left-hand side of (2.4) (see Proposition 1.1), and from the
use of a Cauchy–Schwarz inequality to the right-hand side. In fact,

∫

�\C
C0∇̂u : ∇̂u dx ≥ c‖∇̂u‖2L2(�\C)

≥ c‖∇u‖2L2(�\C)
≥ c‖u‖2H1(�\C)

, (2.6)

and

∣
∣
∣
∣

∫

�N

g · u dσ(x)

∣
∣
∣
∣ ≤ ‖g‖L2(�N )‖u‖L2(�N ) ≤ c‖g‖L2(�N )‖u‖H1(�\C), (2.7)

and so estimate (2.5) follows by (2.6) and (2.7).
Our aim is to tackle the following inverse problem:
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Problem 2.1 Under Assumptions 2.1, 2.2, and 2.3, given umeas ∈ L2(�N ), find C ∈ C
such that u��N = umeas , where u ∈ H1

�D
(� \ C) solves (2.1).

It has been proved in [53] (see also [11]) that Problem 2.1 has a unique solution when
∂C is of Lipschitz class. Logarithmic stability estimates have been proved under the
assumption of C1,σ regularity, 0 < σ ≤ 1, on the cavity C , cf. [53].

For the reconstruction of the solution to the inverse problem we consider a standard
approach based on the minimization of a quadratic misfit functional, with a Tikhonov
regularization penalizing the perimeter of C . More precisely, let

min
C∈C

J (C), where J (C) = 1

2

∫

�N

|u(C) − umeas |2 dσ(x) + αPer(C), (2.8)

where α > 0 represents a regularization parameter, Per(C) the perimeter of the set C ,
see (1.8), and u(C) ∈ H1

�D
(� \ C) the solution to (2.4).

2.1 Continuity Property of Solutions with Respect to C

Adapting to our case some known results in literature, see for example [21, 23, 26, 37,
49] and references therein, in this section we will show the continuity of the boundary
term in (2.8) with respect to perturbations of the cavity C in the Hausdorff distance.

To this purpose, we recall the definition of Mosco convergence and some of its
properties (see [21, 22, 37, 51]). Let X be a reflexive Banach space, andGn a sequence
of closed subspaces of X . We define

G ′ := {x ∈ X / x = w − lim sup ynk , ynk ∈ Gnk , nk → +∞} (2.9)

and

G ′′ := {x ∈ X / x = s − lim inf yn , yn ∈ Gn for n large}. (2.10)

G ′,G ′′ are called the weak-limsup and the strong-liminf of the sequence Gn in the
sense of Mosco.

Definition 2.1 The sequence Gn converges in the sense of Mosco if G ′ = G ′′ = G.
G is called the Mosco limit of Gn .

In other words, Gn converges in the sense of Mosco to G when the following two
conditions hold:

If unk ∈ Gnk is such that unk⇀u in X , then u ∈ G; (2.11)

∀u ∈ G, ∃un ∈ Gn such that un → u in X . (2.12)
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Given � and � \ C , we can identify the Sobolev space H1
�D

(� \ C) with a closed

subspace of L2(�,Rd+d2) through the map

H1
�D

(� \ C) ↪→ L2(�,Rd+d2)

u → (u, ∂ j ui ), ∀i, j = 1, · · · , d
(2.13)

with the convention of extending u and∇u to zero inC . The same identification holds
for � \ Cn , extending un and ∇un to zero in Cn .

Since we are considering the case of uniform Lipschitz domains, we have the
following result, which is an adaptation of Theorem 7.2.7 in [21].

Theorem 2.4 Let us assume that Cn,C ⊂ � belong to the class C. If Cn → C in the
Hausdorff metric, then H1

�D
(�\Cn) converges to H1

�D
(�\C) in the sense of Mosco.

We can now prove the following continuity result.

Theorem 2.5 Let Cn ∈ C be a sequence of sets converging to C in theHausdorff metric
(cf. Remark 2.2), and let u(Cn) =: un ∈ H1

�D
(� \Cn), u(C) =: u ∈ H1

�D
(� \C) be

solutions of (2.4) in � \ Cn, � \ C, respectively. Then

lim
n→+∞

∫

�N

|un − u|2 dσ(x) = 0. (2.14)

Proof Thanks to the uniform Lipschitz regularity of ∂(�\Cn) (and ∂(�\C)), we have
that the Korn and Poincaré inequalities are uniform with respect to n in H1

�D
(�\Cn),

since they depend only on the Lipschitz constants of the domain ∂(� \ Cn), see [2,
27]. Therefore, from (2.4) and (2.5), we have that

‖un‖H1(�\Cn)
≤ c, (2.15)

where c is independent of n.
Hence, from the identification (2.13), we get that ‖un‖L2(�,Rd+d2 )

is uniformly

bounded. Up to subsequences, there exists u∗ ∈ L2(�,Rd+d2) such that

un⇀u∗ in L2(�,Rd+d2).

Thanks to Theorem 2.4 and from the first condition of the Mosco convergence applied
to Gn = H1

�D
(� \ Cn), G = H1

�D
(� \ C), and X = L2(�,Rd+d2), see (2.11), we

have that u∗ ∈ H1
�D

(� \ C).

Moreover, taking ϕ ∈ H1
�D

(� \C), there exists ϕn ∈ H1
�D

(� \Cn) by (2.12) such
that

ϕn → ϕ in L2(�,Rd+d2). (2.16)
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Considering theweak formulation for un (see (2.4) specialized to the casewithC = Cn

and ϕ = ϕn)

∫

�\Cn

C0∇̂un : ∇̂ϕn dx =
∫

�N

g · ϕn dσ(x), (2.17)

and since ϕn ∈ H1
�D

(� \ Cn) and ϕ ∈ H1
�D

(� \ C), it holds

∫

�N

g · ϕn dσ(x) =
∫

�N

g · (ϕn − ϕ) dσ(x) +
∫

�N

g · ϕ dσ(x).

Hence, thanks to Assumption 2.3 and (2.16), we have

∣
∣
∣
∣

∫

�N

g · (ϕn − ϕ) dσ(x)

∣
∣
∣
∣ ≤ c‖g‖L2(�N )‖ϕn − ϕ‖L2(�N )

≤ c‖ϕn − ϕ‖H1
�D

(�d0/2) → 0,

as n → +∞, where �d0/2 is defined as in (2.3). Therefore,

∫

�N

g · ϕn dσ(x) →
∫

�N

g · ϕ dσ(x), as n → +∞. (2.18)

The term on the left-hand side of (2.17) is equal to

∫

�\Cn

C0∇̂un : ∇̂ϕn dx =
∫

�\Cn

C0∇̂un : ∇̂(ϕn − ϕ) dx +
∫

�\Cn

C0∇̂un : ∇̂ϕ dx .

(2.19)

Then, by (2.15) and (2.16), it follows

∣
∣
∣
∣

∫

�\Cn

C0∇̂un : ∇̂(ϕn − ϕ) dx

∣
∣
∣
∣ ≤ c‖∇̂un‖L2(�\Cn)

‖∇̂(ϕn − ϕ)‖L2(�\Cn)
→ 0,

(2.20)

as n → +∞. Analogously, for the second integral on the right-hand side of (2.19),
using the symmetries of the elasticity tensor, we get

∫

�\Cn

C0∇̂un : ∇̂ϕ dx =
∫

�\Cn

∇̂un : C0∇̂ϕ dx

→
∫

�\C
∇̂u∗ : C0∇̂ϕ dx =

∫

�\C
C0∇̂u∗ : ∇̂ϕ dx,

(2.21)
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as n → +∞. Consequently, using (2.20) and (2.21) in (2.19), we get

∫

�\Cn

C0∇̂un : ∇̂ϕn dx →
∫

�\C
C0∇̂u∗ : ∇̂ϕ dx, as n → +∞. (2.22)

Therefore, we find that

∫

�\C
C0∇̂u∗ : ∇̂ϕ dx =

∫

�N

g · ϕ dσ(x)

=
∫

�\C
C0∇̂u : ∇̂ϕ dx, ∀ϕ ∈ H1

�D
(� \ C),

where the last equality comes from the weak formulation (2.4). Therefore,

∫

�\C
C0∇̂(u∗ − u) : ∇̂ϕ dx = 0, ∀ϕ ∈ H1

�D
(� \ C),

so that u∗ = u. This conclusion comes from the choice ϕ = u∗ − u, and the use of
Assumption 2.1 and Korn and Poincarè inequalities (see Proposition 1.1).

