
Received: 12 October 2020 Accepted: 14 October 2020 Published on: 10 November 2020

DOI: 10.1002/net.21999

R E S E A R C H A R T I C L E

An efficient approach to optimization of semi-stable routing in
multicommodity flow networks

Artur Tomaszewski1 Michał Pióro1 Davide Sanvito2 Ilario Filippini2 Antonio Capone2

1Instytut Telekomunikacji, Politechnika

Warszawska, Warsaw, Poland
2Dipartimento di Elettronica, Informazione e

Bioingegneria, Milan, Italy

Correspondence
Michał Pióro, Institute of Telecommunications,

Warsaw University of Technology, Nowowiejska

15/19, 00-665 Warsaw, Poland.

Email: m.pioro@tele.pw.edu.pl

Funding information
National Science Centre, Poland, Grant/Award

Number: 2017/25/B/ST7/02313

Abstract
Ideally, the network should be dynamically reconfigured as traffic evolves. Yet, even

within the software defined network paradigm, network reconfigurations cannot be

too frequent due to a number of reasons related to route consistency, forwarding rules

instantiation, individual flows dynamics, traffic monitoring overhead, and so on. In

this paper, we focus on the fundamental issue of deciding whether, when, and how

to reconfigure the network while traffic evolves. We consider a problem of optimiz-

ing semi-stable routing in the capacitated multicommodity flow network when one

may use at most a given maximum number of routing configurations (called routing

clusters) and when each routing configuration must be used for at least a given min-

imum amount of time. We propose an efficient solution approach based on routing

cluster generation that provides a tight lower bound on the minimum of a selected

objective function (like maximum link delay or a sum of link delays) and subopti-

mal solutions very close to the calculated bound. The approach scales well with the

size of the network.

KEYWORDS

integer programming, multicommodity flows, semi-stable routing, software defined

networks, time-dependent traffic

1 INTRODUCTION

The dynamic nature of network traffic caused by daily fluctuations is the origin of a crucial trade-off between routing optimality

and frequency of network reconfiguration. However, network operators have traditionally privileged static (or stable; the word

stable is used in a popular sense) routing approaches, like oblivious routing [2] and robust routing [10, 18, 20], that apply a

single routing configuration based on“worst case” traffic conditions. This unavoidably creates over-provisioning and suboptimal

utilisation of network capacity.

Recently, software-defined networking (SDN) has provided tools for making online network reconfiguration a potentially

viable solution: dynamic reconfigurations of routing can be applied at the network devices to optimize performance as the traffic

evolves [5, 8, 9, 15]. However, reconfiguring the network too frequently, in general, can affect network state consistency, since

reprogramming flow rules can take longer than the reconfiguration period.

A group of hybrid approaches, often referred to as semi-stable routing, have been recently proposed to combine static and

dynamic routing [3, 6, 16, 17, 21]. Using a limited set of routing configurations, each designed for specific time intervals, allows

for reducing the penalty of assuming the “worst case” traffic conditions, and, simultaneously, for controlling the reconfiguration

frequency. As a result, the optimization problem of selecting a sequence of routing configurations, and timepoints when the

consecutive routing configurations must be activated, arises.

In this paper we consider the problem of optimizing routing in the capacitated multicommodity flow network, in which

demand volumes change periodically over an ordered set of timepoints. Following the semi-stable routing approach, we analyze

538 © 2020 Wiley Periodicals LLC wileyonlinelibrary.com/journal/net Networks. 2021;77:538–558.

https://orcid.org/0000-0002-9347-9764
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.21999&domain=pdf&date_stamp=2020-11-10

TOMASZEWSKI ET AL. 539

a specific version of the problem where one may use at most a given maximum number of routing configurations and where

each routing configuration must be used for at least a given minimum number of consecutive timepoints, in order to meet the

maximum network reconfiguration frequency constraint. Referring to the set of consecutive timepoints as the routing (timepoint)

cluster, we name this problem the semi-stable routing cluster design problem (SSRCDP). In the considered version of SSRCDP,

the optimization objective is to minimize the network delay, that is, the sum of timepoint delays (over all timepoints) where for

a single timepoint its delay is defined as the sum of the link delays. Although we have chosen the link delay as the network

congestion measure, the solution method we propose is general enough to cope with other types of the congestion measure.

The works on semi-stable routing available in the literature usually exhibit one of the following limitations: (a) they ignore

the time domain by not providing any limit on the reconfiguration rate [3, 17, 21], (b) the number of created clusters is limited

and reconfiguration timepoints are arbitrary [3, 6]. Other semi-stable approaches have more recently been proposed to over-

come these limitations [4, 14]. In particular, the techniques presented there compute a set of routing configurations that can be

combined together to generate a routing configuration for a new traffic realization. However, combining multiple configurations

may, in particular, generate a large number of paths and flow split ratios that might not be feasible to handle by network devices.

For SSRCDP we propose a solution method based on cluster generation that delivers provably near-optimal solutions, that

is, the method also provides a good lower bound on the network delay. In addition, the proposed method scales well with the

size of the network and can be effectively applied to networks of large sizes. The problem formulation, the solution method,

and an illustrative realistic numerical example are presented in this work.

The rest of the paper is organized as follows. After introducing basic notation and formulating the SSRCDP problem

(Section 2), in Section 3 we discuss its exact solution methods. Then, in Section 4, we describe in detail the proposed solu-

tion approach. Numerical results illustrating the efficiency of our approach are presented in Section 5. Finally, in Section 6, we

conclude the paper and discuss directions of future work. Additional theoretical considerations that can lead to improving the

proposed approach are described in Appendix A.

Finally, we note that the presented paper is a substantially extended version of our conference paper [19].

2 NOTATION AND PROBLEM FORMULATION

2.1 Notation
The notation used in the paper, summarized in Table 1, is as follows. Let the capacitated multicommodity flow network be

modeled with a graph  = ( ,  ,), where  is the set of nodes,  is the set of directed links (where c(e)≥ 0, e∈  , is the

capacity of link e), and  is the set of directed demands (where o(𝑑), t(𝑑), 𝑑 ∈ , are, respectively, the originating node and

the terminating node of demand d). Next, let (𝑑) be a given set of (routing) paths in graph  that are admissible for demand

𝑑, 𝑑 ∈ , where each path p ∈ (𝑑) connects the demand’s origin o(d) with its termination t(d);  will denote the set of all

admissible paths, that is,  ≔
⋃

𝑑∈(𝑑). Additionally, let (e, 𝑑) ⊆ (𝑑), e ∈  , 𝑑 ∈ , denote the set of admissible paths of

demand d that use link e. Finally, let  ≔ {0, 1, … ,T−1} be the set of consecutive timepoints, and let h(𝑑, t) ≥ 0, 𝑑 ∈ , t ∈  ,

be the volume of demand d to be realized at timepoint t.
We assume that the routing configuration is defined by vector x ≔ (xdp)𝑑∈,p∈(𝑑), where xdp is the fraction (i.e., xdp ∈ [0,

1]) of the volume of demand d that is assigned to path p. The following condition must thus hold:∑
p∈(𝑑)

xdp = 1 𝑑 ∈ . (1)

Then, if routing configuration x is used at timepoint t ∈  , the utilization wt
e(x) of link e at t is defined as:

wt
e(x) ≔

1

c(e)
∑

p∈Q(e,𝑑)
h(𝑑, t)xdp e ∈  . (2)

Note that the quantity
∑

p∈(e,𝑑)h(𝑑, t)xdp in the right-hand side of definition (2) expresses the load of link e at timepoint

t; note that, in general, this load can be greater than the capacity of the link. Furthermore, let F : [0,+∞)→ [0,+∞) be an

increasing convex piece-wise linear function with F(0) = 0. Note that, as explained in Section 3.1, this function is of the form

F(w) = max {a(k)w+ b(k) : k = 1, 2, … , K}. We will call F(w) the delay function (see [7, 13]) as it is supposed to measure the

packet delay on a link for a given link utilization w. Finally, the quantity

zt(x) ≔
∑
e∈E

F(wt
e(x)) (3)

will be called the timepoint delay at timepoint t.
We may now introduce the notion of the (timepoint) cluster (t, l) with parameters t (the timepoint at which the cluster

starts) and l (the length, or size, of the cluster). Namely, (t, l) is the set of l consecutive timepoints that starts at timepoint t.

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

540 TOMASZEWSKI ET AL.

TABLE 1 Notation

Notation Description

 = ( ,  ,) Network graph, —set of nodes, —set of (directed) links,  - set of (directed) demands

 = {0, 1, … , T − 1} Set of timepoints

c(e) Capacity of link e (e∈)

h(d, t) Volume of demand d to be realized at timepoint t (𝑑 ∈ , t ∈ )

o(d), t(d) Originating node and terminating node, respectively, of demand 𝑑 ∈ 

(𝑑) Set of admissible (routing) paths for demand 𝑑 ∈ 

(e, 𝑑) Set of paths in (𝑑) that contain link e (e ∈  , 𝑑 ∈ )

 =
⋃

𝑑∈(𝑑) Set of all admissible paths

x = (xdp)𝑑∈,p∈(𝑑) Routing configuration (vector of path flows)

wt
e(x),F(wt

e(x)) Utilization of link e at timepoint t and the corresponding delay

zt(x) Timepoint delay (sum of link delays at timepoint t ∈ ) implied by routing configuration x

 Clusters composed of timepoints

t(), l() Starting timepoint and length (respectively) of cluster  (t() ∈  , l() ∈ {1, 2, … , T})

(t, l) Cluster with t() = t, l() = l, (t, l) = {t, t ⊕ 1, … , t ⊕ (l − 1)} (⊕ denotes addition modulo T)

𝒞 Control family - family of control clusters 

x() Routing configuration used in cluster 

z(, x) =
∑

t∈zt(x) Cluster delay for cluster  with routing configuration x

Z() Cluster delay of  minimized over all routing configurations x (Z() is a solution of RP())

Z(|∞) =
∑

t∈Z({t}) A lower bound for Z()
ℛ Partition of the set of timepoints  into at most N (1 ≤ N ≤

T
L

) routing clusters , each of length at least L (|| ≥ L, ∈ ℛ)

ℛ Routing clusters - clusters belonging to routing partition ℛ

z(ℛ) =
∑

∈ℛz(, x()) Network delay for partition ℛ (with routing configurations x(), ∈ ℛ)

Z(ℛ) =
∑

∈ℛZ() Minimum network delay for partition ℛ

SSRCDP Semi-stable routing cluster design problem

Z* Minimum of Z(ℛ) over all partitions ℛ (Z* is the optimal solution value of SSRCDP)

RP() Routing problem for  ⊆  (finding routing configuration realizing Z())
APP(𝒞) Approximative partitioning problem using control cluster family 𝒞

ℛ(𝒞) Routing partition solving APP(𝒞)

Y(𝒞) Minimum objective value of APP(𝒞) (lower bound for SSRCDP)

CGA Cluster generation algorithm

B,Z+,R+
B = {0, 1}, Z

+ = {0, 1… }, R
+: nonnegative real numbers

Hence, (t, l) ≔ {t, t ⊕ 1, … , t ⊕ (l − 1)}, where ⊕ denotes addition modulo T (i.e., the timepoints are counted modulo T).

