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A B S T R A C T

Data Ecosystems (DE) are used across various fields and applications. They facilitate collab-
oration between organizations, such as companies or research institutions, enabling them to
share data and services. A DE can boost research outcomes by managing and extracting value
from the increasing volume of generated and shared data in the last decades. However, the
adoption of DE solutions for scientific data by R&D departments and scientific communities
is still difficult. Scientific data are challenging to manage, and, as a result, a considerable
part of this information still needs to be annotated and organized in order to be shared. This
work discusses the challenges of employing DE in scientific domains and the corresponding
potential mitigations. First, scientific data and their typologies are contextualized, then their
unique characteristics are discussed. Typical properties regarding their high heterogeneity and
uncertainty make assessing their consistency and accuracy problematic. In addition, this work
discusses the specific requirements expressed by the scientific communities when it comes to
integrating a DE solution into their workflow. The unique properties of scientific data and
domain-specific requirements create a challenging setting for adopting DEs. The challenges are
expressed as general research questions, and this work explores the corresponding solutions in
terms of data management aspects. Finally, the paper presents a real-world scenario with more
technical details.

. Introduction

Data play a central role as a critical resource, offering numerous benefits across diverse domains. The volume of data is steadily
rowing each day, therefore data platforms serve a fundamental purpose in managing otherwise inaccessible information [1]. Since
heir first formal definition [2], Data Ecosystems (DE) have been used in many different sectors. The most successful examples
an be found in the industry sector [3], where a data-sharing platform creates a marketplace in which the data providers have a
usiness benefit in sharing the data with the data consumer [4]. The DataONE usability and assessment working group1 has studied
ata-sharing practices in research. It monitored the practices’ evolution over a period of 3–4 years. The results of this study indicate
notable and general increase in the acceptance and willingness to share data, but the inhibitors and promoters of data-sharing

ractices vary across disciplines. The study also emphasizes the ongoing need to develop an infrastructure that promotes data sharing
hile accommodating the specific requirements of diverse research communities [5].

The limited access to data generated by other researchers or institutions is recognized as the primary obstacle to scientific progress
n many scientific fields [5]. While DE technologies have demonstrated success in the industry sector, their application to scientific
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domains is gaining popularity [6,7], even if with fewer examples, likely due to the lower volume of data and a smaller user base
in these sectors.

Scientific data are particularly rare and face well-known issues related to data quality [8]. Moreover, the unique data and domain
haracteristics make general guidelines to design a DE not easily applicable [9]. In many domains, a precise procedure to develop a
E in these sectors is still to be designed [10]. One of the most important uses of scientific data is the development of data-driven
redictive models, also using machine learning methodologies. In this area, a DE can help enhance the amount of shared data
vailable and, at the same time, increase the awareness of the importance of data quality [11].

Four types of Data Ecosystems are defined by the level of control over key data resources and participant interdependence [12]:
rganizational, Distributed, Federated, and Virtual DEs. In this work, we propose a solution that is a hybrid configuration of
rganizational and federated DE where the management of the data is centralized, while the infrastructure is federated. This setting
nables addressing the challenges that arise from scientific data properties and domain requirements when implementing a DE
n scientific domains. Therefore, we first contextualize the different types of scientific data. Then, this work introduces the main
hallenges and presents them as general research questions. These research questions pose complex challenges because it is difficult
o align individual interests with the data-sharing principles of a Data Ecosystem [13]. In order to address them, the research
uestions are decomposed as data management aspect actions. The paper concludes with a technical discussion based on a specific
ase study.

The paper is structured as follows. Section 2 discusses related work, while in Section 3, scientific data are introduced, showing
ow they interact at a business level in the predictive model development process. Section 4 presents the challenges of implementing
DE for scientific data in terms of research questions that result from the scientific data properties and the domain requirements.

ection 5 shows the proposed solution to address the research questions, while Section 6 delves into the details of applying
his approach in a real-world scenario. Finally, a more comprehensive discussion of the Data Ecosystem’s challenges and future
evelopments are discussed in Section 7.

. State of the art

Data Ecosystems (DE) and, more generally, data spaces are key elements to facilitate knowledge discovery and deliver new
echnologies. For instance, artificial intelligence (AI) technologies play a significant role in driving the business growth of
any companies. However, the development of AI products requires access to large and reliable volumes of data. Collaborative

nfrastructures like DEs can pave the way for the widespread adoption of AI across companies and all sectors of the economy [14].
imilarly, materials science researchers developed a DE to facilitate the use of machine learning within the community [15]. The
E discovers and collects data from different sources and automatically disseminates the new data across the ecosystem. Another

ecent application involves condensing heterogeneous COVID-19 data into a DE, building a Knowledge Graph (KG), and offering
nalysis services to improve the understanding of SARS-CoV-2 infection and its advancement [16].

Several studies have listed the design principles of data spaces [17], the architectural components [18], but in practice, each
E has its challenges, based on the application domain, that require specific customization [19]. If not properly addressed, these
hallenges can completely preclude the adoption of such a promising infrastructure. For instance, the medical sector requires a
igh level of trust and security [20], whereas the main challenges in the energy sector also impose to reach the fulfillment of
egulations imposed by the data provider [21]. In general, the fil rouge between all DEs in terms of challenges consists in building
rust between the stakeholders involved [22,23]. To achieve this, a proper data quality assessment and higher transparency are
xamples of possible solutions [24]. Other factors, such as openness and security, contribute to reaching a critical number of users
ecessary to keep running the platform. On the other hand, pricing and non-interoperable platforms are among the main failure
actors [25]. In many cases, the presence of the role of a coordinator within the data space enhances the trust between the data
onsumer and the data provider [26]. Over time, four DE typologies have been defined based on the policy to manage the data,
he DE goal definition, the degree of participant interaction, and data exchange within the ecosystem [12]. The first two typologies
re Organizational and Distributed DEs. Both have a central control system to fulfill a predefined goal, but the DE participants
an operate independently in the first one. In the latter, changes in the DE and pooled resources require participant collaboration.
eanwhile, federated and virtual DEs have no central management authority. In federated DEs, participants interact voluntarily to

each a predefined goal, while in the virtual DE, a coalition of participants can emerge to pool resources to achieve a specific goal.
hese four types of DE describe the edge cases of authority control, resources management, and participant interactions, but not all
cenarios can be restricted to design a DE confined to only one of the previously mentioned DE categories.

. Scientific data

Within this work, the term scientific data refers to four different types of data: experiments, predictive models, simulations, and
nalysis results. These data types are used or produced within a cyclic development process whose goal is to deliver a predictive
odel. The following paragraphs provide an intuitive explanation of each of these data types and how they interact with each other

rom a business perspective. In the next sections, we classify and discuss the properties that make them complex to be handled in
Data Ecosystem, together with possible specific domain requirements. Fig. 1 presents a high-level and non-domain specific class

iagram of scientific data with their main attributes (or metadata) and their relationships. The detailed class diagram can involve
2
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Fig. 1. General class diagram for scientific data.