Next, we prove that un → u in L2(�N ) by showing strong convergence of un to u
in H1-norm in a neighborhood of the boundary of�. Consider the weak formulations

∫

�\Cn

C0∇̂un : ∇̂ϕ1 dx =
∫

�N

g · ϕ1 dσ(x), ∀ϕ1 ∈ H1(� \ Cn), (2.23)

∫

�\C
C0∇̂u : ∇̂ϕ2 dx =

∫

�N

g · ϕ2 dσ(x), ∀ϕ2 ∈ H1(� \ C). (2.24)

Now, we define � = (un − u)χ2, where χ is a smooth cut-off function, χ ∈ [0, 1] in
�, such that

χ =
{
1 in �

d0/4

0 in � \ �d0/2.

Then, we choose ϕ1 = ϕ2 = � in (2.23) and (2.24), that is

∫

�d0/2
C0∇̂un : ∇̂

(
(un − u)χ2

)
dx =

∫

�N

g · (un − u) dσ(x),

∫

�d0/2
C0∇̂u : ∇̂

(
(un − u)χ2

)
dx =

∫

�N

g · (un − u) dσ(x).

Subtracting the last two equations, we find

∫

�d0/2
C0∇̂(un − u) : ∇̂

(
(un − u)χ2

)
dx = 0,
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that is,
∫

�d0/2
χ2

C0∇̂(un − u) : ∇̂(un − u) dx

+
∫

�d0/2
2χC0∇̂(un − u) : ((un − u) ⊗ ∇χ)̂ dx = 0.

(2.25)

On the second integral, we apply the Young’s inequality with a suitable parameter
κ > 0, that is

∫

�d0/2
2χC0∇̂(un − u) : ((un − u) ⊗ ∇χ)̂ dx

≤ 4κ
∫

�d0/2
χ2

C0∇̂(un − u) : ∇̂(un − u)

+ 1

κ

∫

�d0/2
C0((un − u) ⊗ ∇χ)̂ : ((un − u) ⊗ ∇χ)̂.

Hence, using this last inequality in (2.25), we get

(1 − 4κ)

∫

�d0/2
χ2

C0∇̂(un − u) : ∇̂(un − u) dx

≤ 1

κ

∫

�d0/2
C0((un − u) ⊗ ∇χ)̂ : ((un − u) ⊗ ∇χ)̂.

The right-hand side integral goes to zero, noticing that

∫

�d0/2
C0((un − u) ⊗ ∇χ)̂ : ((un − u) ⊗ ∇χ)̂

≤ c
∫

�d0/2
C0|un − u|2|∇χ |2 dx ≤ c

∫

�d0/2
|un − u|2 dx −→ 0, as n → +∞.

(2.26)

The left-hand side can be estimated using the fact that

∫

�d0/2
χ2

C0∇̂(un − u) : ∇̂(un − u) dx ≥
∫

�d0/4
C0∇̂(un − u) : ∇̂(un − u) dx

and, then, by means of the Korn inequality

∫

�d0/4
C0∇̂(un − u) : ∇̂(un − u) dx ≥ c‖∇(un − u)‖2

L2(�d0/4)
. (2.27)

From (2.27) and (2.26), and recalling that un is converging strongly in L2-norm to u
from the previous results, we find that

‖un − u‖H1(�d0/4) → 0, as n → +∞. (2.28)

Finally, by the continuity of the trace theorem the proof is concluded. ��
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Remark 2.6 In the previous result, un → u in L2(�N ) can be also proved using the
following arguments: note that the trace operator is a linear continuous operator from

H1
�D

(�\Cn) to H
1
2 (�N ) (and, analogously, from H1

�D
(�\C) to H

1
2 (�N )), hence is

also continuous in the weak topology, see [19].Moreover, since H
1
2 (�N ) ↪→ L2(�N )

is compact, we find that un → u in L2(�N ).

As a consequence of the continuity of the boundary functional, some properties of the
functional J (C) defined in (2.8) follow.

Proposition 2.7 For every α > 0 there exists at least one solution of the minimization
problem (2.8).

Proof Let {Cn}n≥0 ∈ C be aminimizing sequence. Then there exists a positive constant
M such that

J (Cn) ≤ M, ∀n, (2.29)

hence

Per(Cn) ≤ M, ∀n.

By compactness (see Thereom 3.39 in [4]), there exists a set of finite perimeter C0
such that, possibly up to a subsequence,

|Cn�C0| → 0, n → ∞,

where Cn�C0 is the symmetric difference of the two sets. Moreover, thanks to the
compactness and equiboundedness of the setsCn and the fact thatCn ∈ C, there exists a
further subsequence which converges in the Hausdorff metric toC0 ∈ C, thanks to [39,
Theorem 2.4.10]. Moreover, by the lower semicontinuity of the perimeter functional
(see Section 5.2.1, Theorem 1, in [34]) it follows that

Per(C0) ≤ lim inf
n→∞ Per(Cn).

Using the continuity of the boundary functional, see (2.14), we also have

∫

�N

(u(Cn) − umeas)
2 dσ(x) →

∫

�N

(u(C0) − umeas)
2 dσ(x), as n → ∞.

In conclusion, we find that

J (C0) ≤ lim inf
n→∞ J (Cn) = lim

n→∞ J (Cn) = inf
C∈C

J (C),

and the claim follows. ��
We also prove stability with respect to the measured data.
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Proposition 2.8 Solutions of (2.8) are stable with respect to perturbations of the data
umeas , i.e., if un → umeas in L2(�N ) as n → ∞ then the solutions Cn of (2.8) with
datum un are such that, up to subsequences,

dH (Cn, C̃) → 0, as n → ∞,

where C̃ ∈ C is a solution of (2.8), with datum umeas .

Proof Using (2.8), we have that, for any n, Cn satisfies

1

2

∫

�N

(u(Cn) − un)
2 dσ(x) + αPer(Cn) ≤ 1

2

∫

�N

(u(C) − un)
2dσ(x) + αPer(C),

for all C ∈ C. Therefore, Per(Cn) ≤ M and hence, possibly up to subsequences,

dH (Cn, C̃) → 0, n → ∞,

for some C̃ ∈ C, and

Per(C̃) ≤ lim inf
n→∞ Per(Cn).

Moreover, by the continuity of the solution of (2.4) with respect to C , see Theorem
2.5, we get

J (C̃) ≤ lim inf
n→∞

1

2

∫

�N

(u(Cn) − un)
2dσ(x) + αPer(Cn)

≤ lim
n→∞

1

2

∫

�N

(u(C) − un)
2dσ(x) + αPer(C)

= 1

2

∫

�N

(u(C) − umeas)
2dσ(x) + αPer(C),

for all C ∈ C. Summarizing, C̃ ∈ C and it is a minimizer of the functional, hence the
assertion follows. ��
Finally, we can prove that the solution of the minimization problem (2.8) converges
to the unique solution of the inverse problem when the regularization parameter tends
to zero.

Proposition 2.9 Let us assume that there exists a solution C� ∈ C of the inverse
problem corresponding to datum umeas . Moreover, for any η > 0 let (α(η))η>0 be

such that α(η) = o(1) and η2

α(η)
is bounded as η → 0.