For a given cluster  = (t, l), let t() = t and l() = l denote, respectively, the start and the length of .

Suppose that the same routing configuration (denoted by x() = (x()dp)𝑑∈,p∈(𝑑)) is used for all timepoints of cluster .

Then, we will call  a (stable) routing cluster. For a routing cluster  and a given routing configuration x, the quantity

z(C, x) ≔
∑
t∈C

zt(x) (4)

will be referred to as (routing) cluster delay (of cluster  under routing configuration x). The minimum cluster delay (i.e., the

value of z(, x) minimized over all routing configurations x will be denoted by Z().

2.2 Problem formulation
The semi-stable routing cluster design problem (SSRCDP) we consider is this: given ,  ,  , and a pair of positive integer

numbers N ≤T and L≤T , find

• a partition ℛ of the set of timepoints  into at most N (nonempty) routing clusters  (i.e., |ℛ| ≤ N), each of length at

least L (i.e., || ≥ L, ∈ ℛ)

• a routing configuration x() for each routing cluster  ∈ ℛ
so as to minimize the network delay Z(ℛ) ≔

∑
∈ℛZ().

In the following, the minimum value of the network delay resulting from SSRCDP will be denoted by Z*. Note that the

assumptions on N, L, and T imply that for a given L, 1≤L≤ T , it is sufficient to consider only the values of N not greater

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 541

FIGURE 1 Network topology [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Timepoints, traffic matrices and clusters [Color figure can be viewed at wileyonlinelibrary.com]

than
⌊

T
L

⌋
, because N =

⌊
T
L

⌋
is the maximum number of disjoint clusters with length not less than L forming a partition of  .

Because of that, the condition N ≤

⌊
T
L

⌋
will be assumed throughout this paper.

2.3 Example
Figure 1 depicts a real network topology linking 47 cities in a European Union country that will be used in the numerical

study presented in Section 5. The network consists of || = 47 nodes (routers) linked with | | = 140 directed links, each of

capacity 4 Gbps, and || = 47× 46 = 2162 traffic demands, corresponding to all ordered pairs of nodes in  . For this network

we consider a 24-hour time horizon and traffic measurements taken every 15 minutes. Hence, we deal with T = 24× 4 = 96

timepoints (each corresponding to a 15-minute time interval) and the set of timepoints  is equal to {0, 1, … , 95}. Set  is

depicted on the left-hand side of Figure 2, where the distinguished slot t = 12 corresponds to the time interval between 4 : 00

and 4 : 15 am.

The traffic matrices for timepoints t ∈  were derived from real traffic measurements taken every 15 minutes on a specific

weekday (a Wednesday in 2018), obtained from the network operator. The entries of each such matrix are given in Mb/s and

express the bitrate required by the corresponding ordered node-pairs, averaged over the 15 minute time interval corresponding

to the timepoint t, for which the matrix is specified. The entries of all 96 obtained traffic matrices range from 0.028 to 1712.044

Mb/s. The traffic matrix for timepoint t = 12 is partly depicted in the middle of Figure 2.

Note that for each timepoint t ∈  , the demand volumes h(𝑑, t), 𝑑 ∈ , used in the optimization formulations throughout

this paper represent the entries of the above described traffic matrix specified for a given t when these entries are numbered

linearly according to the lexicographical order, that is, when d = 1 corresponds to node pair (1, 2), d = 2 corresponds to (1, 3),

and so on.

In the numerical study of Section 5 we will assume that the maximal number of clusters is equal to N = 8, and the minimum

cluster length to L = 8. This means that we accept at most 8 changes of the routing configuration during 24 hours and require

that a routing configuration change can occur after the hold-off time of at least 2 hours. A feasible partition ℛ of  into 8

clusters  (i) ∶ i = 1, 2, … , 8, is illustrated on the right-hand side of Figure 2. Note that the length of any cluster is not smaller

than 8 and that timepoint t = 0 is not a starting point of any cluster of partition ℛ.

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

542 TOMASZEWSKI ET AL.

3 EXACT SOLUTION METHODS FOR SSRCDP

3.1 Fixed partition subcase
If the sets forming a partition ℛ of set  are given and fixed, SSRCDP reduces to finding a routing configuration x() min-

imizing Z() for each routing cluster  ∈ ℛ, and this can be done independently for each cluster. Thus, we first analyze the

problem of finding an optimal routing configuration for a given cluster. We aim, in particular, at deriving some properties that

can be useful in formulating and solving the original semi-stable routing cluster design problem.

Finding an optimal routing configuration for a given set of (not necessarily consecutive) timepoints  ⊆  is identical to

a well-known problem of finding an optimal routing configuration for a given set of traffic matrices. Such a routing problem
(denoted by RP()) consists in finding a single routing configuration x() that minimizes the sum of timepoint delays over  :

Problem RP()

Z() = min
∑
t∈

(∑
e∈

zt
e

)
(5a)

∑
p∈(𝑑)

xdp = 1 𝑑 ∈  (5b)

wt
e ≥

1

c(e)
∑

p∈Q(e,𝑑)
h(𝑑, t) xdp t ∈  , e ∈  (5c)

zt
e ≥ a(k)wt

e + b(k) t ∈  , e ∈  , k ∈  (5d)

xdp ∈ [0, 1] 𝑑 ∈ , p ∈ (𝑑) (5e)

zt
e,wt

e ∈ R
+ t ∈  , e ∈  . (5f)

Above, variables xdp, 𝑑 ∈ , p ∈ (𝑑), define a routing configuration x() common for all timepoints in  , vari-

ables wt
e, t ∈  , e ∈  , express link utilizations at the timepoints in  , and variables zt

e, t ∈  , e ∈  , specify the

corresponding link delays (hence, the term
∑

e∈zt
e in the objective function (5a) expresses the delay at timepoint t). In (5d),

parameters a(k), b(k), k ∈  ≔ {1, 2, … ,K}, determine the delay function F(z) ≔ max{a(k)z + b(k) ∶ k ∈ }, where

b(1) = 0> b(2)> · · ·> b(K), 0< a(1)< a(2)< · · ·< a(K).

Note that RP() is a linear programming (LP) problem in a noncompact formulation that can be solved to optimality using

the column (path) generation approach (see [12, 13]) based on a shortest path algorithm for the pricing problem: to generate

a new path p ∈ (𝑑) for demand 𝑑 ∈  and price out a new variable xdp one has to find a shortest path in graph  between

the end nodes of d, with the costs of links equal to
1

c(e)
∑

t∈ h(𝑑, t)𝜋t
e, e∈  , where 𝜋t

e are the optimal values of dual variables

associated with constraint (5c). A path is added to the problem if its cost is less than 𝜆d - the optimal value of dual variable

associated with constraint (5b).

It is well known that RP() can be reformulated as a compact LP problem using the node-link notation. Such a formulation

uses link flows (instead of path flows) and does not require column generation (see [13]). However, according to our experience,

for networks of realistic size, such as the one considered in Section 2.3 or larger, the most efficient way to solve the routing

problem is to use the noncompact formulation (5) embedded in an iterative algorithm. Problem (5) is the master problem, which

is solved alternately with the pricing problem that finds new paths to be added to the master. It is important that after the pricing

problem is solved the consecutive master problem can use the optimal simplex basis from the previous iteration for the warm

start. With such an implementation, it happens that for a given cluster  considered for the network example from Section 2.3,

it takes approximately l() seconds to solve RP() using the hardware/software configuration described in Section 5.

Solving SSRCDP for a given partition ℛ consists in finding the values Z() for each cluster  ∈ ℛ, through solving

RP(), and then computing the network delay Z(ℛ) =
∑

∈ℛZ(). When ℛ = { } then the resulting SSRCDP solution is

referred to as static routing, and when  = {{t} ∶ t ∈  } then the resulting solution is referred to as dynamic routing. Note that

static routing and dynamic routing impose, respectively, the upper and the lower bound on the optimal value of the SSRCDP

objective function when all possible partitions ℛ of set  are considered.

We end this section with the following simple observation.

Remark. For any two sets  ′, such that  ′ ⊆  ⊆  , the inequality

Z( ′) ≤
∑
t∈ ′

zt(x∗()) (6)

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 543

holds, where x∗() is the optimal routing configuration resulting from RP(), and zt(x∗()), t ∈  , are defined by

(2). The reason is that if Z( ′) were larger than
∑

t∈ zt(x∗()), then configuration x∗(), when applied to  ′, would

decrease the value of Z( ′). Clearly, when  =  ′ the right-hand side of (6) is equal to Z( ′).