Experiment. The term experiment represents data from an experimental campaign carried out by an experimenter. An experiment
is a combination of chemical–physical measurements and metadata associated to it. The measurements account for quantifying a
property under investigation, while the metadata provides essential details regarding how and when the measurement is carried
out. Examples of this information are the technical instruments used, the environmental setting, the unit of measurement, the
identification of the property of interest, the experimental procedure, and so on. In essence, the experiment metadata describes
the experimental condition (or setting) of an experimental campaign. On the other hand, the measurement is the numeric value
detected by the instruments and thus reported (Reported value(s)). Due to intrinsic measurement errors, usually an experimenter
carries out an experimental campaign rather than single experiments, i.e., the same experiment is repeated multiple times in the
same experimental condition, in order to be able to quantify and report the uncertainty on the measurements. The experimental
condition expressed by the metadata does not vary between the multiple measurements. Usually, the experiments are published on
a date with an associate publication in a journal. In most cases, the digital size of the data necessary to represent the essential digital
information, i.e., the experimental data that consist of the reported value, together with the metadata, is quite tiny. It is rarely bigger
than 10 MB, and often it is less than 1 MB, even if the entire material needed to derive the reported value can have a different
order of magnitude in size. Therefore, with a moderate cost in terms of memory, it is possible to store many experimental data.

(Predictive) model. A predictive model, or model, in short, is the leading business driver of a Data Ecosystem for scientific data.
The final purpose is to deliver an accurate model to predict unknown outcomes. Nowadays, a popular type of predictive model
is neural networks (NN). NNs are black-box methods by design. On the other hand, in the scientific domain, predictive models
usually embed chemical–physical laws into equations such as chemical reactions, which cannot be violated. Most of the time,
chemical–physical equations can be translated into a set of interpretable differential equations. Thus, these are white-box methods.
Black-box methodologies, such as physically informed NN (PINN), can also be employed to develop predictive models for scientific
domains. PINNs incorporate chemical–physical laws in the loss function to learn a set of parameters (NN weights), but they are
not interpretable. PINN, and in general NN, require much more data for the training and parameters to represent the domain, and
they usually do not generalize as well as the white-box methodology. In scientific domains, in the case of white-box models, which
elements, which equations, and how to include them in a scientific model is a design choice of the researchers, and it is usually
referred to as model parameters. In general, the larger the number of equations in a scientific model, the more complex it is to
resolve it and the more accurate. Simplifying, in the general case, a scientific model tries to predict how a chemical–physical system
evolves starting from a particular initial condition, solving a set of equations that encode the elements and their interactions in a
domain that the model designer decided to represent. Like neural networks, scientific models are also defined as data-driven since
real-world observations, i.e., experiments, are used to validate and improve the predictive models.

Simulation. A predictive model, given a set of initial conditions, can forecast the future state of a system. This predicted system state
is referred to as a simulation, which represents the solution to the model equations obtained through a numerical solver. Numerical
olvers are generally very complex, thus time-consuming, since they need to resolve, for instance, differential equations and, in
eneral, need numerical tweaks to address the problem correctly. A wrong or inappropriate configuration of the numerical settings
an lead to incorrect results, even if the underlying model is accurate. Additionally, improper numerical parameter settings may
ead to excessively long computational times and, in some cases, to failures to terminate the computation. The output file size of a
imulation can vary based on the grain of the numerical settings and their complexity. For instance, their file size can range from
3
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Fig. 2. Business process of the predictive model development loop.

Analysis result. The analysis results in the process of developing a predictive model serve the purpose of generating synthetic
information on scientific data. More specifically, it is intended to provide aggregate information on the model’s predictive capabilities
in different domain settings. Which metric or procedure to employ during the analysis is a parameter of this type of data.

The typical business process of the model development loop in which the four types of scientific data interact is depicted in
Fig. 2. This loop includes four main stages. It starts with the collection of experiments. Based on these experimental observations,
a new model or an updated version of a pre-existing one (thus coming from outside the process or from a previous iteration of the
loop) is generated or improved respectively to represent the new data, if necessary. Subsequently, the predictive model simulates
the same domain condition of all available experiments. Finally, the analysis starts. Experiments, i.e., the real-world values, are used
to compare the model predictions, i.e., the simulations. This kind of analysis is called model validation, and it is the most important
analysis in this process. This data contains synthetic insights about the model performance to guide the next model improvement.
This cycle is iterated until the analysis of the results is considered satisfactory or no more experimental data can be obtained.

4. Challenges

This section outlines the key properties of scientific data (Section 4.1) and the specific requirements of scientific domains
(Section 4.2) that make the employment of a Data Ecosystem challenging. These challenges arise not solely from the unique
characteristics of the data or specific domain requirements, but also from the combination of both. The challenges are then
generalized as general research questions (Section 4.3).

4.1. Scientific data properties

This subsection discusses six properties (P) of scientific data that make their management and integration in a Data Ecosystem
challenging. Table 1 qualitatively summarizes the high (H), medium (M), or low (L) impact or relevance of property on a specific
type of scientific data, as described in Section 3.

P1: Low volume - High cost. Scientific data, unlike other types of data, such as social media, are significantly less available. The
collection of experimental data involves on-field measurements using expensive equipment and materials, making it costly in terms of
both financial resources and time. Consequently, experiments are often unique and not easily replicable. Similarly, the development
of models is a complex process that demands extensive expertise, particularly in white-box approaches, and extensive computational
resources and data for building the models in black-box approaches, resulting in only a limited number of models being available for
certain scientific domains. Simulations are also available in a limited quantity since they are very pricey in terms of computational
resources needed and, in some cases, space to store them. Consequently, the results of analyses based on the other three types of
scientific data are limited too. Analyses are generally relatively inexpensive to compute. Although the volume of scientific data is
lower compared to other types of data, manual management is still unfeasible and prone to human error. The low volume and high
cost of scientific data highlight the need for a data management system, such as a Data Ecosystem, in the various scientific domains
to promote the reuse of all types of data and related development and analysis services.
4
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Table 1
Qualitative impact of a scientific data property on the corresponding scientific data type - (H) high, (M) medium,
(L) low.
Property Experiment Model Simulation Analysis result

Low-volume high-cost H H/M H/M L
Uncertainty H H M M
Accuracy consistency H M L L
Heterogeneity H/M M H/M L
Completeness M L M/L M
Reproducibility transparency H M M H

