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AerialWaste dataset for landfill 
discovery in aerial and satellite 
images
Rocio Nahime torres  1,2 & Piero Fraternali1,2

Illegal landfills are sites where garbage is dumped violating waste management laws. Aerial images 
enable the use of photo interpretation for territory scanning and landfill detection but this practice 
is hindered by the manual nature of this task which also requires expert knowledge. Deep Learning 
methods can help capture the analysts’ expertise and build automated landfill discovery tools. 
However, this goal requires public high-quality datasets for model training and testing. At present no 
such datasets exist and this gap penalizes the research toward scalable and accurate landfill discovery 
methods. We present a dataset for landfill detection featuring airborne, WorldView-3, and GoogleEarth 
images annotated by professional photo interpreters. It comprises 3,478 positive and 6,956 negative 
examples. Most positive instances are characterized by metadata: the type of waste, its storage 
mode, the type of the site, and the evidence and severity of the illicit. The dataset has been technically 
validated by building an accurate landfill detector and is accompanied by a visualization and annotation 
tool.

Background & Summary
Finding illegal landfills is a prominent objective of environmental agencies but is a very complex and 
time-consuming task that requires sophisticated investigations. The increasing availability of aerial images has 
boosted the adoption of photo interpretation for territory scanning and suspicious site identification1. However, 
large scale territory analysis is hindered by the manual nature of the photo interpretation task, which must be 
conducted by experts. The advances in Computer Vision (CV) boosted by Deep Learning (DL) hold the promise 
to capture the expertise of professional photo interpreters and distill it into computer-aided tools supporting 
territory monitoring at scale. The precondition for reaping the benefits of CV for landfill discovery is the availa-
bility of high-quality datasets for training, validating, and testing predictive models. At present no such datasets 
exist for the landfill discovery task and this gap penalizes the research towards scalable and accurate detection 
methods2–6.

DL-based waste discovery in aerial images has been addressed by very few works7–9. These contributions 
illustrate the potential of DL for realizing image interpretation pipelines at different scales and based on different 
CV tasks, such as scene classification and object detection. However, so far none of the related works has publicly 
released the data set and the ground truth annotations employed for building the described architectures. The 
main reason for this restriction is the sensitivity of the data due to their potential connection with investigation 
activities. General purpose datasets for aerial image/scene classification and object detection cannot help either. 
The most similar category found in public datasets is that of dump sites in the BigEarthNet repository10, which 
represents rather generic scenes and comprises only very small and coarse images. This limits the replicability of 
research and ultimately the progress of the state of the art.

The contribution of this work is the AerialWaste data set, a professionally curated dataset for landfills discov-
ery in aerial images, constructed based on the following criteria:

•	 The images have different provenance and quality.
•	 Images are associated with annotations that specify the presence of a waste dump as a whole and the visibility 

of specific types of garbage.
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•	 The annotations are curated by professional photo interpreters specialized in the use of aerial images for 
landfill detection.

•	 The provided annotations can be used as ground truth (GT) labels for multiple CV tasks: binary and  
multi-class image classification and weakly supervised localization.

•	 The dataset adheres to the standard MS COCO format11.

AerialWaste contains 10,434 images generated from tiles of three different sources: AGEA Ortophotos 
(≈20 cm GSD), WorldView-3 (≈30 cm GSD) and GoogleEarth (≈50 cm GSD). Of these images 3,478 are positive  
examples representing locations considered suspicious and 6,956 are negative examples. Most positive  
instances are characterized by metadata about the evidence, severity, and area type of the site. A subset of  
715 samples is annotated with the class of the waste objects visible in the image chosen among 22 different 
categories. 169 images are provided with segmentation masks (from which bounding boxes are automatically 
extracted) that surround the objects of 9 garbage classes.

The data set and its documentation can be accessed from the website www.aerialwaste.org.