3.2 Solving SSRCDP through dynamic programming
3.2.1 Linear partition case
Consider a subfamily𝒯 (0) of all partitions of the set of timepoints  such that each partitionℛ in𝒯 (0) contains a cluster of the

form (0, l) for some L≤ l≤T . Let ⟨t′, t′′⟩, where 0≤ t′ ≤ t′′ ≤T − 1, denote the cluster {t′, t′ + 1, … , t′′}, that is, cluster C(t′, l)
where l≔ t′′ − t′ + 1. It follows that each partitionℛ in  (0) is of the formℛ = {⟨t(0), t(1)⟩, ⟨t(1)+1, t(2)⟩, … , ⟨t(n−1), t(n)⟩},

where, n≤N (the number of clusters in  cannot be larger than N), t(0) = 0, t(n) = T − 1, and t(k)− t(k− 1)+ 1≥ L, k = 1, 2,

… , n (cluster length cannot be smaller than L). It follows that the number J of admissible clusters, that is, clusters that can be

used by the partitions in subfamily 𝒯 (0), is equal to

J =

⎧⎪⎪⎨⎪⎪⎩

1, if L ≤ T ≤ 2L − 1

3, if T = 2L
2(T − 2L + 1) + 1, if 2L + 1 ≤ T ≤ 3L − 1
(T−3L+1)(T−3L+2)

2
+ 2(T − 2L + 1) + 1, if T ≥ 3L.

(7)

In the first case of feasible T (L≤T ≤ 2L− 1) there is only one admissible cluster equal to ⟨0, T − 1⟩, simply because there

is no room for two clusters of size at least L. In the second case there are only three admissible clusters: ⟨0, T − 1⟩, ⟨0, L− 1⟩,
and ⟨L, 2L− 1⟩. In the third case, any partition in 𝒯 (0) contains either just one cluster ⟨0, T − 1⟩ (note that {⟨0, T − 1⟩} is

a one-element partition which is always feasible), or two clusters (since there is no room for three admissible clusters of size

at least to L). Note that any two-element partition consists of one cluster of the form ⟨0, t⟩ and one cluster of the form ⟨t+ 1,

T⟩, where t = L− 1, L, … , T − L− 1. The number of such pairs of clusters is T − 2L+ 1, and each of them determines two

unique clusters; hence J = 2(T − 2L+ 1)+ 1 in (7) is correct. Finally, in the fourth case, the second term on the right-hand

side, that is, 2(T − 2L+ 1), counts the number of clusters that can occur in the two-cluster partitions in 𝒯 (0), and the last term,

that is, 1, represents cluster ⟨0, T − 1⟩. The first term, in turn, gives the number of clusters that are admissible in the rest of

partitions, that is, the number of clusters that can occur between cluster ⟨0, t′⟩ and ⟨t′′, T − 1⟩, where t′ ≥ L− 1, t′′ ≤ T − 1− L,

and L≤ t′′ − t′ ≤ T − 2L. This number is equal to the number of clusters of size at least L that are contained in set {L, L+ 1, … ,

T −L− 1}, and this is exactly what formula
(T−3L+1)(T−3L+2)

2
expresses.

Now let W(t, c) denote the optimal objective function value of SSRCDP when the set of timepoints is reduced to {0, 1, … ,

t− 1} (where L≤ t≤T) and only c clusters (where c≤N, and, as previously assumed, N ≤

⌊
T
L

⌋
) from the family of admissible

clusters {⟨t(0), t(1)⟩ : 0≤ t(0), t(1)≤ t− 1, t(1)− t(0)+ 1≥L} can be used (note that this family is empty for t< L). The following

list of equalities allows one to find W(T , N), that is, the optimal objective function value of the original problem SSRCDP,

through dynamic programming [11]. Note that below, instead of Z(⟨t(0), t(1)⟩) (i.e., the quantity that expresses the optimal value

of the objective function of the routing problem RP(⟨t(0), t(1)⟩) formulated above in (5)), we will simply write Z(t(0), t(1)).

W(t, 1) = Z(0, t − 1) L ≤ t ≤ T (8a)

W(t, c) = W(t, 1) L ≤ t ≤ 2L − 1, 2 ≤ c ≤ N (8b)

W(2L, c) = Z(0,L − 1) + Z(L, 2L − 1) 2 ≤ c ≤ N (8c)

W(t, c) = min
L−1≤𝜏≤t−L−1

{W(t − 𝜏 − 1, c − 1) + Z(t − 𝜏 − 1, t − 1)} 2L ≤ t ≤ T , 2 ≤ c ≤

⌊ t
L

⌋
. (8d)

W(t, c) = W
(

t,
⌊ t

L

⌋) ⌊ t
L

⌋
< c ≤ N. (8e)

The first equality simply says that when only one cluster can be used then it must be the cluster ⟨0, t− 1⟩. The second equality

states that when L≤ t≤ 2L− 1 then only one cluster can be used (even when c> 1), since otherwise at least one cluster would

be of length smaller than L (note that the cluster to be used must be ⟨0, t− 1⟩). Equality (8c), in turn, gives the proper value of

W(t, c) for t = 2L. Note that in this case also the cluster ⟨0, 2L− 1⟩ is feasible but since Z(0, L− 1)+Z(L, 2L− 1)≤Z(0, 2L− 1),

(8c) is correct. Next, equality (8d) defines the basic recursive relation between the values of W(t, c). Note that for t = 2L,

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

544 TOMASZEWSKI ET AL.

equality (8c) is a special case of equality (8d). Finally, equality (8e) takes into account the fact that the number of clusters in a

partitioning of {0, 1, … , t− 1} cannot exceed
⌊

t
L

⌋
.

Observe that optimal solutions of SSRCDP for T ≤ 2L are directly implied by equalities (8b) and (8c). For T > 2L, a dynamic

programming (DP) algorithm that recursively uses equalities (16) for t≥ 2L+ 1 and c≥ 2 will lead to the optimal SSRCDP

objective function value W(T , N) (where N ≤

⌊
t
L

⌋
) and, at the same time, to an optimal (and feasible) partition of the set 

into routing clusters. It should be mentioned here that equalities (8) are an extended version of the recursive equality presented

in [1], where the DP approach was used for the above considered special case of SSRCDP, that is, assuming 𝒯 (0). Finally,

note that for applying the DP algorithm we first need to solve, in the preprocessing phase, the routing problem RP() for every

cluster  ∈ 𝒯 (0).

3.2.2 Cyclic partition case
Now, we proceed to the general (cyclic) case when the partitions of  do not have to necessarily contain a cluster of the form

(0, l). In this case the number of (feasible) clusters we need to consider for DP is given by the formula:

J =

{
1, if L ≤ T ≤ 2L − 1

T(T − 2L + 1) + 1, if T ≥ 2L.
(9)

The formula follows from the observation that, besides the cluster identical with  , a cluster belongs to one of allowable

partitions of  if, and only if, its length is between L and T − L, so that for a given starting timepoint t ∈  there are T − 2L+ 1

of such clusters.

SSRCDP can be solved by applying the DP algorithm described above for the partition family𝒯 (0). This is done by applying

the algorithm T times, for each partition subfamily 𝒯 (𝜃), 𝜃 = 0, 1, … ,T − 1, where for a given 𝜃 each partition in subfamily

𝒯 (𝜃) must contain a cluster of the form (𝜃, l) for some L≤ l≤T − L. Observe that now, for each 𝜃 = 1, 2, … , T − 1, the

equalities in (8) take the following form:

W(t, 1) = Z(𝜃, 𝜃 ⊕ (t − 1)) L ≤ t ≤ T (10a)

W(t, c) = W(t, 1) L ≤ t ≤ 2L − 1, 2 ≤ c ≤ N (10b)

W(2L, c) = Z(𝜃, 𝜃 ⊕ (L − 1)) + Z(𝜃 ⊕ L, 𝜃 ⊕ (2L − 1)) 2 ≤ c ≤ N (10c)

W(t, c) = min
L−1≤𝜏≤t−L−1

{ W(t − 𝜏 − 1, c − 1) + Z(𝜃 ⊕ (t − 𝜏 − 1), 𝜃 ⊕ (t − 1))} 2L ≤ t ≤ T , 2 ≤ c ≤

⌊ t
L

⌋
(10d)

W(t, c) = W
(

t,
⌊ t

L

⌋) ⌊ t
L

⌋
< c ≤ N. (10e)

Above, W(t, c) denotes the optimal objective function value of SSRCDP when the set of timepoints is reduced to

{𝜃, 𝜃 ⊕ 1, … , 𝜃 ⊕ (t− 1)} (and each partition must contain a cluster of the form (𝜃, l) for some L≤ l≤ t− L).

An alternative way for applying DP the cyclic case of SSRCDP is to consider all feasible clusters  that contain timepoint

t = 0. Let us denote the family of such clusters by  (0). Clearly, any  ∈  (0) is either equal to  or, assuming that T ≥ 2L,

can be divided into two subclusters ′ and ′′ (so that  = ′ ∪ ′′,′ ∩ ′′ = ∅) where:

′ = (0, k(1)), ′′ = (T − k(2), k(2)) (11a)

1 ≤ k(1) ≤ T − L (11b)

max{0,L − k(1)} ≤ k(2) ≤ T − L − k(1). (11c)

Note that the above conditions imply that l() = k(1) + k(2) and hence L ≤ l() ≤ T − L. This means that  is a feasible

cluster that starts at t = 0 and ends at t = k(1)− 1 when ′′ is empty (which is possible since k(2) can be equal to 0); otherwise,

when k(2)> 0 it starts at t = T − k(2) and ends at t = k(1)− 1. Observe that the number of clusters in family  (0) is equal to

P ≔ L + (L + 1) + · · · + (L + T − L) = 1

2
((T − L + 1)(T − L) − L(L − 1)). (12)

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 545

It follows that SSRCDP can be solved by successive application of DP to the sets of timepoints  () ≔ {k(1), k(1) +
1, … ,T − k(2) − 1} separately for each  ∈  (0). Let t′ ≔ k(1), T ′ ≔ T − l(), and N′ = min

{
N − 1,

⌊
t
L

⌋}
. The recursive

formulae appropriate for the set of timepoints  () are analogous to (8) and involve the values W(t, c) for L≤ t≤ T ′, 1≤ c≤N′:

W(t, 1) = Z(t′, t′ + t − 1) L ≤ t ≤ T ′ (13a)

W(t, c) = W(t, 1) L ≤ t ≤ 2L − 1, 2 ≤ c ≤ N′ (13b)

W(2L, c) = Z(t′, t′ + L − 1) + Z(t′ + L, t′ + 2L − 1) 2 ≤ c ≤ N (13c)

W(t, c) = min
L−1≤𝜏≤t−L−1

{W(t − 𝜏 − 1, c − 1) + Z(t′ + t − 𝜏 − 1, t′ + t − 1) } 2L ≤ t ≤ T ′, 2 ≤ c ≤

⌊ t
L

⌋
(13d)

W(t, c) = W
(

t,
⌊ t

L

⌋) ⌊ t
L

⌋
< c ≤ N′. (13e)

Note that the optimal objective value of SSRCDP when a particular cluster  ∈  (0) is forced to be used in partitions of 

is equal to Z() + W(T ′,M′), where W(T ′, M′) results from the DP algorithm applied to  () using formulae (13).