P2: Uncertainty. Uncertainty can be classified into two macro-categories: epistemic and aleatoric. Experiments are real-world
measurements, and they are intrinsically affected by aleatoric uncertainty. Repeating the same experimental measurement helps
mitigate this issue, quantifying the uncertainty. The reported value for an experiment corresponds to the mean value of the
measurements, and the standard deviation corresponds to the uncertainty [27]. The source of uncertainty in the experiment is
not only due to measurement error, but there is a set of contributing uncertainty causes. For instance, another source of uncertainty
for the experiments is the digitalization of plots from physical documents, such as published papers and reports, to extract the
measurement values. Models, on the other hand, are mainly affected by epistemic uncertainty. A model is an approximation of a
real-world system, inherently introducing errors. Simulations are, most of the time, deterministic. Repeating the exact simulation of
an experiment with the same model leads to the same result. However, numerical errors can also affect the uncertainty of the model’s
predictions. Analyses are generally not uncertain, even though they are affected by the propagation of uncertainty from the models,
simulations, and experiments. The uncertainties present in these underlying components can influence the overall uncertainty in
the analysis results.

P3: Accuracy & Consistency. Experimental observations of a system should be close to the (unknowable) ground truth and consistent
with each other. If multiple experimental measurements are available from different sources regarding the same experimental
conditions, all the reported values should be consistent, also accounting for their uncertainty. In other words, the more the reported
values are accurate, the lower the experiment’s uncertainty is, the easier it is to detect inconsistencies. Nevertheless, in reality, it
is hard to evaluate the consistency of the (many) experiments without uncertainty. Models represent the interaction of the system
elements. However, when new elements are being investigated, they may not be standardized in the representation. For instance,
models can use the same element name to represent different entities. As a result, it is not easy to compare the simulation results
consistently. Numerical solvers differ from each other mainly for numerical implementation choices such as the number of digits or
the employment of a particular library. Thus, giving the same model and conditions for forecasting can lead to different numerical
solutions (simulations). Usually, the difference is marginal. Finally, concerning analysis data, consistency is almost guaranteed,
assuming the analysis procedure is well-detailed and fixed on the same dataset.

P4: Heterogeneity. Scientific data exhibit heterogeneity from three distinct perspectives: type, source, and format. Considering
that many scientific domains have been active for several decades, the sources and methodologies for collecting and generating
experiments and models have evolved. At the same time, it is likely not to have a standardization by the scientific communities on
the representation format. Therefore, there are (sometimes also multiple) de-facto representation formats for all types of scientific
data.

P5: Completeness. Experiments are usually produced and collected over several decades. As the way of collecting them and scientific
findings change over time, some additional information may become essential to include among the experiment metadata; however,
some (old) experimental data may have incomplete information when more recent metadata are considered. Models are incomplete
by definition since they simplify a real-world system. For instance, it may not include all the elements of the domain or all the
interactions. The effects of such decisions are reflected in the model prediction accuracy. Simulations report all the elements and
interactions described in a model, but are quantified along discrete and, thus, not continuous, dimensions.

P6: Reproducibility/Transparency. Experiments are challenging to replicate since it is practically impossible to reproduce the exact
initial conditions of an experimental setting. Models and simulations, instead, if adequately documented, are easily reproducible.
It is fundamental that models disambiguate the meaning of represented elements and, concerning the simulations, the numerical
settings. Regardless of the methodology to derive a predictive model, white or black box, explaining the simulation results could
be difficult. Analysis results must be transparent about the analysis process and the computational steps to avoid inappropriate
conclusions.

4.2. Domain requirements

The development of a Data Ecosystem in a scientific domain faces not only the challenges posed by the unique properties of
scientific data, but also the need to fulfill certain business requirements (R). This work explores these requirements and how they
5
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R1: Keep user involved. Scientific domains are highly active research areas with a long history of studies. Over the years, the research
and scientific processes have undergone continuous changes. Nowadays, the workflow is consolidated, but recent technological
advancements present new opportunities to improve some aspects of the research process. New technologies such as machine
learning promise to enhance the comprehension of phenomena, while data management systems are fundamental to automating
and managing an increasing amount of data.

However, even if the new technologies are promising, changing the workflow that has guaranteed continuity of results over
the years is problematic. Moreover, these technologies are often distant from a scientific community’s expertise, thus, harder to
understand and trust. In the end, proposing new technology, such as the Data Ecosystem, requires keeping the final user and the
community involved.

In a Data Ecosystem where the central focus is data sharing, if users stop participating, it can lead to a decline in data sharing,
ultimately discouraging others from taking part. Two factors require attention to break this negative vicious cycle. First, providing a
system that offers all the traditional functionalities and the new ones in a user-friendly way. If some of the traditional functionalities
are not present or not working properly, then the final user could not be willing to use multiple methodologies, thereby disrupting
their workflow. Although it is acknowledged that software or information systems have a higher probability of failure in the early
stages, on the other hand, as user numbers and usage increase, reliability improves. Thus, an increasing number of users translates
into more data and greater trust in the shared data and platform. Second, a large initial investment is needed at the beginning to
collect shareable data and to implement the Data Ecosystem services and functionalities that can attract users to start using the
system and contribute additional data to increase the amount of shared data. Also, in this case, user involvement is important, both
for data collection and for defining and testing the needed functionalities, as well as improving them.

R2: Breakdown the cost. Centralized management of data within a Data Ecosystem helps maintain user engagement and keeps them
within the system by providing a single, reliable source of data and services. However, while a single organization may support
the upfront costs of initial development and data collection, maintaining a data-centric system incurs in a number of operational
expenses to guarantee the availability and adequate performance of the system. These costs involve not only maintaining the server
infrastructure to provide services and data, but also managing the data itself. However, based on the availability of ad-hoc tools in
some scientific domains, some costly and time-consuming data management aspects of the repository, such as data collection, can
be automated or semi-automated. For instance, ChemDataExtractor [28] is an automatic tool to extract chemical information from
the scientific literature. Additionally, certain simulations and analyses can be computationally intensive, making it impractical for
a single organization to bear such expenses. An alternative is the creation of an ad-hoc organization and requesting a fee from its
member to sustain these expenses. However, this approach is bureaucratically challenging and discourages the use and interest in
adopting the Data Ecosystem. Another alternative solution is a federated or distributed Data Ecosystem. In these settings, each group
interested in the Data Ecosystem services or data can create a copy of the repository or the system, eventually share data, manage
them as preferred, and dedicate as many resources as desired. It is highly scalable, but it is particularly challenging to maintain all
the databases synchronized and the software updated and ensuring a continuous willingness to share data among the participants.