Furthermore, let Cη be a solution to the minimization problem (2.8) with α = α(η)

and datum uη ∈ L2(�N ) satisfying ‖umeas − uη‖L2(�N ) ≤ η. Then

Cη → C�

in the Hausdorff metric, as η → 0.
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Proof From the definition of Cη, it immediately follows that

1

2

∫

�N

(u(Cη) − uη)
2dσ(x) + αPer(Cη) ≤ 1

2

∫

�N

(u(C�) − uη)
2dσ + αPer(C�)

= 1

2

∫

�N

(umeas − uη)
2dσ + αPer(C�)

≤ η2 + αPer(C�). (2.30)

Straightforwardly, we find that

Per(Cη) ≤ η2

α
+ Per(C�) ≤ M . (2.31)

Hence, up to subsequences, arguing as in Proposition 2.8, we get

dH (Cη,C0) → 0, as η → 0,

for some C0 ∈ C. From (2.30) and (2.31), as η → 0, we find

∫

�N

(u(Cη) − uη)
2dσ → 0,

hence, also

∫

�N

(u(Cη) − umeas)
2dσ(x)

≤
∫

�N

(u(Cη) − uη)
2dσ(x) +

∫

�N

(umeas − uη)
2dσ(x) → 0.

By the continuity result in Theorem 2.5 and using the last relation, we find that

u(C0) = umeas, on �N .

Therefore, thanks to the uniqueness result of the inverse problem in Lipschitz domains
(cf. [53]) we get C0 = C�. ��

3 Reconstruction of Cavities—Filling the Void

From the numerical point of view, the minimization of the functional (2.8) is com-
plicated due to its non-differentiability. A typical approach to overcome this issue is
to consider a further regularization of the functional, where the perimeter is approx-
imated by a Ginzburg-Landau type functional, see for example [18]. This approach
is well-known in the literature and it has been applied in different contexts, see for
example [3, 12, 14–16, 18, 25, 30, 35, 44, 48].

123



32 Page 16 of 41 Applied Mathematics & Optimization (2022) 86 :32

First, we note that Problem (2.8) is equivalent to the following formulation

min
v∈X0,1

J (v), where J (v) = 1

2

∫

�N

|u(v) − umeas |2 dσ(x) + αT V (v), (3.1)

where X0,1 := {v ∈ BV (�) : v = χC a.e. in �, C ∈ C}, T V (v) is defined in (1.7),
and χC is the indicator function of C . Note that the space X0,1 is endowed with the
norm ‖v‖BV (�) = ‖v‖L1(�) + T V (v).

Remark 3.1 By compactness properties of BV (�) (see, e.g., [4], Theorem 3.23), any
uniformly bounded sequence in X0,1 admits a subsequence converging in L1(�) to
an element in X0,1. In fact, let vn a sequence uniformly bounded in X0,1, there exists,
possibly up to a subsequence, v ∈ BV (�) such that

vn → v in L1(�) ⇒ vn → v a.e. in �.

Since vn attains values 0 and 1 only, it follows that v ∈ X0,1.

Following the approach proposed in [18], we fill the cavity with a fictitious material
with elastic properties that are different from the background. Specifically, we take
an elasticity tensor C1 := δC0, where δ > 0 is sufficiently small. Therefore, the
boundary value problem (2.1) is modified into

⎧
⎪⎨

⎪⎩

div(Cδ(v)∇̂uδ(v)) = 0 in �,

(Cδ(v)∇̂uδ(v))ν = g on �N ,

uδ(v) = 0 on �D,

(3.2)

where

Cδ(v) = C0 + (C1 − C0)v, with C1 = δC0. (3.3)

Here C0 and C1 are the elasticity tensors in � \ C and C , respectively.

Remark 3.2 Thanks to Assumption 2.1, the fact that δ > 0, and by (3.3), the elasticity
tensor Cδ(v) is strongly convex.

Remark 3.3 The following analysis can be generalized to the case of a generic fourth-
order elasticity tensor C1 which is strongly convex and uniformly bounded with the
further hypothesis that

C1 Â : Â ≤ C0 Â : Â or C0 Â : Â ≤ C1 Â : Â.

Remark 3.4 When dealing with sequences, we will often use the simplified notation
un := uδ(vn), u := uδ(v), Cn := Cδ(vn), C := Cδ(v).
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The elastic problem (3.2) has the following weak formulation:

Find uδ(v) ∈ H1
�D

(�) solution to
∫

�

Cδ(v)∇̂uδ(v) : ∇̂ϕ dx =
∫

�N

g · ϕ dσ(x), ∀ϕ ∈ H1
�D

(�). (3.4)

Well-posedness of Problem (3.2) in H1
�D

(�) follows in the same way as for Problem
(2.1), and, in addition

‖uδ(v)‖H1(�) ≤ c‖g‖L2(�N )

We now approximate Problem (3.1) with the following one

min
v∈X0,1

Jδ(v), where Jδ(v) = 1

2

∫

�N

|uδ(v) − umeas |2 dσ(x) + αT V (v), (3.5)

where uδ(v) ∈ H1
�D

(�) is the solution of Problem (3.2).
We prove the existence ofminima of Jδ(v) in X0,1, on account of the ideas contained

in [14]. The proof is a consequence of the following property.

Proposition 3.5 Let {vn} ⊂ X0,1 be strongly convergent in L1(�) to v ∈ X0,1. Then
{uδ(vn)��N } strongly converges in L2(�N ) to uδ(v)��N , i.e., the map F : v →
uδ(v)��N is continuous from X0,1 to L2(�N ) in the L1 topology.

Proof Consider the weak formulation (3.4) associated to v and vn , respectively,

∫

�

Cδ(v)∇̂uδ(v) : ∇̂ϕ =
∫

�N

g · ϕ, ∀ϕ ∈ H1
�D

(�),

∫

�

Cδ(vn)∇̂uδ(vn) : ∇̂ϕ =
∫

�N

g · ϕ, ∀ϕ ∈ H1
�D

(�).

Subtracting the two equations and setting un := uδ(vn), u := uδ(v), Cn :=
Cδ(vn), C := Cδ(v), we get

∫

�

Cn∇̂(un − u) : ∇̂ϕ +
∫

�

(Cn − C)∇̂u : ∇̂ϕ = 0, ∀ϕ ∈ H1
�D

(�).

Thus, making the choice ϕ = un − u and proceeding similarly as in (2.5) to get
H1-estimates, we find

‖un − u‖2H1(�)
≤ c‖(Cn − C)∇̂u‖L2(�)‖∇̂(un − u)‖L2(�),

and then, by Cn − C = (C1 − C0)(vn − v) and the uniform bound on the elasticity
tensor, see Assumption 2.1, we derive

‖un − u‖H1(�) ≤ c‖(∇̂u)(vn − v)‖L2(�).
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Observe now that vn − v → 0 in L1(�) as n → +∞ so that, possibly up to a
subsequence, vn − v → 0, a.e. in �. Moreover, recalling that vn and v are bounded
and u ∈ H1(�), we deduce, by dominated convergence theorem, that

‖un − u‖H1(�) → 0, as n → +∞.

Finally, the trace theorem implies

‖un − u‖L2(�N ) → 0, as n → +∞.

��
Proposition 3.6 Jδ(v) admits a minimum v ∈ X0,1.

Proof Observe that Jδ(v) is bounded from below, by definition. Moreover, Jδ(v) �=
+∞, for v ∈ X0,1. So, let {vn} ⊂ X0,1 be a minimizing sequence of Jδ(v), that is

Jδ(vn) → inf
v∈X0,1

Jδ(v) = M, as n → +∞.

Then

0 ≤ Jδ(vn) ≤ 2M and 0 ≤ αT V (vn) ≤ 2M .

Hence, there exists a positive constant c, independent on n, such that

‖vn‖BV (�) = ‖vn‖L1(�) + T V (vn) ≤ c. (3.6)

This implies that vn is uniformly bounded in X0,1. Therefore, thanks to Remark 3.1,
there exists v ∈ X0,1 such that vn → v in L1(�). Due to the lower semicontinuity of
T V (v) with respect to the L1-convergence, we have

T V (v) ≤ lim inf
n→+∞ T V (vn)

and, using Proposition 3.5, we get

Jδ(v) = 1

2

∫

�N

|uδ(v) − umeas |2 + αT V (v)

≤ lim inf
n→+∞

(
1

2

∫

�N

|uδ(vn) − umeas |2 + αT V (vn)

)

= lim
n→+∞ Jδ(vn) = M .