Finally, let us note that the first of the two above described alternative ways of using DP for solving SSRCDP in the cyclic

case involves T runs of the DP algorithm, while the second one involves P (where P is calculated using formula (12)) DP

runs. Although T is in general considerably smaller than P, the second option can be more efficient as it involves smaller DP

problems. More precisely, in the first option the DP table to be calculated has always T ×N elements, while in the second option

the DP table for a given  ∈  (0) has (T − l()) × min
{

N − 1,
⌊

t
L

⌋)
elements.

3.3 Comments
Even though the above described DP algorithm is polynomial, its application can be excessively time consuming. In the example

discussed in Section 2.3 we have T = 96 and L= 8, which, according to formula (9), means that the family of feasible clusters con-

tains J = 7777 clusters to be preprocessed for the DP algorithm. Since, as mentioned in Section 3.1, solving the routing problem

RP() takes approximately l() seconds, and the average cluster length is 48.5, the preprocessing time itself is (approximately)

equal to 7777× 48.5 = 377,184.5 seconds, that is, more than 105 hours. This makes the DP approach impractical.

Note that already for the special case when only the partitions from subfamily  (0) are considered, formula (7) implies that

there are J = 2791 feasible clusters, and the preprocessing time for these clusters will be of the order of tens of hours.

Observe that the DP execution time will grow enormously when longer time horizons  are considered. For example, for

a one-week time horizon with 5-minute measurement intervals and at least 2-hour interval between activating two consecutive

routing reconfigurations, we have T = 2016, L = 24 and, according to formula (9), the value of J becomes equal to 3,969,505.

Since in this case the average cluster length is equal to 1008.5, the total preprocessing time becomes (approximately) equal to

1,112,012 hours.

Let us also note that SSRCDP could be formulated as a compact mixed-integer programming (MIP) problem and, in theory,

directly solved to optimality using a MIP solver. This, however, would not be efficient in practice due to an excessive number

of binary variables in the formulation and a poor linear relaxation. We have confirmed this observation while trying a number

of such formulations.

Thus, to be able to effectively cope with SSRCDP we need some other approach. What we propose in this paper is to

decompose the semi-stable routing cluster design problem into a cluster design problem and a routing design problem, where

the routing design problem is solved only for a small number of potential clusters. Although this is a rather straightforward idea,

the real issue is how to couple these two subproblems. This issue will be dealt with in the remaining part of the paper.

4 EFFICIENT SUBOPTIMAL APPROACH

4.1 Approximation problem
The suboptimal approach to SSRCDP presented below consists in formulating an optimization problem that determines a sub-

optimal partition ℛ of the set of timepoints  into timepoint clusters, where for each timepoint cluster  ∈ ℛ, an optimal

routing configuration x*() will then be found by solving problem RP() in a postprocessing phase;  will be called a routing

partition and its elements will be called routing clusters.

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

546 TOMASZEWSKI ET AL.

Let ut (t ∈ ) be a binary variable that equals 1 if, and only if, t is a start of a routing cluster, and 0 otherwise, and let yt

(t ∈ ) be a continuous variable that approximates (from below) the minimum timepoint delay at t. Let  be a fixed subfamily

of the family of all timepoint clusters (the family 𝒞 will be called a family of control clusters or simply a control family), and

let Z(|∞) ≔
∑

t∈Z({t}) for each  ∈ 𝒞 . Note that 𝒞 does not have to be a partition of the set of timepoints  .

The approximate partitioning problem APP(𝒞) of finding a routing partition  that minimizes the approximated network

delay is as follows:

Problem APP()

Y() = min
∑
t∈T

yt (14a)∑
t∈

ut ≤ N (14b)

∑
0≤k≤L−1

ut⊕k ≤ 1 t ∈  (14c)

U =
∑

1≤k<l()
ut()⊕k  ∈ 𝒞 (14d)

Y =
∑
t∈C

yt  ∈ 𝒞 (14e)

yt ≥ Z({t}) t ∈  (14f)

Y ≥ Z() + (Z(|∞) − Z()) ⋅ U  ∈  (14g)

ut ∈ B, yt ∈ R
+ t ∈  (14h)

U ∈ Z
+,Y ∈ R

+
 ∈ 𝒞 . (14i)

Constraints (14b) and (14c) guarantee that each feasible binary vector u ≔ (ut)t∈ specifies a partition of the set of timepoints

 which contains at most N clusters, each of length at least L. Let us denote such a partition by ℛ. Then, constraint (14d) defines

integer variables U that specify with how many clusters in partition ℛ a given cluster  from the control family  intersects.

Note that when U = 0 then cluster 𝒞 intersects with only one cluster in partition ℛ (which is the cluster that contains cluster

), when U = 1 then cluster  intersects with exactly two clusters in partition ℛ, and so on. Additionally, constraint (14e)

defines the quantity Y : an approximated cluster delay for each control cluster .

Constraints (14f) and (14g) specify two kinds of valid inequalities, that is, inequalities that are satisfied by the maximal link

utilizations zt(x()), ∈ ℛ, t ∈  , determined (through definition (3)) for any partition and any set of routing configurations

x(), ∈ ℛ (satisfying condition (1)).

The inequality in constraint (14f) holds since, for any given t ∈  , Z({t}), as the optimal solution of RP({t}), provides

the absolute lower bound on the timepoint delay at t. Thus, (14f) is a valid inequality. Note also that (14f) implies that Y =∑
t∈yt ≥ Z(|∞).

Now, observe that the right-hand side of inequality in (14g) defines an affine function of variable U (defined by (14d)).

Let us denote this function by A. Since Z() ≥ Z(|∞) (by definition of Z(|∞)), function A is nonincreasing, and strictly

decreasing when Z() > Z(|∞). Since A(0) = Z(), for U = 0 the inequality in (14g) reduces to
∑

t∈yt ≥ Z(). Moreover,

condition U = 0 means that  ⊆  for some  ∈ ℛ, and hence, by the Remark in Section 3.1, implies the inequality∑
t∈zt(x()) ≥ Z(). This means that for U = 0 the inequality in (14g) is valid.

Next, since A(1) = Z(|∞), for U = 1, the inequality in (14g) reduces to
∑

t∈yt ≥ Z(|∞), which, as mentioned above,

is already implied by (14f). This means that in this case (14g) is valid as well. Moreover, since A is nonincreasing, A(U)≤A(1)

for U > 1 and this means that (14g) is valid for all U > 1. Thus, (14g) is valid for all possible values of U , and this finally

implies that APP(𝒞) is a relaxation of SSRCDP so that its optimal solution value Y(𝒞) is a lower bound for the minimum

network delay Z*.

Observe that the reason for using the particular form of the inequality in (14g) is that it is stronger than inequality∑
t∈C

yt ≥ Z(C) (1 − UC) C ∈ 𝒞 (15)

as far as the linear relaxation of APP(𝒞) is concerned.

In order to find a (suboptimal) solution of SSRCDP we can first solve APP(𝒞) for a given control family 𝒞 , for example

consisting of all clusters with length not greater than L, obtaining a routing partition ℛ(𝒞) of  . Then, we can solve the routing

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 547

problem RP() for each  ∈ ℛ(𝒞), and determine Z(ℛ(𝒞)), that is, the minimum of the network delay for partition ℛ(𝒞).
An issue is, however, how to find a way for extending the current control family𝒞 in order to decrease the so obtained Z(ℛ(𝒞)).
The following three basic properties of formulation APP() will help resolving this issue.

Proposition 1. Let 𝒞 be an arbitrary control family. For any routing partition  of 𝒯 into at most N routing clusters
with length at least L each, there exists a feasible solution u = (ut)t∈ , y = (yt)t∈ of problem APP(𝒞) that defines the
partition  and such that for each  ∈ ℛ, yt = zt(x()), t∈, that is, yt is equal to the timepoint delay at t implied by
the routing scheme x() of the routing cluster .

Proof. For each t ∈  we put ut = 1 if t = t() for some  ∈ ℛ; otherwise, we put ut = 0. Clearly, the so obtained

vector u satisfies constraints (14b), (14c) and uniquely defines the routing partition . Also, the vector y specified in the

thesis of the proposition is feasible for APP(𝒞) since, as explained above, inequalities (14f) and (14g) are valid for any

routing family ℛ in question. ▪

Proposition 2. Let ℛ(𝒞) be the routing partition determined by an optimal solution of APP(𝒞), that is, by u*. Then,

Y(𝒞) ≤ Z∗ ≤ Z(ℛ(𝒞)), (16)

where Y(𝒞) =
∑

t∈ yt∗ is the optimal objective function value of APP(𝒞), Z* is the optimal objective function value of
SSRCDP (i.e., the minimum network delay), and Z(ℛ(𝒞)) =

∑
∈ℛ(𝒞))Z().