R3: Confidentiality. New experiments and models, due to their development cost and their application in research and industry, are
considered particularly precious. Companies and academia are unwilling to give away their work immediately after it is developed.
These data give companies and research groups a technological advantage for the next generation of products. Usually, such data
become available after publication in journals or patents. Therefore, a Data Ecosystem willing to host scientific data has to guarantee
confidentiality while the data has not been published yet. Consequently, two factors have to be enforced. First, the user must be
able to trust the infrastructure. Second, it is fundamental that all the data, the ones with confidentiality restrictions and the ones
freely available, are in the same system but with the appropriate access rules. Research institutions will use such a system only if a
data management system offers this feature. Otherwise, splitting the scientific workflows over different platforms, technologies, and
methodologies based on the different confidentiality of the data leads to a heavier workload. Such a cost might not be sustainable to
justify the advantages of starting to use a new platform provided by a Data Ecosystem, even with prominent features and services.

4.3. Research questions

The combination of scientific data properties and domain requirements determines the challenges of applying a Data Ecosystem
in a scientific field. These challenges are summarized in three general research questions (RQ) that can be helpful when a Data
Ecosystem is implemented in a specific scientific domain. Table 2 summarizes and represents the involvement of a property or
requisite of a scientific domain within a research question.

RQ1: What services and functionalities should a Data Ecosystem implement when applied to scientific data?

RQ2: Which are the peculiar design choices in the architecture and in the workflow of a Data Ecosystem for scientific data?

RQ3: What are the prerequisites to facilitate adopting and retaining user engagement in a scientific Data Ecosystem?
6
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Table 2
Mapping the involvement of the properties of the scientific data and the domain requirements
onto the research questions.
Property RQ1 RQ2 RQ3

Low-volume high-cost X X X
Uncertainty X X
Accuracy consistency X X
Heterogeneity X X
Completeness X X
Reproducibility transparency X X

Requirement RQ1 RQ2 RQ3

Keep user involved X X X
Breakdown cost X
Confidentiality X X X

Table 3
Direct involvements of a data management aspect in the solution of a research question.
Aspect RQ1 RQ2 RQ3

Data architecture X X X
Data sharing X X X
Data preparation X X
Data transparency X
Data confidentiality X X
Data analysis X X X

5. Proposed solutions

This section addresses the research questions that make the employment of a Data Ecosystem for scientific data challenging,
roposing possible directions. Starting from the authors’ previous work [29], the research questions are tackled by examining six
ey aspects of data management (Sections 5.1 and 5.6). The proposed solutions carefully balance the design principles of a general
ata Ecosystem with the specific properties and requirements of a scientific domain. Table 3 reports a comprehensive overview of

he direct involvement of each data management aspect in addressing a research question. It is important to mention that since the
esearch questions are interconnected, the data management solutions are likewise interrelated. Therefore, each proposed solution
ndirectly influences resolution of other research questions.

.1. Data architecture

A Data Ecosystem for scientific data requires specific design choices regarding the overall architecture illustrated in Fig. 3. First,
t is fundamental to understand the business expectations when employing a Data Ecosystem in a scientific domain. It enables
dentifying the relevant scientific data and characteristics, required services, and actors involved in the business process. The
nique characteristics of the data guide the definition of the database schema. The data management should be centralized. This
rchitectural decision aims to enhance trust, transparency, traceability, and efficiency. The technological implementation of the
atabase could be distributed, even if it is not recommended, due to the risk of consistency issues. Furthermore, central data
anagement encourages users to share data, promoting collaboration and knowledge exchange within the Data Ecosystem. Fig. 3
epicts four types of entities: data ecosystem, user, third-party service, and worker. They communicate with each other through the

internet, in particular with the HTTPS protocol. The Data Ecosystem offers its services to the users through microservices, through
API endpoints. This service-oriented architecture allows flexibility, extensibility, and high maintainability, and users can request
and combine services as preferred. All the services of the Data Ecosystem are available through authentication provided by the back
end. Such authentication prevents malicious usage of the system and allows giving users different privileges and permissions. In
particular, the Data Ecosystem includes four different types of privileges. The reader can only read data, while the writer can insert
data into the system. The researcher can edit, delete, and verify the data; instead, the executor can use computational resources, hence
perform analyses or simulations. These privileges are not exclusive; multiple privileges can be associated with a user. Through the
back end, the Data Ecosystem can offer services with a combination of legacy and developed ad-hoc modules, both on-premises
or in-cloud, with third-party services. Finally, to maintain the scalability of the system, the architecture foresees delegating the
computational burden to external workers where the Data Ecosystem coordinates and distribute the workload. From this point of
view, the infrastructure is provided as a DE federated configuration.

5.2. Data sharing

Data are the key element in a Data Ecosystem, and its sharing functionalities help keep the system active within a community. In
the case of scientific data, their value and scarcity make sharing even more crucial. For this reason, a Data Ecosystem for scientific
7
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Fig. 3. General overview of the architecture and the main actors of a Data Ecosystem for scientific data.

ata has to embrace the FAIR (Findable, Accessible, Interoperable, and Reusable) principles [30], while ensuring confidentiality, as
iscussed later. Scientific data are inherently uncertain and often come with data quality issues, such as completeness, accuracy,
nd consistency. A Data Ecosystem, as a centrally managed repository, facilitates information sharing and addresses these problems.
t also prevents unnecessary data replication, promoting scientific data reusability. Experiments, models, and simulations in some
cientific domains are accumulated over decades, during which the representation format evolves. With a relational database, the
ata Ecosystem repository becomes independent of any specific format, and specific translation engines of the different formats
an be used to transform the scientific data as desired, making the Data Ecosystem interoperable. The service-oriented architecture

envisioned for the Data Ecosystem makes it accessible and flexible to be easily integrated with different workflows. The Data
Ecosystem should implement controlled access to its data and services. The authentication ensures the traceability of any database
change and the trustworthiness of the overall system and avoids malicious uses. However, this level of security does not permit the
data to be findable from outside the system. Therefore, the Data Ecosystem should create a representation of the scientific data in a
well-known representation format and upload it to platforms, such as for instance Zenodo,2 that associate a Digital Object Identifier
(DOI) to data items. By assigning a DOI, scientific data is accessible and searchable from outside, but without providing the full
range of services offered within the Data Ecosystem.