(3.7)

��
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3.1 Phase-Field Relaxation

Proceeding as in [14, 30], we now consider a phase-field relaxation of the optimization
problem (3.5). More precisely, we define a minimization problem for a differentiable
cost functional defined on a convex subspace of H1(�), namely on the set

K = {v ∈ H1(�) : 0 ≤ v(x) ≤ 1 a.e. in �, v(x) = 0 a.e. in �d0/2},

where �d0/2 has been defined in (2.3), and, for every ε > 0, we replace the total
variation term with the following Modica–Mortola functional.

Problem 3.1 Given umeas ∈ L2(�N ), and ε, δ > 0, find

min
v∈K

Jδ,ε(v), Jδ,ε(v) := 1

2
‖uδ(v) − umeas‖2L2(�N )

+ α̃

∫

�

(
ε|∇v|2 + 1

ε
v(1 − v)

)
,

(3.8)

uδ(v) ∈ H1
�D

(�) being the solution to (3.2), for v ∈ K, and α̃ = 4
π
α, where 4/π =

(2
∫ 1
0

√
v(1 − v) dv)−1 is a rescaling parameter, see [1].

Remark 3.7 We expect �-convergence of the functional Jδ,ε to J , given in (3.1). How-
ever, this analysis is involved in the elastic context and is still an open issue that needs
a specific accurate study.

The following result holds

Proposition 3.8 For any δ, ε > 0, Problem (3.8) admits a solution v = vδ,ε ∈ K.

Proof Let us fix δ, ε > 0 and consider a minimizing sequence {vn} ⊂ K for Jδ,ε(v)

(we omit the dependence of vn on δ and ε). We have

Jδ,ε(vn) → inf
v∈K

Jδ,ε(v) = M .

Hence, by definition of minimizing sequence, 0 ≤ Jδ,ε(vn) ≤ 2M independently of n,
which implies that also ‖∇vn‖2L2(�)

is bounded. Moreover, recalling that vn ∈ K and
0 ≤ vn(x) ≤ 1 a.e. in �, we deduce that ‖vn‖L2(�) ≤ M1, with M1 independent of n
and hence ‖vn‖H1(�) ≤ M2, with M2 independent of n. Due to the weak compactness
of H1(�), there exists v ∈ H1(�) such that, possibly up to a subsequence, vn⇀v in
H1(�). Hence, vn → v strongly in L2(�) and vn → v a.e. in �. Since vn(1− vn) ≤
1/4, by means of the Lebesgue’s dominated convergence theorem, we get

∫

�

vn(1 − vn) →
∫

�

v(1 − v).
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Moreover, by the lower semicontinuity of the H1(�) norm with respect to the weak
convergence, we obtain

‖v‖2H1(�)
≤ lim inf

n→+∞ ‖vn‖2H1(�)
,

‖v‖2L2(�)
+ ‖∇v‖2L2(�)

≤ lim
n→+∞ ‖vn‖2L2(�)

+ lim inf
n→+∞ ‖∇vn‖2L2(�)

= ‖v‖2L2(�)
+ lim inf

n→+∞ ‖∇vn‖2L2(�)
,

‖∇v‖2L2(�)
≤ lim inf

n→+∞ ‖∇vn‖2L2(�)
.

By the last inequality and the convergence of vn to v a.e., by the use of Proposition
3.5 and the fact that vn is a minimizing sequence, we have

Jδ,ε(v) = 1

2
‖uδ(v) − umeas‖2L2(�N )

+ α̃

∫

�

(

ε|∇v|2 + 1

ε
v(1 − v)

)

≤ lim inf
n→+∞

(
1

2
‖uδ(vn) − umeas‖2L2(�N )

+ α̃

∫

�

(

ε|∇vn|2 + 1

ε
vn(1 − vn)

))

= lim
n→+∞ Jδ,ε(vn) = M .

Finally, by pointwise convergence, we know that 0 ≤ v ≤ 1 a.e. in � and v = 1 a.e.
in �d0/2. Hence, v is a minimum of Jδ,ε in K. ��

3.2 Necessary Optimality Conditions

In this section we provide an expression for the first order necessary optimality con-
dition associated with the minimization problem (3.8), formulated as a variational
inequality involving the Fréchet derivative of Jδ,ε.

Proposition 3.9 Define the map F : K → H1(�), F(v) = uδ(v), uδ(v) solution to
(3.2). Then the operators F and Jδ,ε (for every δ, ε > 0) are Fréchet-differentiable on
K ⊂ L∞(�) ∩ H1(�).

Moreover, any minimizer vδ,ε of Jδ,ε satisfies the variational inequality

J ′
δ,ε(vδ,ε)[ω − vδ,ε] ≥ 0, ∀ω ∈ K, (3.9)

where

J ′
δ,ε(v)[ϑ] =

∫

�

ϑ(C0 − C1)∇̂uδ(v) : ∇̂ pδ(v) + 2α̃ε

∫

�

∇̂v : ∇̂ϑ

+ α̃

ε

∫

�

(1 − 2v)ϑ. (3.10)
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Here ϑ ∈ K− v = {z s.t . z + v ∈ K} and pδ ∈ H1
�D

(�) is the solution to the adjoint
problem

∫

�

Cδ(v)∇̂ pδ : ∇̂ψ

=
∫

�N

(uδ(v) − umeas)ψ, ∀ψ ∈ H1
�D

(�). (3.11)

Proof First we prove that F is Fréchet differentiable in L∞(�). More precisely,

F ′(v)[ϑ] = u�(v), for ϑ ∈ L∞(�) ∩ (K − v),

where u�(v) is the solution in H1
�D

(�) of

∫

�

Cδ(v)∇̂u�(v) : ∇̂ϕ

=
∫

�

ϑ(C0 − C1)∇̂uδ(v) : ∇̂ϕ, ∀ϕ ∈ H1
�D

(�), (3.12)

namely,

‖F(v + ϑ) − F(v) − u�(v)‖H1(�) = o(‖ϑ‖L∞(�)). (3.13)

To this aim, we first show that

‖uδ(v + ϑ) − uδ(v)‖H1(�)

≤ c‖ϑ‖L∞(�), for ϑ ∈ L∞(�) ∩ (K − v).

Indeed, the difference uδ(v + ϑ) − uδ(v) satisfies

∫

�

Cδ(v + ϑ)∇̂(uδ(v + ϑ) − uδ(v)) : ∇̂ϕ

+
∫

�

(Cδ(v + ϑ) − Cδ(v))∇̂uδ(v) : ∇̂ϕ = 0, ∀ϕ ∈ H1
�D

(�).

(3.14)

Taking ϕ = uδ(v + ϑ) − uδ(v) and recalling that Cδ(v + ϑ) −Cδ(v) = (C1 −C0)ϑ ,
we obtain

∫

�

Cδ(v + ϑ)∇̂(uδ(v + ϑ) − uδ(v)) : ∇̂(uδ(v + ϑ) − uδ(v))

= −
∫

�

ϑ(C1 − C0)∇̂uδ(v) : ∇̂(uδ(v + ϑ) − uδ(v)).

(3.15)
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Hence, by using the assumptions on the elasticity tensors, Korn and Poincaré inequal-
ities, and the fact that v + ϑ ∈ K, we obtain

‖uδ(v + ϑ) − uδ(v)‖H1(�) ≤ c‖ϑ‖L∞(�)‖∇̂uδ(v)‖L2(�)

≤ c‖ϑ‖L∞(�)‖uδ(v)‖H1(�) ≤ c‖ϑ‖L∞(�)‖g‖L2(�N ) ≤ c‖ϑ‖L∞(�).
(3.16)

We now estimate uδ(v+ϑ)−uδ(v)−u�(v). Subtracting (3.12) from (3.14) and setting
ω = uδ(v + ϑ) − uδ(v), then it holds

∫

�

Cδ(v + ϑ)∇̂ω : ∇̂ϕ −
∫

�

Cδ(v)∇̂u�(v) : ∇̂ϕ = 0, (3.17)

from which

∫

�

Cδ(v)∇̂(ω − u�(v)) : ∇̂ϕ = −
∫

�

(Cδ(v + ϑ) − Cδ(v))∇̂ω : ∇̂ϕ

=
∫

�

ϑ(C0 − C1)∇̂ω : ∇̂ϕ.