Proof. Inequality Y(𝒞)≤Z∗ holds because APP(𝒞) is a relaxation of SSRCDP. The second inequality (Z∗ ≤ Z(ℛ(𝒞))
holds because partition ℛ(𝒞) with optimized clusters’ routing configurations is a feasible solution of SSRCDP. ▪

Proposition 3. Let ℛ(𝒞) denote an optimal routing partition resulting from APP(𝒞) and suppose that ℛ(𝒞) is a subset
of . Then Z(ℛ(𝒞)) is an optimal solution of SSRCDP.

Proof. Consider the vectors u, y defined for partition ℛ(𝒞) as in Proposition 1, where x() is a routing configuration

optimized for each routing cluster  ∈ ℛ(𝒞) by means of RP(). By Proposition 1, the solution u, y is feasible for

APP(). We will show that it is also optimal. Consider an arbitrary routing cluster  ∈ ℛ(𝒞) and note that among

the inequalities in (14g) that involve variables yt, t∈, the one corresponding to  =  is satisfied tightly since, by

assumption,
∑

t∈yt = Z(). Since for each ′ ⊂  (whether or not ′ is in 𝒞), the inequality
∑

t∈′yt ≥ Z(′) holds (by

Remark in Section 3.1), we conclude that vector y is optimal for APP(𝒞), and hence Y(𝒞) =
∑

t∈ yt =
∑

∈ℛ
∑

t∈yt =∑
∈ℛZ(). Thus, by (16), Z(ℛ(𝒞)) = Z∗. ▪

4.2 Cluster generation algorithm
The above properties justify the following algorithm for solving SSRCDP.

CGA: cluster generation algorithm

Step 0: Specify an initial control family 𝒞 .

Step 1: Solve APP(𝒞) to obtain ℛ(𝒞) and Y(𝒞). Compute Z(ℛ(𝒞)) by solving RP() for each  ∈ ℛ(𝒞).
Step 2: If ℛ(𝒞) ⊆ 𝒞 or

Z(ℛ(𝒞))−Y(𝒞)
Y(𝒞)

≤ 𝜀 then stop: ℛ() is a suboptimal (or even optimal) routing partition

solving SSRCDP (where for each  ∈ ℛ its routing is optimized by RP()).

Step 3: 𝒞 ← 𝒞 ∪ℛ(𝒞) and go to Step 1.

If in Step 2 the condition ℛ(𝒞) ⊆ 𝒞 is fulfilled then the routing partition ℛ(𝒞) delivered by CGA is optimal and Z(ℛ(𝒞))
is the optimal objective value. The same is true when

Z(ℛ(𝒞))−Y(𝒞)
Y(𝒞)

equals 0. Clearly, the delivered family can be optimal even

when ℛ(𝒞)∖𝒞 ≠ ∅ and
Z(ℛ(𝒞))−Y(𝒞)

Y(𝒞)
> 0, as in this case the optimality will be proven in the next CGA iteration.

Finally, observe that because the number of all clusters is finite, CGA will stop (and then return an optimal partition ℛ(𝒞)
for SSRCDP) in a finite number of steps, even if 𝜀 = 0 is assumed. This, however, may take excessive computation time.

4.3 An efficient heuristic
In this section we describe a heuristic consisting in solving only one iteration of the CGA algorithm but using a modified

version of APP(𝒞). Consider a routing partition ℛ defined by a binary vector u = (ut)t∈ feasible for APP(𝒞), that is, fulfilling

conditions (14b) and (14c).

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

548 TOMASZEWSKI ET AL.

Proposition 4. Let  = (t0, l) be a control cluster with l≥ 2 that has a nonempty intersection with exactly two
(neighboring) clusters from ℛ (i.e., U = 1). Let us also define the following quantity:

Z(C|1) ≔ min
1≤k≤l−1

{Z(C(t0, k)) + Z(C(t0 ⊕ k, l − k))}. (17)

Then the inequality ∑
t∈C

yt ≥ Z(C|1) (18)

is valid.

Proof. Suppose that  ⊆ ′∪′, where′ and′′ are two neighboring (and disjoint) clusters from familyℛ specified

by u. Then  = (t0, k) ∪ (t0 ⊕ k, l − k) for some 1≤ k≤ l− 1. Let ′ = (t0, k) ∩′ and ′′ = (t0 ⊕ k, l − k) ∩′′.

By Proposition 4.1, Z(′) ≤
∑

t∈′zt(x∗(′)) and Z(′′) ≤
∑

t∈′′zt(x∗(′′)). Thus,
∑

t∈′zt(x∗(′))+
∑

t∈′′zt(x∗(′′)) ≥
Z(′) + Z(′′) ≥ Z(|1), which shows that (18) is a valid inequality. Note, that whenever ′ = ′ and ′′ = ′′ in an

optimal solution of APP(𝒞), inequality (18) becomes tight. ▪

Clearly, for U = 1, inequality (18) is tighter than the inequality Y ≥ Z(|∞) implied by constraint (14g) (recall that

Y =
∑

t∈yt), since in general Z(|1) > Z(|∞). Thus, substituting constraint (14g) in (14) with

Y ≥ Z() + (Z(|1) − Z()) ⋅ U  ∈ 𝒞 (19)

will result in a modified version of APP() (referred to as MAPP()) with a stronger linear relaxation than the original one.

Observe, however, that for U ≥ 2, inequality (19) is in general not valid. For example, for U = 2, the

value of Z() + (Z(|1) − Z()) ⋅ 2 can be greater than the proper value given by the following formula (analogous

to (17)):

Z(C|2) ≔ min
1≤k1<k2≤l−1, k2−k1≥L

{Z(C(t0, k1)) + Z(C(t0 ⊕ k1, k2 − k1)) + Z(C(t0 ⊕ k2, l − k1 − k2))}. (20)

It follows that MAPP() is correct only when the control family 𝒞 is a subfamily of (L + 1)—the family of all clusters

of length at most L+ 1—since only then it is guaranteed that U ≤ 1 for all  ∈ 𝒞 , making inequality (19) valid. Thus, the

modified problem cannot be used in the CGA algorithm, as in general the routing partition ℛ(𝒞) contains clusters of length

larger than L+ 1 and such sets cannot be added to the control family 𝒞 when MAPP(𝒞) is applied; therefore its use in CGA is

limited to just one iteration. As we will see in Section 5, even this (noniterative) solution gives very good results when applied

to SSRCDP.

4.4 Improvements
The efficiency of the cluster generation algorithm described in Section 4.2, that is, CGA, can be improved in two complementary

ways briefly described below (and fully in Appendix A).

First, the linear relaxation of formulation (14) can be strengthened (by improving, that is, increasing, the lower bound on the

optimal objective function value delivered by its linear relaxation) in order to speed up the branch-and-bound algorithm (used to

solve APP(𝒞) in Step 1 of CGA) and also to decrease the gap
Z(ℛ(𝒞))−Y(𝒞)

Y(𝒞)
between the integer solution and the relaxed solution.

The lower bound computed through the linear relaxation of formulation (14) can be increased by improving valid inequalities

specified in constraint (14g). In fact, these inequalities are tight only for the case of U = 0, that is, when the control cluster

 is contained in a cluster of the constructed routing partition ℛ. (Recall that in this case the inequality in question takes the

form
∑

t∈yt ≥ Z().) For U ≥ 1 the inequalities implied by (14g) are weaker than the inequality in (14f), which, as already

mentioned, implies that
∑

t∈yt ≥ Z(|∞), and this inequality is in general not tight.

A tight valid inequality generalizing (14g) can be obtained by constructing, for each  ∈ 𝒞 , a piece-wise linear function

G(U), 0 ≤ U ≤ M(), where M() ≔
⌈

l()−1

L

⌉
is an upper bound on U , and for integer values of the argument U we put

G(U) = Z(|U), where Z(|0) ≔ Z(), Z(|1) is defined by (17), Z(|2) by (20), and Z(|U),U ≥ 3, are defined analogously.

Then, the valid inequality in (14g) should be replaced with the tight valid inequality Y ≥ G(U). (Such an inequality is not linear

but can be transformed, using additional binary variables and linear constraints, to a form appropriate for a MIP formulation.)

A detailed description of the above idea is given in Appendix A.1.

Second, apart from the clusters belonging to the routing partition ℛ(𝒞), which are added to the control family 𝒞 in Step

3 of CGA, we may seek to add extra control clusters ′, for which constraints (14g) are violated to the largest extent by the

current optimal values y*. This approach is described in detail in Appendix A.2.

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 549

TABLE 2 Performance of the solution procedure

Task lb ub gap t nclusters npaths

Static routing — 563.65 — 5m7s 1 (+4461) 6623

Dynamic routing 545.47 — 3.33% 1m23s 96 (+89) 6712

Preprocessing — — — 1h1m16s 768 (+1298) 8010

Partitioning LR 545.47 — 3.33% 1 second (192) —

Partitioning MIP 550.50 — 2.43% 2 seconds (192) —

Routing — 551.86 0.25% 1m16s 8 (+1) 8011

5 NUMERICAL EXPERIMENT

Below we describe a numerical experiment illustrating the efficiency of the proposed APP()-based approach for the realistic

network example described in Section 2.3. Recall that the network consists of 47 nodes linked with 140 directed links (each

of capacity 4 Gbps), and 2162 traffic demands corresponding to all ordered node pairs. The demand volumes used in the

calculations are derived from real traffic measurements taken every 15 minutes on a selected weekday. Thus, the number of the

considered timepoints T equals 96. We set the maximal number of clusters to N = 8 and the minimum cluster length to L = 8,

that is, we assume the network can be reconfigured at most 8 times per day (on average every 3 hours), and the next network

network reconfiguration can be applied only 2 hours after the previous one.

In the experiment reported below, for solving the semi-stable routing cluster design problem SSRCDP we used formulation

MAPP() and one iteration of CGA in the way described in Section 4.3. The procedure was implemented and executed using

the following hardware and software platform: Lenovo Thinkpad, Intel i7-6500U 3.10 GHz, 8 GB RAM, Windows 10 x64,

ILOG CPLEX Studio 12.8, ILOG Concert library, C# language, CPLEX 12.8 solver, 2 threads.