5.3. Data preparation

A Data Ecosystem gathers experiments, models, simulations, and analysis results in the same database. This repository enables
cross-analyses, leading to new insights about the data. On the other hand, it also introduces the risk of incorrect data quickly
influencing other data. To mitigate this risk, identifying user roles and assigning appropriate privileges within the Data Ecosystem
helps limit human errors. Moreover, tracing the activity of the users makes it easier to roll back the action and contain the
propagation of the error. However, the data preparation phase is fundamental because all data-driven outcomes are highly sensitive
to data quality. Therefore, ensuring a certain level of data quality within the Data Ecosystem enhances overall trustworthiness and
engagement. Data quality assessment is a precursor to data cleaning and enrichment activities. In the case of scientific data, following
the fitness for use concept [31], completeness, consistency, and accuracy are the primary data quality dimension to be investigated.
In particular, in the case of experiments, uncertainty is correlated to these three data quality dimensions [32]. Timeliness is not a
primary data quality dimension. Experiments are expensive, and replicating them is inconvenient. Thus, updating the old reported
values with new ones is rare, even if performed with newer and more precise instruments. On the other hand, simulation and analysis
results are deterministic, while models are versioned. In order to guarantee a certain data quality for scientific data, it is necessary
to combine automatic and manual controls. The Data Ecosystem should also automatically check the fulfillment of data quality rules

2 https://zenodo.org/.
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Fig. 4. Representing provenance of the model development process in the context of scientific data within a Data Ecosystem with the W3C PROV-Data model.

for each dimension; however, when it comes to the experiment’s accuracy, it is challenging to assess since, by definition, there is no
ground truth to compare. However, a peculiarity of scientific data is that its models follow chemical–physical laws, as they represent
more or less precisely a domain. Consequently, multiple models, developed independently by different groups, can be used to verify
the consistency of the experimental data based on the models’ predictions. A large discrepancy between the predictions and the
experimental data suggests that the expertise of a designated user is necessary to resolve the ambiguity.

5.4. Data transparency

Data provenance, also known as data lineage, is a branch of data management and data preparation whose scope is to account
or the reproducibility and transformation history of the data. Data provenance studies how and what to represent regarding the
tages that alter raw data. Usually, provenance enriches the final data with a collection of metadata, named provenance metadata,
hat encodes all the information about entities, actions, and subjects involved in the different stages of transformation. Provenance is
ot only fundamental to backtrack the data transformation, but it can also be used to store information about the replicability of the
ata processing and track down errors in data-driven applications [33,34]. In the end, provenance metadata is designed to ensure
ata transparency and trustworthiness. The provenance data model defines the structure of the provenance metadata. It specifies
ow to express the entities, activities, and agents with their interactions that participate in the creation or transformation of data.

This work employs the W3C PROV data model3 to design the provenance data model. According to the data sheets directives [35],
the provenance data model should represent only what is strictly necessary for the subject of the study. In general, a provenance
data model can be more or less specific [34], changing the verbosity level.

The W3C PROV data model leverages three concepts to represent the provenance metadata: Entity, Activity, and Agent [36]. An
ntity is the subject of the provenance; it is something whose evolution is tracked. An Activity is an action performed on an entity to
roduce a new version of itself or another entity. Instead, the Agent represents who is responsible for an action or an entity. The W3C
ata model presented in Fig. 4, using a combination of the ‘‘data’’ and ‘‘workflow’’ levels of detail, proposes the provenance metadata
ecessary to describe the stages of the business process described in Fig. 2, not including the procedure of external collection of
xperiments and models. On the other hand, it includes the new components included in the proposed solution in this work, such as

3 https://www.w3.org/TR/prov-dm/.
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the verification step to enhance the quality of data in the repository and the use of a coordinator-worker configuration to distribute
the computational workload.

Multiple experiments and models are stored in the Data Ecosystem. An experiment, before entering the loop of the model
development process, is submitted to a validation process. The Data Ecosystem and Researcher automatically and manually,
respectively, verify whether a new Experiment is compliant with the established quality thresholds in the policies defined by the
Data Ecosystem community. As a result, a Verified Experiment is derived and stored within the Data Ecosystem. At the first iteration
of the loop, a Model is given, and the Researcher requests the Simulation of a set of Verified Experiments with the Model. At this point,
a computational task is assigned to the Workers that simulate the Verified Experiment generating a Simulation. Once all the Simulations
are terminated, the Data Ecosystem can perform an analysis of the results, such as model validation, thus providing Analysis Result,
fundamental for the Researcher to generate a new, improved version of the Model and start the model development process again.

5.5. Data confidentiality

A trustworthy Data Ecosystem is one of the requirements for achieving high system engagement. From the security perspective,
it means ensuring authentication and confidentiality. Authentication is more related to the business process organization, user roles,
and privileges. On the other hand, data confidentiality is related to the management of user interactions across different organizations
within the Data Ecosystem in the different stages of the business process. Data confidentiality addresses the domain requirement for
scientific data that need to use the Data Ecosystem services and ultimately share the data, but, on the other hand, for some time,
during model development, it also needs not to be publicly accessible to guarantee academic and industrial advantages. Requiring
all data to be accessible to any user of the Data Ecosystem at all times could potentially disrupt the workflow of a research team
based on the usual scientific data management policies. Poor data management policies could ultimately discourage the adoption of
the Data Ecosystem. In the scientific data domain, experiments and models are the main types of data that require confidentiality.
In particular, new experiments are confidential for the reported values, while their metadata do not have confidentiality constraints.
The metadata of the scientific data should be accessible without any restriction. For instance, the metadata of an experiment describe
the experimental setting. Knowing all the experimental settings discourages other researchers from investing in performing an
experiment that others have already been investigated, even if it has yet to be made publicly available, optimizing the resources and
reducing duplicates. Within organizations, groups of users that work together and thus share the same resources can be defined.
Examples of organizations are universities, research groups, departments, or research centers. Every user in the Data Ecosystem
is affiliated with at least one organization. Some examples of data confidentiality policies are presented in the following. All the
scientific data published or generated by a user belong to his/her organization(s). The user, during the data publication, has to
specify whether the data are open or closed and under which conditions. All the closed-content data will become open, for example,
after an embargo of one year from its insertion in the Data Ecosystem. Within the Data Ecosystem, each user could access all open-
content data of all organizations and all the closed-content data belonging to his/her organization(s). Such flexible configuration
allows the definition of fine-grained (closed content) sharing policies. For instance, a single experiment or a collection of them can
be shared with another organization, or an organization can share all the closed-content data omni- or bi-directional. In terms of
implementation, data confidentiality can be ensured by encrypting the confidential information with the private key of the owner
of the confidential data.