Methods
AerialWaste is the result of a collaboration with the professional photo interpreters and territory monitoring 
experts of ARPA Lombardia, the environment monitoring agency of Region Lombardy (Italy). Figure 1 illus-
trates the creation and technical validation process of the AerialWaste dataset.

The dataset creation phase exploited the experts’ knowledge in order to produce a collection of images 
divided into positive and negative samples and enriched with meta-data and segmentation masks. The profes-
sional photo interpreters scanned a geographic region and built a database of relevant locations where waste 
dumps were visible. From such a database the actual image collection was created. Samples corresponding to the 
selected locations were extracted from the three above-mentioned aerial image sources and tagged as positive. 
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Fig. 1 The phases of the AerialWaste creation and technical validation process. In the data set creation phase, 
experts scan the aerial images of a region and create a database of identified locations with associated metadata 
(waste type, area type, storage mode, evidence, and severity). The location database is used to extract the 
positive images from the three data sources. The negative images are sampled from the same sources at random 
locations. A subset of the positive images is enriched with segmentation masks with the help of the ODIN 
annotator tool. In the technical validation phase, the AerialWaste data set is used to train and test a CNN binary 
scene classification model. A quantitative evaluation is performed by assessing the prediction performance of 
the CNN model with the standard metrics of precision, recall, and F1 score. A qualitative evaluation can be also 
done by visualizing the data set and the predictions with the help of the Inspection Tool.

Fig. 2 Examples of the presence of waste in potentially illegal sites. Red circles indicate suspicious objects. In all 
the images accumulations of various materials and scattered waste are present.
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The data set was completed with negative samples extracted from the same sources at randomly chosen loca-
tions. The positive sites were annotated with meta-data defined by the experts, including the type of waste vis-
ible, its storage mode, the type of the area around the site, the degree of evidence, and the severity of the illicit.

The technical validation phase was conducted by using the AerialWaste images and annotations to train, val-
idate and test a state-of-the-art binary scene classification model for detecting the presence of waste. The model 
trained on images from all the three heterogeneous sources achieves 87.9% average precision on the test set. The 
model trained only on high-quality orthophotos attains 94.5% average precision on the test set. These results 
show the effectiveness of the AerialWaste data set for training waste discovery models.

Data set creation. AerialWaste copes with the visual heterogeneity of the scenes in which waste dumps occur 
in aerial images and with the diverse nature of the objects that compose a waste deposit. When observed from 
above waste dumps appear as complex arrangements of objects of different shapes, sizes, and orientations: a typical 
case occurs when a shed or a dismissed industrial plant is filled with waste which can be seen spilling over the con-
struction boundaries. The area may also contain other clues, such as sparse debris, pallets, or containers. Further 
signs can be trucks, the isolation of the place, secondary access roads, and stressed vegetation12. Typical materi-
als found in dumping sites include organic waste, plastics, glass, metal, paper, wood, textiles, tires, bulky waste, 
electronics, and asbestos panels13. Figure 2 presents some examples of how waste dumps appear in aerial images.

The location database. The creation of the dataset starts with the definition of a database of locations identified 
as containing waste dumps by four territory monitoring professionals of the Environmental Protection Agency 
of Region of Lombardy (ARPA). The database comprises 10,434 locations belonging to 487 different municipali-
ties of the Lombardy region in Italy. Of these 33% are sites reported by the analysts as positive, i.e., hosting some 
form of illegal waste disposal. The remaining 67% are randomly sampled in the territory of the same munici-
palities. To account for the class imbalance, the negative locations are twice as many as the positive ones. The 
negative instances are obtained by randomly picking two locations at a distance d from each positive instance  
(with 1 km ≤ d ≤ 5 km). The lower threshold of 1 km is selected to avoid including a positive site in a negative 

Fig. 3 Examples of images associated with positive locations in the database. From left to right: (a) large 
quantities of metal scraps deposited in an unauthorized area (source: WV3); (b) production plant with heaps of 
waste, excavated earth, and rocks near the border of the property (source: GE); (c) mixed scrap and bulky items 
with volume excessive w.r.t. the site dimension (source: AGEA); (d) heterogeneous materials stacked in a closed 
non-productive residential zone (source: AGEA).