(3.18)

Choosing now ϕ = ω − u�(v), we get

∫

�

Cδ(v)∇̂(ω − u�(v)) : ∇̂(ω − u�(v))

=
∫

�

(C0 − C1)ϑ∇̂ω : ∇̂(ω − u�(v)), (3.19)

and again by the boundedness of the elasticity tensors and the use of Korn and Poincaré
inequalities it follows

‖ω − u�(v)‖H1(�) = ‖u(v + ϑ) − uδ(v) − u�(v)‖H1(�)

≤ c‖ϑ‖2L∞(�), (3.20)

so that F ′(v)[θ ] = u�(v).
We now prove that Jδ,ε is Fréchet differentiable. By means of the chain rule and

the Frechét differentiability of F , we compute the expression of J ′
δ,ε(v), i.e.,

J ′
δ,ε(v)[ϑ] =

∫

�N

(F(v) − umeas)F
′(v)[ϑ]

+α̃

∫

�

(
2ε∇v : ∇ϑ + 1

ε
(1 − 2v)ϑ

)
, (3.21)

where, with abuse of notation, F(v) and F ′(v)[ϑ] denote the trace of F(v) and
F ′(v)[ϑ] on �N , respectively. By the definition of the adjoint problem and of u�(v),
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we get

∫

�N

(F(v) − umeas)F
′(v)[ϑ] =

∫

�N

(F(v) − umeas)u
�(v) =

=
∫

�

(C0 − C1)ϑ∇̂F(v) : ∇̂ pδ

(3.22)

and hence

J ′
δ,ε(v)[ϑ] =

∫

�

(C0 − C1)ϑ∇̂F(v) : ∇̂ pδ

+α̃

∫

�

(

2ε∇v · ∇ϑ + 1

ε
(1 − 2v)ϑ

)

.

Finally, by standard arguments, since Jδ,ε is a continuous and Frechét differentiable
functional on a convex subsetK of the Banach space H1(�), the optimality conditions
for the optimization problem (3.8) are expressed in terms of the variational inequality
(3.9). ��

4 Discretization and Reconstruction Algorithm

4.1 Convergence Analysis

Here, we assume that � is a polygonal (d = 2) or polyhedral (d = 3) domain. Again,
for simplifying the notation, we denote by u := uδ and p := pδ .

Let (Th)0<h≤h0 be a regular triangulation of � and define

Vh := {vh ∈ C(�) : vh |T ∈ P1(T ), ∀ T ∈ Th}, (4.1)

where P1(T ) is the set of polynomials of first degree on T , and

Kh := Vh ∩ K,

Vh,�D := Vh ∩ H1
�D

(�). (4.2)

For every h > 0, we set uh := (uδ)h : K → Vh,�D where uh is solution to

∫

�

Cδ(v)∇̂uh(v) : ∇̂ϕh =
∫

�N

gh · ϕh,∀ϕh ∈ Vh,�D . (4.3)

Here gh is a piecewise linear, continuous approximation of g such that gh → g in
L2(�N ) as h → 0.

As in [30], one can show that for every v ∈ K there exists a sequence vh ∈ Kh

such that vh → v in H1(�). Most of the following results are an adaptation of those
presented in [30] for a scalar equation to the case of the elasticity system, hence we
do not provide the proofs for some of them.
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The following lemma is a consequence of the continuity and coercivity of the
bilinear form on the left-hand side of (4.3) and Céa’s Lemma (see, e.g., [14]).

Lemma 4.1 Let g ∈ L2(�N ). Then, ∀ v ∈ K, uh(v) → u(v) strongly in H1(�) as
h → 0.

Next we state a result concerning the continuity of uh in the space Vh,�D .

Proposition 4.2 Let hk, vhk be two sequences such that lim
k→+∞ hk = 0 and vhk ∈ Khk

with vhk → v in L1(�). Then uhk (vhk ) → u(v) in H1
�D

(�) for k → +∞.

Proof The proof can be obtained reasoning similarly as in Lemma 3.1 of [30]. ��
Let Jδ,ε,h : Kh → R be the approximation to Jδ,ε defined as follows

Jδ,ε,h := 1

2
‖uh(vh) − umeas,h‖2L2(�N )

+α̃

∫

�

ε|∇vh |2 + 1

ε
vh(1 − vh), (4.4)

where we assume that umeas,h → umeas , as h → 0. Similarly as in Theorem 3.2 of
[30], we can show the following result.

Theorem 4.3 There exists vh ∈ Kh such that Jδ,ε,h(vh) = minηh∈Kh Jδ,ε,h(ηh). More-
over, let hk be such that limk→+∞ hk = 0. Then every sequence vhk has a subsequence
converging strongly in H1(�) and a.e. in � to a minimum of Jδ,ε.

In our numerical algorithm we approximately solve (3.8) and so we look for an
admissible point vh ∈ Kh that satisfies the first order necessary condition

J ′
δ,ε,h(vh)[ωh − vh] ≥ 0, ∀ωh ∈ Kh, (4.5)

rather than trying to locate a global minimum of Jδ,ε,h . To this aim, we consider the
discrete adjoint problem: find ph := (pδ)h ∈ Vh,�D such that

∫

�

Cδ(vh)∇̂ ph : ∇̂ψh

=
∫

�N

(uh(vh) − umeas,h)ψh, ∀ψh ∈ Vh,�D . (4.6)

Then using vh ∈ Kh , we can prove the discrete version of Proposition 3.9, where the
discrete variational inequality reads as:

∫

�

(C0 − C1)(ωh − vh)∇̂uh(vh) : ∇̂ ph + 2α̃ε

∫

�

∇vh · ∇(ωh − vh)

+ α̃

ε

∫

�

(1 − 2vh)(ωh − vh) ≥ 0, ∀ωh ∈ Kh . (4.7)

Then, we can prove the following theorem:
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Theorem 4.4 Let hk be such that limk→+∞ hk = 0 and vhk be a sequence satisfying
(4.5). Then there exists a subsequence of vhk that converges strongly in H1(�) and
a.e. in � to a solution v of (3.9).

Proof We set vk := vhk , uk := uhk (vhk ) and pk := phk (vhk ). Testing (4.6) with
ψh = pk we get

∫

�

Cδ(vk)∇̂ pk : ∇̂ pk =
∫

�N

(uk − umeas,k) · pk,

which yields, arguing as in (2.5) to get H1-estimates,

c‖pk‖2H1(�)
≤ ‖uk − umeas,k‖L2(�N )‖pk‖L2(�N ).

As the problem for uk is well-posed with uk ∈ H1
�D

(�) and umeas,k → umeas

(implying that ‖umeas,k‖L2(�N ) is uniformly bounded with respect to k), we get

‖pk‖H1(�) ≤ c.

A similar result holds for ‖uk‖H1(�). Therefore

‖pk‖H1(�) + ‖uk‖H1(�) ≤ c, uniformly in k. (4.8)

From (4.7), employing (1−2vk)(wk −vk) ≤ wk +2v2k and testing withwk = 0 ∈ Kh ,
we get

2α̃ε

∫

�

|∇vk |2 ≤ c‖∇̂uk‖L2(�)‖∇̂ pk‖L2(�)

+2α̃

ε
|�| ≤ cε, (4.9)

where we used (4.8). Therefore, vk is bounded in H1(�), hence there exists a subse-
quence (still denoted by vk) and v ∈ K such that

vk⇀v in H1(�), vk → v in L2(�) (and in L1(�)),

vk → v a.e. in �.