5.6. Data analysis

Data analysis can extract hidden insights about the analyzed data and enhance the understanding of complex chemical–physical
phenomenologies that underlie the model predictions. In the context of this work, data analysis is a fundamental step for the further
improvement of a predictive model. A Data Ecosystem facilitates data analysis by providing a centralized repository where all data
are readily accessible. Moreover, the data within the Data Ecosystem have undergone a data preparation process, ensuring a certain
level of data quality. This addresses two key challenges in data analysis: the quantity and quality of data. Since most data analysis
is often domain-specific, it is important to underline two aspects of the design of a Data Ecosystem for scientific data. First, to retain
the users within the system, a Data Ecosystem has to offer the same analysis services as the usual – manual – workflow. The Data
Ecosystem, in addition, should support the automation of the workflow and be able to mine big amounts of data to extract new
insights that were not possible to derive before. Second, the Data Ecosystem should have a micro-services architecture where a
web service (HTTPS API) offers each functionality. In such a configuration, the infrastructure is flexible and language-independent.
In the majority of the experimental measurement, the final reported value is not a storage burden, but some analysis activities
are computationally expensive. Therefore, in the Data Ecosystem design, it is important to identify such functionalities and decide
whether to outsource (to the workers) the computational resources or not.

6. Case study

SciExpeM (Scientific Experiments and Models)4 is a Data Ecosystem developed with the aim to automatize the development
process of chemical kinetics predictive models [37]. Currently, it hosts more than 30K experimental data points regarding 2030

4 https://sciexpem.polimi.it.
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different experiments collected by six research groups. It has 206 chemical kinetics models that have generated almost 10K
simulations. The database size is around 1 GB.

Not all services and features were implemented immediately in SciExpeM, but it was a gradual process. We have identified three
ain phases, each with specific goals: prototype, framework, and Data Ecosystem [29]. This step-by-step development methodology,

n which features and services, thus complexity, were gradually integrated, not only expedited the delivery of SciExpeM, but also
llowed for continuous feedback collection throughout all stages of development. However, this approach is not risk-free. It was
ecessary to design and develop each version of SciExpeM considering the end goal of delivering a Data Ecosystem. Otherwise, there
s a risk of reimplementing or redesigning components that have become central to the project.

The prototype phase aims to identify the domain requirements, the business process, and the types of users and data involved. In
he chemical kinetic domain, we observed that the model development process can be outlined as a sequence of small operations that
ometimes are repeated. For this reason, a microservices-oriented architecture was a suitable solution for us. During this phase, also
he main technological choices were made. In particular, Django is used as the back end since it is versatile and offers functionalities
uch as authentication and PostgreSQL as a database engine. In the case of SciExpeM, the final database schema is much bigger
nd more complex than the one presented in Fig. 1 [37], but its core is unchanged. The additional complexity is due to the specific
cientific domain’s level of detail and complexity, but the database schema presented in Fig. 1 aims to be a template for similar
omains and applications.

During the framework stage, SciExpeM evolved from a proof-of-concept into a fully functional system that can be utilized
aily by a small group of users. As the system accommodates multiple users, it became crucial to address various data-related
hallenges, including data preparation, sharing, and analysis aspects. Automatic data quality checks are immediately performed
fter data insertion or creation to maintain high data quality standards. Data failing these checks are promptly refused. Over time,
s the repository accumulated a substantial volume of reliable data, additional services were introduced, such as data cleaning and
nhancement using machine learning techniques. For instance, knowledge graph embedding facilitated experimental uncertainty
rediction [32]. Within the Data Ecosystem and the organization, different users with varying levels of expertise interact with
he platform. Some data quality dimensions can be objectively assessed for scientific data, whereas others, such as the accuracy
f the experiments, may not have simple automated detection methods. However, as we explained previously, we can leverage
ross-validation of model prediction and experiments to report ambiguous cases automatically. The ambiguity is resolved by the
erification of the experiment by an experienced user, and authentication can be used to check if a user has the privileges for
his kind of operation. An ideal validation process for the experiments involves multiple validation iterations by users with diverse
ackgrounds, i.e., from different research groups. For efficient data analysis and improved user interaction, the system stores analysis
esults for reuse. By doing so, users can access and reference previous analyses, making their interaction with the Data Ecosystem
ore responsive and efficient.

Finally, in the last stage of the development of the system, SciExpeM becomes a Data Ecosystem, since it implements also data
ransparency and data confidentiality functionalities. Regarding the former, since all the functionalities and data are offered through
he APIs, we can easily trace all the events that modify the data and assemble the corresponding provenance records. For the latter,
ur deployment uses a database that is not distributed. Django interacts with the DBMS, and the query results are filtered and
ecrypted according to the data confidentiality policies with respect to the user requesting the data.

In the end, implementing a Data Ecosystem in the scientific domain starts with analyzing a business process. However, SciExpeM
ot only incorporates such a process speeding it up and bringing new functionalities, but it also demonstrates that the Data Ecosystem
unctionalities are fundamental in a proper research procedure, suggesting changes in the business process itself [38].

. Concluding remarks

This work discusses the adoption of a Data Ecosystem (DE) solution for scientific data to facilitate research workflows. It examines
he challenges and the corresponding proposed solutions.

Four types of scientific data are considered: experiments, predictive models, simulations, and analysis results. These data types
re the main data entities involved in the predictive model development process.

A DE in scientific domains can bring tremendous benefits for three reasons: first, due to the scarcity and cost of scientific data,
DE can enhance data sharing within the research community. Second, since the predictive model development process foresees

ime-consuming steps and error-prone sequences of tasks on scientific data, the DE can transform the tasks into services that can
elp automate and speed up research workflows. Finally, collecting and organizing the information in a DE can open new frontiers
o discovering hidden insights in analyzing large amounts of data.

Although using a DE in this field promises great results, some challenges may arise and impede successful accomplishment.
he challenges to adopting a DE in a scientific domain result from the combination of specific domain requirements from the
cientific research community and distinctive properties of scientific data. These properties vary from high heterogeneity and
ncertainty to the low volume of data that complicates the assessment of accuracy and consistency. The domain requirements can
e summarized as confidentiality, affordability, and trustworthiness. Experiments and models are very confidential contents that can
ive a considerable industrial and academic advantage. Therefore, the developers are not willing to share data immediately but only
fter some time. As a consequence, a Data Ecosystem has to provide a complete set of services that do not split the workflow based
n data confidentiality. In fact, as long as the final user has to use multiple workflows because the DE only includes some of the
sual functionalities, no one has sufficient incentives to switch to a new technology. Therefore, the DE services have to be complete
11

nd reliable. The effects of the challenges can be perceived in terms of user engagement levels. Low engagement determines fewer
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shared data and, thus, again, a lower number of users and level of trust in the DE platform. In addition, sustaining the costs of a
Data Ecosystem, both in terms of infrastructure, management, and maintenance, require a scalable and sustainable solution.