Fig. 4 Distribution of the positive and negative samples by provenance source.

https://doi.org/10.1038/s41597-023-01976-9
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image, whereas the upper threshold of 5 km is selected heuristically so that the negative sample is likely to 
remain in an area with the same land use as the positive one. All data points are characterized by the geographic 
coordinates (latitude and longitude). Most sites have additional metadata obtained from the ARPA database: the 
evidence (how many indicators of non-compliance with waste disposal regulations are detected by the analyst) 
and severity (how critical the non-compliance is perceived by the analyst) expressed in the 0 (low) to 3 (high) 
range, the type of visible objects (e.g., tires, scrap), the storage mode (e.g., delimited heaps, containers) and the 
category of the area (e.g., production plant, agricultural area).

The location database is used to generate the actual image dataset and is not disclosed for confidentiality reasons.

Images generation. For each location in the database one square image is created centered at that location and 
covering an area of 210 × 210 meters. The images are drawn from tiles of three provenance sources:

•	 AGEA: orthophotos generated by an airborne campaign executed by the Italian Agriculture Development 
Agency AGEA. This source contains the images produced by the acquisition campaign launched in 2018 in 
the Lombardy Region (Italy). An RGB aerophotogrammetry survey was conducted at a spatial resolution of 
≈20 cm GSD. The size of the resulting images is ≈1000 × 1000 pixels.

Evidence 
(a)

Severity
(b)

Area Type
(c)

Fig. 5 Distribution of images in the dataset by the (a) evidence, (b) severity and (c) area type properties 
(n/s = not specified).

Label type Label Total

TO Rubble/excavated earth and rocks 294

TO Bulky items 286

TO Fire wood 173

TO Scrap 167

TO Plastic 126

TO Vehicles 53

TO Tires 45

TO Domestic appliances 24

TO Paper 26

TO Sludge-Zootechnical waste-Manure 19

TO Stone/marble processing waste 13

TO Asphalt milling 12

TO Corrugated sheets (presumed asbestos-cement) 11

TO Glass 8

TO Foundry waste 9

SM Heaps not delimited 448

SM Containers 167

SM Big bags 50

SM Pallets 50

SM Delimited heaps (by barriers/walls/etc) 69

SM Cisterns 35

SM Drums bins 18

TOTAL 2103

Table 1. Type of Object (TO) and Storage Mode (SM) labels and total amount of samples per label.

https://doi.org/10.1038/s41597-023-01976-9
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•	 WorldView-3 (WV3): high-resolution pan-sharpened RGB images acquired by a commercial satellite sensor 
(no pan-sharpened near infrared images were used). The collection corresponds to the campaign conducted 
in 2021 at a spatial resolution of ≈30 cm GSD. The size of the resulting images is ≈700 × 700 pixels.

•	 Google Earth (GE): images downloaded using the Google API. Spatial resolution is ≈50 cm GSD. The size 
of the images is ≈1000 × 1000 pixels as a result of the up-sampling by a scale of 2 performed by the API. 
Google images are free to the public and have been used in different remote sensing studies14–18. Their use 
must respect the Google Earth terms and conditions19. The API provides only the most recent imagery and 
thus small changes can be observed when an image is updated after the photo interpreter has annotated it.

Figure 3 shows some examples of positive locations from different sources. The images present a high 
intra-class diversity: (1) the type of area includes isolated sites, urban locations and industrial areas; (2) the 
visible waste objects are extremely heterogeneous; (3) the spatial arrangement and the scale of the waste dumps 
in the scenes are diverse.

Figure 4 shows the distribution of positive and negative images over the provenance sources. Most examples 
are drawn from Google Earth, followed by AGEA orthophotos. Fewer samples are drawn from the WorldView-3 
collection because these were acquired only recently (in 2021).