For the control family 𝒞 we used all the clusters of length L and L+ 1. There are 2T = 192 such clusters, and thus, in the

preprocessing phase, for each of them we needed to calculate the values Z() = Z and Z(|1) according to formulae (5a) and

(17), respectively. For that, the routing problem RP() formulated in (5) was solved 8T = 768 times, that is, for all clusters

having length between 2 and 9.

In RP(), we used a delay function F(w)≔max{0.1w, w− 0.45,10w− 8.5} (with K = 3 linear pieces), which implies

b(1) = 0, b(2) = − 0.45, b(3) = − 8.5 and a(1) = 0.1, a(2) = 1, a(3) = 10. Thus, F(w) grows from 0 to 0.05 in the interval

[0,0.5], from 0.05 to 0.5 in the interval [0.5,0.9], and from 0.5 to +∞ in the interval [0.9,+∞].

The results of our experiment are presented in Table 2. For each task of the solution procedure, the corresponding row of the

table first gives the determined lower (column LB) and upper (column UB) bound for the optimal objective function value, and

the current relative gap between the two (column GAP). Next, column t shows the total execution time of the task. Then, column

NCLUSTERS gives the number of clusters that we analyze within the task, that is, clusters for which we solve the routing problem,

and in brackets, if applicable, the number of clusters that are contained in the control family of the partitioning problem. Finally,

column NPATHS first shows (in brackets, with the plus sign) the total number of paths generated while solving routing problems

in the task, and (not in brackets) the final size of the set of paths  obtained in the routing problem (note that not necessarily

all those paths are used in the final solution).

The row STATIC ROUTING summarizes the case when only one routing cluster, that is,  , is applied. For the optimized

single routing scheme the optimal value of the objective function equal to Z() is given in column UB, as this value is the

upper bound for the true SSRCDP optimal solution objective function value. The row DYNAMIC ROUTING corresponds to the

case when each timepoint is considered as a cluster, that is, the routing scheme is optimized individually for each timepoint.

The optimal objective function value
∑

t∈ Z({t}) is given in column LB, since it is clearly the cheapest solution value for

SSRCDP (it is the case when the partition into routing clusters is not constrained with L or N, and thus each timepoint can be a

separate cluster having, potentially, but not necessarily, an individual routing configuration). The value in column GAP is equal

to
UB-LB

LB
× 100% (UB taken from STATIC ROUTING and LB taken from DYNAMIC ROUTING). The row PREPROCESSING

contains information concerning preparation of the control family 𝒞 and computation of initial routing paths (recall that RP()

is solved through path generation). Next, the row PARTITIONING LR shows the results of solving the linear relaxation of the

problem using the modified APP() formulation, that is, of problem MAPP(𝒞) described in Section 4.3. The so obtained value

of LB happens to be the same as for dynamic routing, although in general it could be higher. Furthermore, the solution of the

MIP problem MAPP(𝒞) is described in the row PARTITIONING MIP. The lower bound column delivered by this solution,

contained in column LB, is increased with respect to the preceding row and hence the value in column GAP is decreased.

Finally, the row ROUTING shows the results of optimizing the routing scheme for each of the routing clusters  of the partition

ℛ(𝒞) obtained in the previous step of solving the MAPP(𝒞). In particular, UB gives the value of Z(ℛ(𝒞)): observe that the

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

550 TOMASZEWSKI ET AL.

gap between this feasible SSRCDP solution value and the best lower bound obtained with PARTITIONING MIP is very small

and equals 0.25%. We note, that in the final solution the optimal routing partition ℛ(𝒞) is composed of five 8-element, one

13-element, one 15-element, and one 28-element clusters.

The results indicate that already the simplified version of the proposed method, without any special tuning, is capable of

finding a suboptimal solution of SSRCDP in a reasonable time within the optimality gap as small as 0.25%.

6 CONCLUSIONS

In this paper we propose a scalable solution to the problem of designing clusters for semi-stable routing in multicommodity

flow networks. Although the problem can be approached directly using a compact mixed-integer formulation, it cannot be just

solved with a solver, even for small-size networks, due to an excessive number of binary variables and a poor linear relaxation.

Thus we considered a number of exact and hybrid approaches (as in [16]) trying to separate the design of a partition of the time

horizon into clusters from the design of traffic routing for those clusters.

Although there are just O(T2) clusters with length between 1 and T (where, for a single day, T is typically between 96 and

288 as the traffic measurement period is either 15 or 5 minutes), our numerical trials show that in practice we can analyze only

a small fraction of those clusters. Using a link-path formulation combined with path generation and a warm start for the master

problem, on average it takes around l seconds to solve the routing problem for a cluster of length l for a 50-node network. And

that time might grow considerably as we aim at networks whose number of nodes approaches 500.

Therefore, leveraging the valid inequalities of an approximate time-horizon partitioning problem, we developed an efficient

heuristic algorithm based on using a family of preprocessed clusters to control the partitioning process. Our algorithm is capable

of providing upper and lower bounds on the objective function value with very low optimality gaps, well below 0.5% (as shown

in the presented numerical study, and in some other studies not reported here). It also offers the trade-off between the quality

of the solution and the number of clusters in the control family of the partitioning problem: the larger control family potentially

provides a better solution but leads to the increase of the preprocessing time, and the size and the solution time of the partitioning

problem.

In addition, in the appendix we have proposed two possible ways of improving the efficiency of our approach that lead

to interesting future research. First, we can use stronger formulations of APP(), equipped with improvements described in

Appendix A.1. Second, we can either implement a full version of the cluster generation algorithm presented in Appendix A.2.1,

or, even better, incorporate cluster generation into the branch-and-bound procedure of solving the partitioning problem, by

analyzing relaxed or incumbent solutions and generating appropriate user cuts. All these (nontrivial) extensions are currently

being developed and, after implementation, will be tested on larger network examples. In parallel we will use traffic data with

lower correlation among the traffic matrices, as this might result in the gap between the static and dynamic routing solutions

that is more substantial than the 3.33% observed in the current example (which our current algorithm nonetheless managed to

decrease tenfold).

ACKNOWLEDGMENT

The Polish authors were supported by the National Science Centre, Poland, grant number 2017/25/B/ST7/02313: “Packet routing

and transmission scheduling optimization in multi-hop wireless networks with multicast traffic.”

ORCID
Michał Pióro https://orcid.org/0000-0002-9347-9764

REFERENCES

[1] Y. Al Najjar, S. Paris, J. Elias, J. Leguay, and W. Ben-Ameur, Optimal routing configuration clustering through dynamic programming, Proc.

AlgoTel (2019).

[2] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke, Optimal oblivious routing in polynomial time, J. Comp. Syst. Sci. 69 (2004), 383–394.

[3] W. Ben-Ameur and M. Żotkiewicz, Robust routing and optimal partitioning of a traffic demand polytope, Intl. Trans. Oper. Res. 18 (2011),

307–333.

[4] W. Ben-Ameur and M. Żotkiewicz, Multipolar routing: Where dynamic and static routing meet, Electron. Notes Discr. Math. 41 (2013), 61–68.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang, MicroTE: Fine grained traffic engineering for data centers, Proc. ACM CoNext (2011), 1–12.

https://doi.org/10.1145/2079296.2079304.

[6] P. Casas, L. Fillatre, and S. Vaton, Multi hour robust routing and fast load change detection for traffic engineering, Proc. IEEE ICC. Beijing:

IEEE International Conference on Communications; (2008), 5777–5782.

[7] B. Fortz and M. Thorup, Optimizing OSPF/IS-IS weights in a changing world, IEEE JSAC 20 (2002), 756–767.

[8] C.Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer, Achieving high utilization with software-driven WAN,

ACM SIGCOMM CCR 43 (2013), 15–26.

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-9347-9764
https://orcid.org/0000-0002-9347-9764
https://doi.org/10.1145/2079296.2079304

TOMASZEWSKI ET AL. 551

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and

A. Vahdat, B4: Experience with a globally-deployed software defined WAN, ACM SIGCOMM CCR 43 (2013), 3–14.

[10] M. Kodialam, T. Lakshman, and S. Sengupta, Efficient and robust routing of highly variable traffic, Proc. ACM HotNets (2004).

[11] M. Minoux, Mathematical Programming: Theory and Algorithms, John Wiley & Sons, New York, 1986.

[12] S. Orlowski and M. Pióro, Complexity of column generation in network design with path-based survivability mechanisms, Networks 59 (2012),

132–147.

[13] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks, Morgan-Kaufmann, Burlington, MA,

2004.

[14] M. Poss and C. Raack, Affine recourse for the robust network design problem: Between static and dynamic routing, Networks 61 (2013), 180–198.

[15] M. Roughan, M. Thorup, and Y. Zhang, Traffic engineering with estimated traffic matrices, Proc. ACM IMC. (2003), 248–258.

[16] D. Sanvito, I. Filippini, A. Capone, S. Paris, and J. Leguay, Adaptive robust traffic engineering in software defined networks, Proc. IFIP

Netw. Zurich, Switzerland: IFIP Networking Conference (IFIP Networking) and Workshops; (2018), 145–153. https://doi.org/10.23919/

IFIPNetworking.2018.8696406.

[17] M. Silva, M. Poss, and N. Maculan, Solving the bifurcated and nonbifurcated robust network loading problem with k-adaptive routing, Networks

72 (2018), 151–170.

[18] V. Tabatabaee, A. Kashyap, B. Bhattacharjee, R.J. La, and M.A. Shayman, Robust routing with unknown traffic matrices, Proc. IEEE INFOCOM

(2007), 2436–2440. https://doi.org/10.1109/INFCOM.2007.296.

[19] A. Tomaszewski, M. Pióro, D. Sanvito, I. Filippini, and A. Capone, On optimization of semi-stable routing in multicommodity flow networks,

Proc. INOC (2019), 54–59.