The paper agglomerates these challenges as research questions that can be used in other domains or scientific applications.
ubsequently, it addresses these research questions by examining solutions for different aspects of data management. The literature
as examples of centralized, federated, or distributed DE. In a centralized or distributed DE, there is a central data management
uthority, but the centralized one allows for the independent participation of the DE users, thus not requiring coordination between
he participants to keep the DE running with all the available data. A centralized data management system has major control over the
ata and makes it easier to track the use, misuse, and eventually, the right to be forgotten of data with simpler, less expensive, and
inding technologies such as the blockchain. At the same time, such DE can also easily perform other analyses on the repository, such
s data diversity, which is a critical property for data ethics. Ideally, the data management authority should be a no-profit superparty
rganization, such as IEEE, well-known in the field and trusted, whose ultimate goal is promoting cooperation and knowledge.
centralized data control system also allows for more reliable findability. In a distributed DE, even if the data management is

entralized, the availability of some functionalities or the entire repository requires coordination and reliable participants. For
nstance, if one participant became offline, not all the data could be available to the remaining participants. Therefore, assessing
ome analyses, such as the data diversity of the repository, could lead to incomplete or unreliable results. A similar situation occurs in
federated DE with no central data management authority. For instance, the data quality policy to accept the data in the repository,

uch as the required metadata to describe an experiment, could differ based on the participant. In a centralized DE, the availability
f services and data does not depend on the participants, and the data management policies are the same among all the participants.
n the other hand, this approach is easier to scale up. In this paper, to conciliate the design principles of DE and the challenges
f scientific data, we propose a hybrid DE configuration: central data management with federated computational resources. This
rchitecture is a good trade-off between the centrality of an organizational DE that has control over the data, but simultaneously
ncourages and promotes data sharing and the scalability of the system. In our setting, DE is the coordinator, and each organization
an decide to make available one or more workers for the computational tasks requested by its users. The paper concludes with a
inal discussion of a real-world application of a DE in the chemical engineering domain. Future research directions concern studying
more formal definition and application of the data confidentiality policies and guaranteeing intellectual property that, from our

xperience interacting with the domain stakeholders, are the primary ‘‘deal-breaker’’ and the limitation factor of applying a DE in
scientific domain.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The work of Edoardo Ramalli is supported by the interdisciplinarity Ph.D. project of Politecnico di Milano, Italy. The
ork of Barbara Pernici is supported by the PNRR-PE-AI ‘‘FAIR’’ (Future Artificial Intelligence Research) project funded by the
extGenerationEU program, Italy.

eferences

[1] V. Stodden, The data science life cycle: a disciplined approach to advancing data science as a science, Commun. ACM 63 (7) (2020) 58–66.
[2] M.I.S. Oliveira, B.F. Lóscio, What is a data ecosystem? in: Proceedings of the 19th Annual International Conference on Digital Government Research:

Governance in the Data Age, 2018, pp. 1–9.
[3] M. Jarke, B. Otto, S. Ram, Data sovereignty and data space ecosystems, Bus. Inf. Syst. Eng. 61 (5) (2019) 549–550.
[4] B. Otto, M. ten Hompel, S. Wrobel, Designing Data Spaces: The Ecosystem Approach To Competitive Advantage, Springer Nature, 2022.
[5] C. Tenopir, E.D. Dalton, S. Allard, M. Frame, I. Pjesivac, B. Birch, D. Pollock, K. Dorsett, Changes in data sharing and data reuse practices and perceptions

among scientists worldwide, PLOS ONE 10 (8) (2015) e0134826.
[6] J. Gelhaar, T. Groß, B. Otto, A taxonomy for data ecosystems, in: Proceedings of the 54th Hawaii International Conference on System Sciences, 2021, pp.

6113–6122.
[7] J. Gelhaar, T. Gürpinar, M. Henke, B. Otto, Towards a taxonomy of incentive mechanisms for data sharing in data ecosystems, in: Pacific Asia Conference

on Information Systems, 2021, p. 121.
[8] C. Batini, M. Scannapieco, Data and Information Quality: Dimensions, Principles and Techniques, Springer, 2016.
[9] L. Nagel, D. Lycklama, How to build, run, and govern data spaces, in: Designing Data Spaces: The Ecosystem Approach To Competitive Advantage, Springer

International Publishing Cham, 2022, pp. 17–28.
[10] M.I. S. Oliveira, G.d.F. Barros Lima, B. Farias Lóscio, Investigations into data ecosystems: a systematic mapping study, Knowl. Inf. Syst. 61 (2019) 589–630.
[11] C. Cappiello, W. Samá, M. Vitali, Quality awareness for a successful big data exploitation, in: Proceedings of the 22nd International Database Engineering

& Applications Symposium, 2018, pp. 37–44.
[12] E. Curry, A. Sheth, Next-generation smart environments: From system of systems to data ecosystems, IEEE Intell. Syst. 33 (3) (2018) 69–76.
[13] I. Jussen, J. Schweihoff, V. Dahms, F. Möller, B. Otto, Data sharing fundamentals: Definition and characteristics, in: Proceedings of the 56th Hawaii

International Conference on System Sciences, 2023, pp. 3685–3694.
[14] D. Hecker, A. Voss, S. Wrobel, Data ecosystems: A new dimension of value creation using AI and machine learning, in: Designing Data Spaces, 2022, p.

211.
[15] B. Blaiszik, L. Ward, M. Schwarting, J. Gaff, R. Chard, D. Pike, K. Chard, I. Foster, A data ecosystem to support machine learning in materials science,

MRS Commun. 9 (4) (2019) 1125–1133.
12

http://refhub.elsevier.com/S0169-023X(23)00096-4/sb1
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb2
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb2
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb2
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb3
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb4
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb5
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb5
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb5
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb6
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb6
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb6
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb7
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb7
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb7
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb8
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb9
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb9
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb9
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb10
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb11
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb11
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb11
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb12
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb13
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb13
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb13
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb14
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb14
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb14
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb15
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb15
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb15


Data & Knowledge Engineering 148 (2023) 102236E. Ramalli and B. Pernici
[16] A. Sakor, S. Jozashoori, E. Niazmand, A. Rivas, K. Bougiatiotis, F. Aisopos, E. Iglesias, P.D. Rohde, T. Padiya, A. Krithara, et al., Knowledge4COVID-19: A
semantic-based approach for constructing a COVID-19 related knowledge graph from various sources and analyzing treatments’ toxicities, J. Web Semant.
75 (2023) 100760.

[17] B. Otto, S. Lohmann, S. Auer, G. Brost, J. Cirullies, A. Eitel, T. Ernst, C. Haas, M. Huber, C. Jung, et al., Reference Architecture Model for the Industrial
Data Space, Fraunhofer-Gesellschaft, 2017, http://dx.doi.org/10.24406/publica-fhg-298818, URL https://publica.fraunhofer.de/handle/publica/298818.

[18] Y. Demchenko, C. De Laat, P. Membrey, Defining architecture components of the Big Data Ecosystem, in: 2014 International Conference on Collaboration
Technologies and Systems (CTS), IEEE, 2014, pp. 104–112.