Thanks to Proposition 4.2 we have

uk → u in H1
�D

(�). (4.10)

Now, let p ∈ H1
�D

(�) be the solution of the continuous adjoint problem and let

p̂k ∈ Vhk ,�D be such that p̂k → p in H1
�D

(�). Taking the difference of the problems
solved by p and pk , after some standard manipulation we get
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∫

�

Cδ(vk)∇̂(pk − p̂k) : ∇̂ψ

=
∫

�

Cδ(vk)∇̂(p − p̂k) : ∇̂ψ +
∫

�

(Cδ(v) − Cδ(vk))∇̂ p : ∇̂ψ

+
∫

�N

(uk − u) · ψ +
∫

�N

(umeas − umeas,k) · ψ,

for all ψ ∈ Vhk ,�D . Taking ψ = pk − p̂k , we get

‖pk − p̂k‖H1(�) ≤ c
(
‖∇̂(p − p̂k)‖L2(�) +

∫

�

|v − vk |2|∇̂ p|2

+‖uk − u‖L2(�N ) + ‖umeas − umeas,k‖L2(�N )

)
. (4.11)

By hypothesis, we have ‖umeas − umeas,k‖L2(�N ) → 0 and ‖p − p̂k‖H1(�) → 0 for
k → +∞. Hence, invoking Proposition 4.2 and observing that

∫

�
|v−vk |2|∇̂ p|2 → 0

for k → +∞, we deduce pk → p in H1(�).
Next, we have to show that v satisfies the variational inequality (3.9). Givenω ∈ K,

there exists a sequence ω̂k ∈ Khk such that ω̂k → ω in H1(�) and a.e. in �. Then,
from the discrete variational inequality (4.7) we have for vk that

∫

�

(C0 − C1)(ω̂k − vk)∇̂uk : ∇̂ pk + 2α̃ε

∫

�

∇vk · ∇(ω̂k − vk)

+ α̃

ε

∫

�

(1 − 2vk)(ω̂k − vk) ≥ 0. (4.12)

Now, observe that

∫

�

(C0 − C1)(ω̂k − vk)∇̂uk : ∇̂ pk −
∫

�

(C0 − C1)(ω − v)∇̂u : ∇̂ p

=
∫

�

(C0 − C1)(ω̂k − vk)[∇̂(uk − u) : ∇̂ pk + ∇̂u : ∇̂(pk − p)]

+
∫

�

(C0 − C1)[(ω̂k − ω) − (vk − v)]∇̂u : ∇̂ p. (4.13)

The first integral on the right hand side converges to zero by (4.10) and pk → p
in H1(�). To show that also the second integral converges to zero, we invoke the
dominated convergence theorem. Hence, from (4.13), we obtain

∫

�

(C0 − C1)(ω̂k − vk)∇̂uk : ∇̂ pk −
∫

�

(C0 − C1)(ω − v)∇̂u : ∇̂ p → 0,

(4.14)
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as k → +∞. Then, utilizing (4.14) into (4.12), together with the fact that vk⇀v in
H1(�), and the lower semicontinuity of the norm, we find

‖∇v‖2L2(�)
≤ lim inf

k→+∞ ‖∇vk‖2L2(�)
.

Morover, noticing that
∫

�
vkω̂k → ∫

�
vω for k → +∞, we get

∫

�

(C0 − C1)(ω − v)∇̂u : ∇̂ p + 2α̃ε

∫

�

∇v · ∇(ω − v)

+ α̃

ε

∫

�

(1 − 2v)(ω − v)

≥ lim inf
k→+∞

{ ∫

�

(C0 − C1)(ω̂k − vk)∇̂uk : ∇̂ pk

+2α̃ε

∫

�

∇vk · ∇(ω̂k − vk) + α̃

ε

∫

�

(1 − 2vk)(ω̂k − vk)
}

≥ 0. (4.15)

Finally, it remains to show that vk → v strongly in H1(�). We choose a sequence
v̂k ∈ Khk such that v̂k → v in H1(�) and using the discrete variational inequality
(4.7) with ωhk = v̂k , we easily get ∇vk → ∇v in L2(�), implying the result. ��

4.2 Reconstruction Algorithm

In order to solve the discrete optimization problem we follow the method used in [14]
and [30]. The method is based on solving the following parabolic obstacle problem.
For δ, ε > 0 fixed, let v be the solution to

∫

�

∂tv(ω − v) + J ′
δ,ε(v)[ω − v] ≥ 0, ∀ω ∈ K, t ∈ (0 + ∞),

v(·, 0) = v0 ∈ K.

An easy computation shows that the value of the objective functional decreases in
time. Hence, we expect that if the limit as t → +∞ of its solution v(·, t) exists and it
is equal to the asymptotic state v∞, then this should satisfy the continuous optimality
conditions (3.9).

We now discretize the above problem by using a semi-implicit time discretization
scheme. We denote by {vnh }n∈N ⊂ Kh the sequence of approximations vnh � v(·, tn)
obtained as follows:

v0h = v0 ∈ Kh

vn+1
h ∈ Kh : 1

τn

∫

�

(vn+1
h − vnh )(ωh − vn+1

h )

+
∫

�

(C0 − C1)(ωh − vn+1
h )∇̂unh : ∇̂ pnh + 2α̃ε

∫

�

∇vn+1
h · ∇(ωh − vn+1

h )
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+ α̃

ε

∫

�

(1 − 2vnh )(ωh − vn+1
h ) ≥ 0, ∀ωh ∈ Kh, n ≥ 0, (4.16)

where τn is the time step, and unh , p
n
h ∈ Vh,�D are the discrete solutions of the forward

problem (4.3) and adjoint problem (4.6), respectively, for vh = vnh . We now prove a
monotonicity property of the method.

Lemma 4.5 For each n ∈ N, there exists a constant cn > 0 such that, if τn ≤ (1 +
cn)−1, then

‖vn+1
h − vnh‖2L2(�)

+ Jδ,ε,h(v
n+1
h ) ≤ Jδ,ε,h(v

n
h ), (4.17)

where cn = cn(�, δ, ξ0, h, ‖C0 − C1‖L∞(�), ‖pnh‖W 1,∞(�), ‖unh‖W 1,∞(�)).

Proof Choosing ωh = vnh in (4.16), after some simple manipulations we obtain

1

τn
‖vn+1

h − vnh‖2L2(�)
+ α̃ε‖∇(vn+1

h − vnh )‖2L2(�)

+ α̃

ε
‖vn+1

h − vnh‖2L2(�)
+ α̃

∫

�

(

ε|∇vn+1
h |2 − 1

ε
vn+1
h (1 − vn+1

h )

)

−α̃

∫

�

(

ε|∇vnh |2 − 1

ε
vnh (1 + vnh )

)

≤
∫

�

(C0 − C1)(v
n
h − vn+1

h )∇̂unh : ∇̂ pnh .

Adding and subtracting 1
2‖un+1

h − umeas,h‖2L2(�N )
and 1

2‖unh − umeas,h‖2L2(�N )
, we

get

1

τn
‖vn+1

h − vnh‖2L2(�)
+ α̃ε‖∇(vn+1

h − vnh )‖2L2(�)
+ α̃

ε
‖vn+1

h − vnh‖2L2(�)

+Jδ,ε,h(v
n+1
h ) − 1

2
‖un+1

h − umeas,h‖2L2(�N )
− Jδ,ε,h(v

n
h )

+1

2
‖unh − umeas,h‖2L2(�N )

≤
∫

�

(C0 − C1)(v
n
h − vn+1

h )∇̂unh : ∇̂ pnh ,

which implies

1

τn
‖vn+1

h − vnh‖2L2(�)
+ α̃ε‖∇(vn+1

h − vnh )‖2L2(�)
+ α̃

ε
‖vn+1

h − vnh‖2L2(�)

+Jδ,ε,h(v
n+1
h ) − Jδ,ε,h(v

n
h )

≤
∫

�

(vnh − vn+1
h )(C0 − C1)∇̂unh : ∇̂ pnh + 1

2
‖un+1

h − unh‖2L2(�N )

+
∫

�N

(un+1
h − unh) · (unh − umeas,h)
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=
∫

�

(vnh − vn+1
h )(C0 − C1)∇̂unh : ∇̂ pnh + 1

2
‖un+1

h − unh‖2L2(�N )

+
∫

�

Cδ(v
n
h )∇̂ pnh : ∇̂(un+1

h − unh)

=
∫

�

(Cδ(v
n+1
h ) − Cδ(v

n
h ))∇̂unh : ∇̂ pnh + 1

2
‖un+1

h − unh‖2L2(�N )

+
∫

�

Cδ(v
n
h )∇̂ pnh : ∇̂(un+1

h − unh), (4.18)

where in the last step we employed

Cδ(v
n+1
h ) − Cδ(v

n
h ) = (C0 − C1)(v

n
h − vn+1

h ).