[20] H. Wang, H. Xie, L. Qiu, Y.R. Yang, Y. Zhang, and A. Greenberg, COPE: Traffic engineering in dynamic networks, ACM SIGCOMM CCR 36
(2006), 99–110.

[21] Y. Zhang and Z. Ge, Finding critical traffic matrices, 2005 International Conference on Dependable Systems and Networks (DSN’05),

Yokohama, Japan, (2005), 188–197, doi: 10.1109/DSN.2005.51.

How to cite this article: Tomaszewski A, Pióro M, Sanvito D, Filippini I, Capone A. An efficient approach to

optimization of semi-stable routing in multicommodity flow networks. Networks. 2021;77:538–558. https://doi.org/10.

1002/net.21999

APPENDIX A: IMPROVING THE APPROXIMATION APPROACH

The efficiency of the cluster generation algorithm (CGA) described in Section 4.2 can be improved in two complementary ways

described below.

A.1 Stronger formulations of the approximation problem

In this section we will discuss the issue of strengthening inequalities (14g) in formulation APP(𝒞) for a given control cluster

. Recall that these inequalities are crucial to achieve a tight lower bound on the optimal objective function of SSRCDP (and

of APP(𝒞)) through the linear relaxation of APP(𝒞).

A.2 Piece-wise linear nonconvex lower bound
Let us first assume that the considered cluster  is partitioned into a family  of m (where m≥ 1) subclusters, each of length

greater than or equal to L. Now let

Ẑ(C|m) ≔ min


∑
S∈

Z(S), (A1)

where the minimum is taken over all such partitions  . Assuming that  = (t, l), where l≥m ⋅L, the value of Ẑ(|m) can be

calculated recursively as follows:

Ẑ((t, l)|1) = Z((t, l)) (A2a)

Ẑ((t, l)|m) = min
L≤k≤l−(m−1)L

{Z((t, k)) + Ẑ((t ⊕ k, l − k|m − 1)}
(

2 ≤ m ≤
l
L

)
. (A2b)

Next consider partitions  of cluster  = (t, l) into m nonempty subclusters, where all subclusters, apart from the first and the

last one, are of length at least L. Note that in this case m is between 1 (in this case  is not partitioned) and M() ≔ 1+
⌈

l−1

L

⌉
.)

Let Z(|m) denote the quantity analogous to (A1) but with the minimum taken over all such modified partitions  . In this case

the following recursive formula applies:

Z((t, l)|1) = Z() (A3a)

Z((t, l)|m) = min
k1≥1,k2≥1,k1+k2≤l−(m−2)L

{Z((t, k1)) + Z((t ⊕ (l − k2), k2))+

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.23919/IFIPNetworking.2018.8696406
https://doi.org/10.23919/IFIPNetworking.2018.8696406
https://doi.org/10.1109/INFCOM.2007.296
https://doi.org/10.1002/net.21999
https://doi.org/10.1002/net.21999

552 TOMASZEWSKI ET AL.

+ Ẑ((t ⊕ k1, l − (k1 + k2))|m − 2)} (2 ≤ m ≤ M(C)), (A3b)

where Ẑ((t, l)|0) ≔ 0. Note that Z(|1) ≥ Z(|m),m = 1, 2, … ,M().
Now recall that the number U + 1 denotes with how many clusters in the family  specified by variables u a given cluster

 ∈  intersects, and observe that the constraint∑
t∈C

yt ≥ Z(C|UC + 1)  ∈  (A4)

represents valid inequalities that can be used (for each  ∈ ) in APP() instead of (14g). This substitution will in general

strengthen formulation (14), because Z(|m) ≥ Z(|∞) for all m = 1, 2, … ,M(), and the inequalities are in general sharp.

Yet, the new inequalities cannot be simply added to (14) in the above form because this would lead to a formulation that is not a

MIP formulation (contrary to (14)) anymore. However, a MIP formulation in question can be achieved by introducing, for each

 ∈ , the following piece-wise linear function F(U) with the domain [0,M() − 1]:

F(U) =

⎧⎪⎪⎨⎪⎪⎩

(Z(|2) − Z(|1)) ⋅ U + Z(|1), U ∈ [0, 1)
(Z(|3) − Z(|2)) ⋅ U + Z(|2), U ∈ [1, 2)
· · ·
(Z(|M()) − Z(|M() − 1)) ⋅ U + Z(|M() − 1),U ∈ [M() − 2,M() − 1].

Note that, as required, F(U) = Z(|U + 1) for U = 0, 1, … ,M() − 1.

Having defined the piece-wise linear functions F(U), ∈ , we can now reformulate APP() as follows:

APP() ∶ Y() = min
∑
t∈

yt (A6a)

∑
t∈

ut ≤ N (A6b)

∑
0≤k≤L−1

ut⊕k ≤ 1 t ∈  (A6c)

U =
∑

1≤k<l(C)
ut(C)⊕k  ∈  (A6d)

Y =
∑
t∈C

yt  ∈  (A6e)

yt ≥ Z({t}) t ∈  (A6f)

Y ≥ F(U)  ∈  (A6g)

ut ∈ B t ∈  (A6h)

U ∈ Z
+

 ∈  (A6i)

yt ∈ R
+ t ∈  (A6j)

Y ∈ R
+

 ∈ . (A6k)

The above formulation still is not a MIP because constraint (A6g) is not linear. A proper MIP formulation for APP() can

be achieved in several ways, each of them requiring around M() additional binary variables (and around M() continuous

variables). We will apply the so called incremental way of dealing with piece-wise linear functions. It works as follows.

Consider a cluster  ∈  and denote the slopes of the consecutive linear pieces of F(U) defined by (A5) as follows:

A(|m) ≔ Z(|m + 1) − Z(|m) m = 1, 2, … ,M() − 1. (A7)

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 553

Next, let us introduce a vector of continuous variables x = (xm)1≤m≤M()−1 and a vector of binary variables s =
(sm)2≤m≤M()−1. Then, F(U) (for a given U (0 ≤ U ≤ M() − 1) is determined by the following system of equations and

inequalities:

F(U) = Z(|1) + A(|1)x1 + A(|2)x2 + · · · + A(|M() − 1)xM(C)−1 (A8a)

U = x1 + x2 + · · · + xM(C)−1 (A8b)

s2 ≤ x1 ≤ 1 (A8c)

s3 ≤ x2 ≤ s2
· · · (A8d)

sM()−1 ≤ xM()−2 ≤ sM()−2 (A8e)

0 ≤ xM()−1 ≤ sM()−1. (A8f)

The so calculated value F(U) is correct because constraints (A8c)-(A8f) imply that if xm > 0 then xk = 1 for all k = 1, 2, … ,

m− 1. Therefore, if U = m+ z (for some z∈ (0, 1]) then

x1 = x2 = · · · = xm = 1, xm+1 = z, xm+2 = · · · = xM()−1 = 0.

Hence, by (A8a) and (A7),

F(U) = Z(|1) + (Z(|2) − Z(|1)) + · · · + (Z(|m + 1) − Z(|m)) + (Z(|m + 1) − Z(|m))z,

that is,

F(U) = Z(|m) + (Z(|m + 1) − Z(|m))z

as required. The so described method for calculating F(U) leads to the following strengthened MIP formulation of APP().

APP() ∶ Y() = min
∑
t∈

yt (A9a)

∑
t∈

ut ≤ N (A9b)

∑
0≤k≤L−1

ut⊕k ≤ 1 t ∈  (A9c)

U =
∑

1≤k<l(C)
ut(C)⊕k  ∈  (A9d)

Y =
∑
t∈C

yt  ∈  (A9e)

yt ≥ Z({t}) t ∈  (A9f)

Y ≥ Z(|1) + A(|1)x1 + A(|2)x2 + · · · + A(|M() − 1)xM(C)−1  ∈  (A9g)

U = x1 + x2 + · · · + xM(C)−1  ∈  (A9h)

s2 ≤ x1 ≤ 1  ∈  (A9i)

s3 ≤ x2 ≤ s2  ∈ 

· · · (A9j)

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

554 TOMASZEWSKI ET AL.

sM()−1 ≤ xM()−2 ≤ sM()−2  ∈  (A9k)

0 ≤ xM()−1 ≤ sM()−1  ∈  (A9l)

ut ∈ B t ∈  (A9m)

U ∈ Z
+

 ∈  (A9n)

yt ∈ R
+ t ∈  (A9o)

Y ∈ R
+

 ∈  (A9p)

x ∈ (R+)M()−1  ∈  (A9q)

s ∈ B
M()−2  ∈ . (A9r)

Observe that if for some control cluster  ∈  it happens that F is convex (which can be easily checked when writing down

formulation (A9)), then constraints (A9g)-(A9l) can be substituted with

Y ≥ (Z(|m + 1) − Z(|m)) ⋅ U + Z(|m) m = 1, 2, … ,M() (A10)

and this does not involve extra variables x and s . In particular, when this is the case for all control clusters, the computational

complexity of the strengthened formulation is similar to that of formulation (14).

A.3 Lower convex envelope bound
Since in general the use of the piece-wise linear functions of F in (A9) can be unacceptably time consuming because of the

excessive number of the binary variables they introduce, it seems reasonable to use the lower convex envelopes of functions F .

Recall that the lower convex envelope
⌣
f of a function f defined on an interval [a, b] is defined at each point of the interval as

the supremum of all convex functions that lie under that function, that is,

⌣
f (x) = sup{g(x) ∶ g is convex and g ≤ f over [a, b]}.

The value of the lower convex envelope of
⌣
F


of F at a given point U ∈ [0,M() − 1] can be (efficiently) computed as the

minimum of the following LP formulation. ∑
m∈M(C)

𝛼C
m = 1 (A11a)

𝛼
m ∈ R

+ m ∈ (), (A11b)

where () ≔ {0, 1, … ,M() − 1}.

Hence, applying the lower convex envelope approximation of F in APP() leads to the following MIP formulation.