[19] C. Cappiello, A. Gal, M. Jarke, J. Rehof, Data Ecosystems: Sovereign Data Exchange among Organizations (Dagstuhl Seminar 19391), Dagstuhl Rep. 9 (9)
(2020) 66–134, http://dx.doi.org/10.4230/DagRep.9.9.66, URL https://drops.dagstuhl.de/opus/volltexte/2020/11845.

[20] T. Berlage, C. Claussen, S. Geisler, C.A. Velasco, S. Decker, Medical data spaces in healthcare data ecosystems, in: Designing Data Spaces: The Ecosystem
Approach To Competitive Advantage, Springer International Publishing Cham, 2022, pp. 291–311.

[21] V. Janev, M.-E. Vidal, D. Pujić, D. Popadić, E. Iglesias, A. Sakor, A. Čampa, Responsible knowledge management in energy data ecosystems, Energies 15
(11) (2022) 3973.

[22] J. Gelhaar, B. Otto, Challenges in the emergence of Data Ecosystems, in: Pacific Asia Conference on Information Systems, 2020, p. 175.
[23] D. Lis, B. Otto, Data governance in data ecosystems–insights from organizations, in: Proc. AMCIS, 2020, p. 20.
[24] S. Geisler, M.-E. Vidal, C. Cappiello, B.F. Lóscio, A. Gal, M. Jarke, M. Lenzerini, P. Missier, B. Otto, E. Paja, et al., Knowledge-driven data ecosystems

toward data transparency, ACM J. Data Inf. Qual. (JDIQ) 14 (1) (2021) 1–12.
[25] L. Özcan, C. Koldewey, E. Duparc, H. van der Valk, B. Otto, R. Dumitrescu, Why do digital platforms succeed or fail? – A literature review on success

and failure factors, in: Proc. AMCIS, 2022, p. 15.
[26] B. Otto, The evolution of data spaces, in: Designing Data Spaces: The Ecosystem Approach To Competitive Advantage, Springer International Publishing

Cham, 2022, pp. 3–15.
[27] R.J. Moffat, Using uncertainty analysis in the planning of an experiment, Trans. ASME J. Fluids Eng. 107 (2) (1985).
[28] M.C. Swain, J.M. Cole, ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature, J. Chem. Inf. Model.

56 (10) (2016) 1894–1904.
[29] E. Ramalli, B. Pernici, From a prototype to a data ecosystem for experimental data and predictive models, in: Proc. of the First International Workshop

on Data Ecosystems (DEco’22), CEUR-WS, 2022, pp. 18–26.
[30] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, et al., The

FAIR Guiding Principles for scientific data management and stewardship, Sci. Data 3 (1) (2016) 1–9.
[31] R.Y. Wang, D.M. Strong, Beyond accuracy: What data quality means to data consumers, J. Manage. Inf. Syst. 12 (4) (1996) 5–33.
[32] E. Ramalli, B. Pernici, Knowledge graph embedding for experimental uncertainty estimation, in: Information Discovery and Delivery, 2023, http:

//dx.doi.org/10.1108/IDD-06-2022-0060, ahead-of-print.
[33] K. Cranmer, L. Heinrich, R. Jones, D.M. South, et al., Analysis preservation in ATLAS, in: Journal of Physics: Conference Series, Vol. 664, IOP Publishing,

2015, pp. 1–5.
[34] M. Herschel, R. Diestelkämper, H.B. Lahmar, A survey on provenance: What for? What form? What from? VLDB J. 26 (6) (2017) 881–906.
[35] T. Gebru, J. Morgenstern, B. Vecchione, J.W. Vaughan, H. Wallach, H.D. Iii, K. Crawford, Datasheets for datasets, Commun. ACM 64 (12) (2021) 86–92.
[36] K. Belhajjame, R. B’Far, J. Cheney, S. Coppens, S. Cresswell, Y. Gil, P. Groth, G. Klyne, T. Lebo, J. McCusker, et al., PROV-DM: The PROV data model,

W3C Recomm. 14 (2013) 15–16.
[37] E. Ramalli, G. Scalia, B. Pernici, A. Stagni, A. Cuoci, T. Faravelli, Data ecosystems for scientific experiments: managing combustion experiments and

simulation analyses in chemical engineering, Front. Big Data 4 (2021) 663410.
[38] E. Ramalli, T. Dinelli, A. Nobili, A. Stagni, B. Pernici, T. Faravelli, Automatic validation and analysis of predictive models by means of big data and data

science, Chem. Eng. J. 454 (2023) 140149.

Edoardo Ramalli received his master degree in computer science and engineering from Politecnico di Milano in 2020. From 2020 he is a Ph.D. candidate in
information technology under the supervision of prof. Pernici. His main research interests include knowledge extraction and management in data ecosystems,
mainly for developing predictive models.

Barbara Pernici is full professor of Computer Engineering at the Politecnico di Milano. She has published more than 70 articles in international journals and
about 350 papers at international level. Her research interests include adaptive information systems, data quality, IS energy efficiency, and social media analysis.
She is a member of the Editorial Board of the IEEE Transactions on Services Computing and ACM Transactions on the Web.
13

http://refhub.elsevier.com/S0169-023X(23)00096-4/sb16
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb16
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb16
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb16
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb16
http://dx.doi.org/10.24406/publica-fhg-298818
https://publica.fraunhofer.de/handle/publica/298818
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb18
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb18
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb18
http://dx.doi.org/10.4230/DagRep.9.9.66
https://drops.dagstuhl.de/opus/volltexte/2020/11845
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb20
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb20
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb20
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb21
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb21
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb21
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb22
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb23
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb24
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb24
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb24
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb25
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb25
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb25
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb26
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb26
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb26
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb27
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb28
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb28
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb28
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb29
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb29
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb29
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb30
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb30
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb30
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb31
http://dx.doi.org/10.1108/IDD-06-2022-0060
http://dx.doi.org/10.1108/IDD-06-2022-0060
http://dx.doi.org/10.1108/IDD-06-2022-0060
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb33
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb33
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb33
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb34
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb35
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb36
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb36
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb36
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb37
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb37
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb37
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb38
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb38
http://refhub.elsevier.com/S0169-023X(23)00096-4/sb38

	Challenges of a Data Ecosystem for scientific data
	Introduction
	State of the Art
	Scientific Data
	Challenges
	Scientific Data Properties
	Domain Requirements
	Research Questions

	Proposed Solutions
	Data Architecture
	Data Sharing
	Data Preparation
	Data Transparency
	Data Confidentiality
	Data Analysis

	Case Study
	Concluding remarks
	Declaration of competing interest
	Acknowledgments
	References