It is easy to verify that it holds

∫

�

(Cδ(v
n+1
h ) − Cδ(v

n
h ))∇̂unh : ∇̂ pnh + 1

2
‖un+1

h − unh‖2L2(�N )

+
∫

�

Cδ(v
n
h )∇̂ pnh : ∇̂(un+1

h − unh)

=
∫

�

(Cδ(v
n
h ) − Cδ(v

n+1
h ))∇̂(un+1

h − unh) : ∇̂ pnh + 1

2
‖un+1

h − unh‖2L2(�N )

+
∫

�

Cδ(v
n+1
h )∇̂un+1

h : ∇̂ pnh −
∫

�

Cδ(v
n
h )∇̂unh : ∇̂ pnh

=
∫

�

(Cδ(v
n
h ) − Cδ(v

n+1
h ))∇̂(un+1

h − unh) : ∇̂ pnh + 1

2
‖un+1

h − unh‖2L2(�N )

=: I1,

where the last step follows from the definition of the discrete adjoint problem.
Then, using the Cauchy–Schwarz inequality, the trace theorem and the fact that in

finite dimensional spaces all norms are equivalent, we have

|I1| ≤ cn0‖C1 − C0‖L∞(�)‖∇̂ pnh‖L∞(�)‖vnh − vn+1
h ‖L2(�)‖∇̂(un+1

h − unh)‖L2(�)

+1

2
‖un+1

h − unh‖2L2(�N )

≤ cn1‖vnh − vn+1
h ‖L2(�)‖un+1

h − unh‖H1(�) + cn2
2

‖un+1
h − unh‖2H1(�)

(4.19)

where cn0 = cn0(�, h), cn1 = cn1(‖C1 − C0‖L∞(�), ‖∇̂ pnh‖L∞(�),�, h) and cn2 is the
constant in the trace theorem.

In the sequel we bound ‖un+1
h −unh‖H1(�) by means of the term ‖vnh −vn+1

h ‖L2(�).

To this aim, we subtract the equations for un+1
h and unh (cf. (4.3)) and employ ϕ =

un+1
h − unh as a test function. A standard manipulation yields

‖un+1
h − unh‖H1(�) ≤ cn3‖vnh − vn+1

h ‖L2(�), (4.20)
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with cn3 = cn3(�, δ, ξ0, h, ‖C1 − C0‖L∞(�), ‖∇̂ pnh‖L∞(�)). Employing (4.20) into
(4.19), we obtain

|I1| ≤ cn4‖vn+1
h − vnh‖2L2(�)

, (4.21)

where cn4 = cn4(�, δ, ξ0, h, ‖(C1 − C0‖L∞(�), ‖∇̂ pnh‖L∞(�), cn2).
Using (4.21) into (4.18), we deduce

1

τn
‖vn+1

h − vnh‖2L2(�)
+ α̃ε‖∇(vn+1

h − vnh )‖2L2(�)
+ α̃

ε
‖vn+1

h − vnh‖2L2(�)

+Jδ,ε,h(v
n+1
h ) ≤ Jδ,ε,h(v

n
h ) + cn4‖vn+1

h − vnh‖2L2(�)
. (4.22)

Now, since

1

τn
‖vn+1

h − vnh‖2L2(�)
+ α̃ε‖∇(vn+1

h − vnh )‖2L2(�)
+ α̃

ε
‖vn+1

h − vnh‖2L2(�)

≥ 1

τn
‖vn+1

h − vnh‖2L2(�)
, (4.23)

we get

(
1

τn
− cn4

)

‖vn+1
h − vnh‖2L2(�)

+ Jδ,ε,h(v
n+1
h ) ≤ Jδ,ε,h(v

n
h ). (4.24)

Finally, choosing τn ≤ 1
1+cn4

, the assertion of the lemma follows, just setting cn := cn4 .��

We are now ready to state a convergence result for our numerical scheme.

Theorem 4.6 Letv0h ∈ Kh be an initial guess. Then there exists a collectionof timesteps
τn such that 0 < γ ≤ τn ≤ (1+ cn)−1, ∀n > 0, where cn is the constant appearing in
Lemma 4.5, and γ depends on the data and possibly on h. The corresponding sequence
vnh generated by (4.16) has a convergence subsequence (still denoted by vnh ) in W 1,∞
such that

vnh → vh, n → +∞,

where vh ∈ Kh satisfies the discrete optimality condition

J ′
δ,ε,h(vh)[ωh − vh] ≥ 0, ∀ωh ∈ Kh .
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Proof Consider a collection of timesteps bounded by (1 + cn)−1, for all n > 0.
Employing Lemma 4.5, we have

+∞∑

n=0

‖vnh − vn+1
h ‖2L2(�)

≤ Jδ,ε,h(v
0
h), (4.25)

sup
n∈N

Jδ,ε,h(v
n
h ) ≤ Jδ,ε,h(v

0
h). (4.26)

Hence, the sequence vnh is bounded in H1
0 (�) and it holds

lim
n→+∞ ‖vnh − vn+1

h ‖2L2(�)
= 0. (4.27)

From the weak formulation of the forward and adjoint problems, the previous relations
give that unh and pnh are bounded in H1(�), hence in W 1,∞(�) as we are in finite
dimensional spaces. Therefore, thanks to the definition of the constant cn , reported in
the last part of the proof of Lemma 4.5, this gives that there exists a constant M > 0
such that cn < M , and equivalently there exists a positive constant γ > 0, independent
of n, such that γ ≤ (1+cn)−1. Hence, there exists a subsequence of (vnh , u

n
h, p

n
h) (still

denoted by the same symbol) such that

(vnh , u
n
h, p

n
h) → (vh, uh, ph) in W 1,∞(�),

and in particular

unh → uh a.e. in �, pnh → ph a.e. in �.

Hence, uh is the solution of the discrete forward problem and ph is the solution of the
discrete adjoint problem. Finally, from (4.16) and τn ≥ γ we get

∫

�

(C0 − C1)(ωh − vn+1
h )∇̂unh : ∇̂ pnh + 2α̃ε

∫

�

∇̂vn+1
h · ∇̂(ωh − vn+1

h )

+ α̃

ε

∫

�

(1 − 2vnh )(ωh − vn+1
h ) ≥ −C

γ
‖vn+1

h − vnh‖L2(�)‖ωh − vn+1
h ‖L2(�).

From (4.27) and recalling that vnh → vh , we deduce that vh satisfies the discrete
optimality condition (4.5). ��

5 Numerical Examples

In this sectionwe show the numerical results which are obtained from an application of
the Primal Dual Active SetMethod (PDASM) to the variational inequality (4.16). This
method has been presented in [40] and later applied for the detection of conductivity
inclusions in [30] and [14] for a linear and a semilinear elliptic equation, respectively.
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Fig. 1 Example of the meshes adopted

Primal dual active set methods represent a very good choice in engineering applica-
tions due to their effectiveness and robustness (cf., e.g., [38]). Here, we show that
choosing the parameter δ sufficiently small we are able to reconstruct elastic cavities
of different shapes. Given a tolerance tol > 0, the reconstruction algorithm is based
on the following steps.