APP() ∶ Y() = min
∑
t∈

yt (A12a)

∑
t∈

ut ≤ N (A12b)

∑
0≤k≤L−1

ut⊕k ≤ 1 t ∈  (A12c)

U =
∑

1≤k<l(C)
ut(C)⊕k  ∈  (A12d)

Y =
∑
t∈C

yt  ∈  (A12e)

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 555

yt ≥ Z({t}) t ∈  (A12f)

Y ≥
∑

m∈(C)
𝛼C

m Z(C|m + 1)  ∈  (A12g)

U =
∑

m∈(C)
𝛼C

m m  ∈  (A12h)

∑
m∈(C)

𝛼C
m = 1  ∈  (A12i)

ut ∈ B t ∈  (A12j)

U ∈ Z
+

 ∈  (A12k)

yt ∈ R
+ t ∈  (A12l)

Y ∈ R
+

 ∈  (A12m)

𝛼
m ∈ R

+ m ∈ (). (A12n)

A.4 Comments
Clearly, both strengthened versions of APP() formulated in (A9) and (A12) above can be used instead of (14) in the CGA

algorithm presented in Section 4.1. In general, we may expect that formulation (A9) (and, perhaps to a less extent, formulation

(A12)) will decrease the gap
Z(())−Y()

Y()
faster than formulation (14). On the other hand, the computational time of formulation

(A9) may soon become excessive when the size of the control family  grows, due to a large number of additional binary

variables and the necessity of computing the Z(|m) values. The latter issue is, however, less significant for (A12).

A.5 Enhanced cluster generation algorithm

Below we present an extension of the cluster generation algorithm CGA described in Section 4.2; the extension applies a more

efficient cluster generation method.

A.6 ECGA formulation
Let us consider the linear relaxation of APP() for a given control family  and denote such a relaxation by APP/LR().

Let and u* and y* be the optimal solution of APP/LR() and consider the following pricing problem: find cluster ′ that

maximizes the right-hand side of constraint (14g) (or (A9g) or (A12g), depending on the version of APP() used), where

U′ =
∑

1≤k<l(′)ut(′)⊕k∗; the so described pricing problem will be denoted by PP(u*, y*).

Note that if the so maximized value is strictly greater than Y′
≔

∑
t∈′yt∗, then the solution u*, y* will become infeasible for

APP() when ′ becomes a control cluster, that is, when it is added to the control family . Hence, we can expect that adding

′ to the control family will result in the minimum of the objective function of APP/LR( ∪ {′}) being greater than that of

APP/LR(). The pricing problem PP(u*, y*) will be formulated in the next section.

ECGA: enhanced cluster generation algorithm

Step 0: Specify an initial control family .

Step 1: Solve APP/LR(). Let and u* and y* be the resulting optimal solution.

Step 2: Solve PP(u*, y*). Let ′ be the resulting optimal solution.

Step 3: If for ′ the objective function of PP(u*, y*) is strictly greater than Y′
, then  ←  ∪ {′}, that is, add the

generated cluster to the control family, and go to Step 1.

Step 4: Solve APP(). If () ⊆  or
Z(())−Y()

Y()
≤ 𝜀 then stop: () is a suboptimal (or even optimal) routing

partition solving SSRCDP (where for each  ∈  its routing is optimized by RP()).

Step 5:  ←  ∪() and go to Step 1.

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

556 TOMASZEWSKI ET AL.

Note that the remarks made just after formulation of CGA in Section 4.2 are valid for ECGA as well. The rationale behind

ECGA is that it potentially improves the lower bound for SSRCDP more quickly than CGA and with fewer control clusters

added during the optimization process.

A.7 Pricing problem
The pricing problem formulated below is applicable to formulation (14).

PP(u∗, y∗) ∶ B(u∗, y∗) = max{Z + (Z′ − Z) ⋅ U − Y} (A13a)

∑
t∈

at = 1 (A13b)

∑
t∈

bt = 1 (A13c)

at + bt ≤ 1 t ∈  (A13d)

ct = ct⊖1 + at − bt t ∈  (A13e)

U =
∑
t∈

ut∗ ct (A13f)

Y =
∑
t∈

yt∗ ct (A13g)

Z′ =
∑
t∈

Z({t}) ct (A13h)

Z =
∑
𝑑∈

𝜆𝑑 (A13i)

∑
e∈

𝜋t
e = ct t ∈  (A13j)

𝜆𝑑 ≤
∑

e ∈ (𝑑, p) 1

c(e)
∑
t∈

h(𝑑, t) 𝜋t
e 𝑑 ∈ , p ∈ (𝑑) (A13k)

at, bt, ct ∈ B t ∈  (A13l)

U ∈ Z
+ (A13m)

Y ,Z,Z′ ∈ R
+ (A13n)

𝜆𝑑 ∈ R 𝑑 ∈  (A13o)

𝜋t
e ∈ R

+ t ∈  , e ∈  . (A13p)

In the above MIP formulation, binary variables a = (at)t∈ , b = (bt)t∈ , c = (ct)t∈ determine the control cluster ′ we

are looking for. The particular variable at = 1 (unique due to equality (A13b)) determines the epoch t where ′ starts, while

bt = 1 (unique due to (A13c)) means that ′ ends at epoch t− 1. Additionally, constraint (A13d) assures that the cluster does

not end in the epoch just before the starting epoch (this eliminates the trivial cluster ). In turn, variables c determine the

epochs comprising the constructed control set, that is, ′ ≔ {t ∈  ∶ ct = 1}. The proper values of c are forced by

equalities (A13e).

The next set of equalities, (A13g)-(A13h), define the quantities U′
,Y′

,Z(′|∞), respectively (cf. (14d), (14e), and the

definition of Z(|∞) just before formulation (14) in Section 4.1). Determination of the value Z = Z(′) requires more effort.

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TOMASZEWSKI ET AL. 557

This value is, by definition, the optimal objective of the following minimization problem, derived from the routing problem

RP() formulated in (5).

RP(c) ∶ Z = min
∑
t∈

ct zt (A14a)

∑
p∈(𝑑)

xdp = 1 [𝜆𝑑] 𝑑 ∈  (A14b)

zt ≥
1

c(e)
∑

p∈(e,𝑑)
h(𝑑, t) xdp [𝜋t

e ≥ 0] t ∈  , e ∈  (A14c)

xdp ∈ R
+ 𝑑 ∈ , p ∈ (𝑑) (A14d)

zt ∈ R t ∈  . (A14e)

Since (A14) is a minimization problem it cannot be embedded into formulation of PP(u*, y*) which involves maximization

of Z (see (A13a)). Thus, we form the dual of (A14) (using dual variables specified in the square brackets on the right-hand sides

of (A14b) and (A14c)):

DRP(c) ∶ Z = max
∑
𝑑∈

𝜆𝑑 (A15a)

∑
e∈

𝜋t
e = ct t ∈  (A15b)

𝜆𝑑 ≤
∑

e∈(𝑑,p)

1

c(e)
∑
t∈

h(𝑑, t) 𝜋t
e 𝑑 ∈ , p ∈ (𝑑) (A15c)

𝜆𝑑 ∈ R 𝑑 ∈  (A15d)

𝜋t
e ∈ R

+ t ∈  , e ∈  (A15e)

(where (d, p) denotes the set of links traversed by path p ∈ (𝑑)) and embed it in the pricing problem by means of constraints

(A13i)-(A13k) and (A13o)-(A13p).

Observe that the term (Z′ −Z) ⋅U in the objective function (A13a) of PP(u*, y*) contains bi-linearities since (Z′ −Z) ⋅U is

actually equal to: (∑
t∈

Z({t}) ct −
∑
𝑑∈

𝜆𝑑

)
⋅
∑
t∈

ut∗ ct =
∑

t,t′∈
(Z({t}) ut′∗) ct ct′ −

∑
t∈T

∑
𝑑∈

ut∗ 𝜆𝑑 ct. (A16)

The bi-linearities can be eliminated in the standard way by introducing auxiliary variables Ctt′ ,Λt
𝑑 expressing, respectively,

the products ctct′ and 𝜆dct and the corresponding (forcing) constraints. In effect we get the following MIP formulation of PP(u*,

y*):

B(u∗, y∗) = max

{∑
𝑑∈

𝜆𝑑 +

(∑
t,t′∈

(Z({t}) ut′∗) Ctt′−

−
∑
t∈

∑
𝑑∈

ut∗ Λt
𝑑

)
− Y

}
(A17a)

∑
t∈

at = 1 (A17b)

∑
t∈

bt = 1 (A17c)

at + bt ≤ 1 t ∈  (A17d)

ct = ct⊖1 + at − bt t ∈  (A17e)

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

558 TOMASZEWSKI ET AL.

Y =
∑
t∈

yt∗ ct (A17f)

∑
e∈

𝜋t
e = ct t ∈  (A17g)

𝜆𝑑 ≤
∑

e∈(𝑑,p)

1

c(e)
∑
t∈

h(𝑑, t) 𝜋t
e 𝑑 ∈ , p ∈ (𝑑) (A17h)

Ctt′ ≤ ct, Ctt′ ≤ ct′ , Ctt′ ≥ ct + ct′ − 1 t, t′ ∈  (A17i)

Λt
𝑑 ≤ M(𝑑)ct, Λt

𝑑 ≤ 𝜆𝑑, Λt
𝑑 ≥ 𝜆𝑑 − M(𝑑)(1 − ct) t ∈  , 𝑑 ∈  (A17j)

Y ∈ R
+ (A17k)

at, bt, ct ∈ B t ∈  (A17l)

𝜆𝑑 ∈ R 𝑑 ∈  (A17m)

𝜋t
e ∈ R

+ t ∈  , e ∈  (A17n)

Ctt′ ∈ R
+ t, t′ ∈  (A17o)

Λt
𝑑 ∈ R

+ t ∈  , 𝑑 ∈ . (A17p)

Above, the quantity M(d) represents an upper bound on variable 𝜆d. For example the following formula can be used:

M(𝑑) =
∑

t∈ h(𝑑, t)
c(e)

. (A18)

Finally, observe that analogous pricing problems can be formulated for APP() in versions (A9) and (A12).

 10970037, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21999 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