Algorithm 1 Discrete Parabolic Obstacle Problem
Set n = 0 and v0h = v0, the initial guess for the inclusion

while ‖vnh − vn−1
h ‖ > tol do

find solution of the forward problem (4.3) with v = vnh
find solution of the adjoint problem (4.6) with v = vnh
find vn+1

h solving (4.16) via PDASM algorithm
update n = n + 1;

end while

In the implementation of Algorithm 1, the numerical experiments are performed
for d = 2 in the domain � = (−1, 1)2, using a triangular tessellation Th of �.
As boundary measurements, we use synthetic data. They are generated by solving
via the Finite Element method the forward problem (2.1), with boundary conditions
prescribed as in Fig. 2a on the square, with one or more cavities of given geometries.
We use a tessellation T re f

h which is more refined than Th on the common part outside
the cavities (see Fig. 1 for an example of the two tessellations) in order not to commit
inverse crime. Once extracting the values of the solution of the forward problem on
the boundary of the domain � obtained by the mesh T re f

h , we interpolate these values
on the mesh Th .

Therefore, by umeas we denote the resulting boundary datum on the mesh Th . We
also mention that the triangular mesh is adaptively refined during the reconstruction
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Fig. 2 Geometrical setting and refinement of the mesh

procedure using the values of ∇vh after an a-priori fixed number of iterations which
depend on the specific numerical example. See, as example, Fig. 2b related to the
reconstruction of a circular cavity.

In the reconstruction procedure, i.e. for the implementation of the Algorithm 1,
we assume to know two different boundary measurements. In fact, in the context
of inverse boundary value problems of this kind, it is reasonable to use Ng > 1
different boundary measurements uimeas , for i = 1, . . . , Ng which clearly improve
the numerical reconstruction results. Thus, we consider a slight modification of the
original optimization problem (3.8), assuming the knowledgeof Ng differentNeumann
boundary data gi , for i = 1, . . . , Ng and hence considering

min
v∈K

J sumδ,ε (v),

J sumδ,ε (v) := 1

Ng

Ng∑

i=1

(
1

2
‖uiδ(v) − uimeas‖2L2(�N )

)

+α̃

∫

�

(
ε|∇v|2 + 1

ε
v(1 − v)

)
, (5.1)

where uiδ(v) ∈ H1
�D

(�) is the solution to (3.2) with g = gi and for v ∈ K. The
necessary optimality condition related to (5.1) can be equivalently obtained reasoning
similarly as we did to derive (3.10).

In Table 1, we collect some of the parameters utilized in most numerical tests.
Possible changes in these values are highlighted in the text related to each specific
experiment.
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Table 1 Values of some
parameters utilized in Algorithm
1

Tol α̃ τn ε δ

10−5 10−2 10−3 1
16π or 1

8π 10−2

Fig. 3 Test 1. Reconstruction of a circular cavity. Dotted line represents the target cavity

Finally, all the numerical experiments are performed choosing, as initial guess, the
phase-field variable v0 = 0.

5.1 Numerical Experiments with Ng = 2 andWithout Noise in theMeasurements

Test 1: reconstruction of a circular cavity The elastic medium is described by
the Lamé parameters μ = 0.2 and λ = 1. The Neumann boundary conditions are
g1(x, y) = (0, 1

10 − 3
10 y) and g

2(x, y) = (− 1
2 x

2, y2). We set the parameter ε = 1
16π .

The mesh is refined with respect to the gradient of the phase-field variable every
1000 iterations. The algorithm stops after n = 3544 iterations. In Fig. 3 we show the
numerical results at three different time steps.

Test 2: reconstruction of a circular cavity—changing boundary conditions
and Lamé parametersWe propose the same numerical experiments of Test 1, show-
ing how the results change using different Neumann boundary conditions and Lamé
parameters. We report in the captions of Fig. 4 the selected parameters, data, and
also the number of time steps needed for reaching the tolerance. Note that the three
experiments consider different values for the Poisson coefficient ν := λ

2(λ+μ)
, that is
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Fig. 4 Test 2. Reconstruction of a circular cavity using several parameters and data. For each experiment,
we report the configuration at the final step n. Dotted line represents the target cavity

Fig. 5 Test 3. Reconstruction of a square-shaped cavity. Dotted line represents the target cavity

ν = 1
4 , ν = 1

3 , and ν = − 1
18 , respectively. In the three numerical examples of Fig. 4,

the refinement of the mesh happens every 1500, 1000, 2000 iterations, respectively.
Test 3: reconstruction of a Lipschitz domain This experiment aims at recon-

structing a square-shaped cavity. We show several numerical tests, choosing different
values for ε, different boundary conditions and different values of the number of itera-
tions for the refinement of the mesh. We have already shown results based on different
choices for the values of the Lamé parameters in the previous numerical tests, so we
fix the values of Lamé coefficients to be μ = 0.5 and λ = 1. In fact, recalling that the
range of the Poisson coefficient is −1 < ν < 1

2 (ν = 1
2 represents the incompressible

case), we have considered four relevant cases for the Poisson coefficient: one test on
an elastic material close to incompressible case (ν = 5

12 in Fig. 3e), two tests on elastic
coefficients of common materials (ν = 1

4 and ν = 1
3 in Fig. 4a, b, respectively), and

one test on auxetic materials, that is materials with negative Poisson ratio (ν = − 1
18

in Fig. 4c). In the results of Fig. 5, the refinement of the mesh happens every 6000
for the first two experiments and every 3000 iterations for the last one. The second
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Fig. 6 Test 4. Reconstruction of two cavities. Dotted line represents the target cavity

Fig. 7 Test 5. Reconstruction of a non-convex domain. It seems that the algorithm tends to reconstruct a
convex domain. Dotted line represents the target cavity

numerical result, see Fig. 5b, has the same parameters of the numerical example of
Fig. 5a except α̃ which is chosen α̃ = 5 × 10−2.

Test 4: reconstruction of two cavities This test provides results when the two
cavities to be reconstructed are a square and a circle. Neumann boundary conditions
are given by g1(x, y) = (x, y) and g2(x, y) = (−y,−x). We propose two numerical
reconstruction procedures, see Fig. 6. In Fig. 6a, we report the results obtained by
the standard algorithm, while in Fig. 6b we use a variant of the Algorithm 1 where
the parameter ε is initially set ε = 1

4π but after a fixed and a-priori chosen number
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Fig. 8 Test 6. Reconstruction of cavities by means of noisy measurements. Dotted line represents the target
cavity
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of iterations (8000 iterations) is updated and set ε = ε/4. In both cases the mesh is
refined after 5000 iterations. It is worth noting that the variant of Algorithm 1 does
not produce the visible oscillations of the test in Fig. 6a.

Note that we also change a little bit the value of δ. We have observed that δ cannot
be chosen too small otherwise numerical instability can appear. Numerically we have
seen that, in order to overcome this issue, τn has to be chosen always smaller than δ.
However, choosing τ too small increases the number of necessary iterations to satisfy
the stopping criterium.

Test 5: reconstruction of a non-convex domain We finally propose the recon-
struction of a cavity which is not convex, see Fig. 7. We use g1(x, y) = (x, y) and
g2(x, y) = (−y,−x) as Neumann boundary conditions and μ = 0.5 and λ = 1.
Parameters have the following values: ε = 1

16π , and τn = 5 × 10−4. Mesh is refined
every 5000 iterations. The stopping criterium is satisfied after n = 6825 iterations.

5.2 Numerical Experiments with Ng = 2 and Noise in theMeasurements

Test 6: reconstruction of cavities of different shapes using noisy measurements
Here we run some of the numerical tests showed in the previous section, adding to the
boundary measurements a normal distributed noise with zero mean and variance equal
to one. We choose two different noise levels: 2% and 5%. The results are reported in
Fig. 8.

For the the test in Fig. 8a, b, we use values of parameters as in Test 1 and refine
the mesh every 2000 and 2500 iterations, respectively. The reconstruction of a square-
shaped cavity, that is Fig. 8c, d, are obtained by means of parameters of Test 3—Fig.
5c, refining the mesh every 3000 and 10000 iterations. Lastly, to get the results in Fig.
8e, f we use the same parameters of Test 4—Fig. 6b. The mesh is refined every 5000
and 8000 iterations, while the value of the parameter ε is adapted after 8000 and 10000
iterations, respectively. In the captions of the single figures, we specify the values that
are changed with respect to the ones proposed in the Tests 1, 3, and 4.
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