Figure 5 shows the distribution of the evidence, severity, and area type properties across the positive samples. 
These characteristics are not used for training the CV component but are mentioned to show the heterogeneity 
of the dataset, which contributes to the complexity of the waste detection task. The evidence attribute is present 
in most samples, and the severity and area type annotations are specified for ≈72% of the samples.

Meta-data definition and data set annotation. The type of waste and its visual appearance are 
expressed by means of two annotations: the type of visible objects (TO) and the storage mode (SM). Table 1 lists 
the different TO and SM labels used by the experts and reports the number of samples annotated with them. 

Fig. 6 Examples of images of sites annotated with different labels.

https://doi.org/10.1038/s41597-023-01976-9
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Some of the categories used by the experts in their current interpretation activity are equivalent to the standard 
codes proposed by the European Union (e.g., “07.5-Wood wastes” or “07.4-Plastic wastes”)20. The current cate-
gories have been chosen by the photo interpreters as those most clearly distinguishable in the aerial images. The 
expansion of the data set annotations to comply with the standard EU codes is planned as a future activity.

Figure 6 presents examples of images annotated with different TO and SM labels. While some objects such 
as bulky items, excavated earth, tires, and vehicles are easy to recognize, some others such as scrap or plastics 
require a more trained eye. The storage modes are more distinguishable.

Figure 7 shows the distribution of the images across the TO and SM classes and with respect to the prove-
nance sources. Most annotations are associated with images drawn from the Google Earth source.

Figure 8 shows the co-occurrence of the most common TO and SM labels and of the area types. For example, 
the rubble/excavated earth and rocks class is mostly present in degraded areas.

Fig. 7 Distribution of the images across the TO and SM classes and with respect to the provenance sources.

Fig. 8 Percentage of TO and SM annotations in different types of areas (“n/s” = not specified).

https://doi.org/10.1038/s41597-023-01976-9
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For a subset of 169 images belonging to the test set only, the segmentation mask were generated with the 
ODIN annotation tool21 by drawing polygons around the relevant image region. Table 2 lists the 9 categories 
associated with the segmentation masks and the number of masks per category. Figure 9 shows some examples 
of the available annotated segmentation masks.

Data Records
The AerialWaste dataset is published in the Zenodo repository22 and comprises the following artifacts, which 
constitute the public part of the dataset:

•	 Images folder: it contains the images corresponding to each location in the database. The images are not 
geo-referenced because the coordinates are considered sensitive information.

•	 Dataset description file: it describes the images in the data set using the JSON format and following the MS 
COCO guidelines. The description specifies the provenance and metadata of each image.

Technical Validation
The technical validation of AerialWaste has focused on the adequacy of the dataset for building DL predictive 
models able to support analysts in the discovery of waste dump sites.

Training and testing of a waste binary classifier. To cope with the complexity of landfill imagery, in 
which the recognition of the relevant scenes might need a varying degree of context (e.g., garbage stored in 
dumpsters vs. scattered in a large area), we trained a multi-scale CNN architecture normally employed in complex 
scene detection tasks and tested it on a large-scale territory, reporting both qualitative and quantitative evaluation 
results. The validation procedure can be summarized as follows:

•	 The dataset is divided in two splits: 75% of the images for training and 25% for testing.
•	 The train set of the AerialWaste data set was used to train a binary CNN classifier featuring a ResNet50 back-

bone augmented with Feature Pyramid Network (FPN) links23, a technique that improves the detection of 
items at different scales.

•	 We evaluated the performance of the architecture on the AerialWaste test set. The binary classifier achieved 
87.99% average precision and 80.70% F1 score, with 81.89% precision at 79.54% recall. Figure 10 shows the 
variation of the classification performances across the different data sources.

•	 We also assessed the impact of image quality by training and testing the same architecture only on the Aeri-
alWaste high quality AGEA ortophotos. In this case, the binary classifier achieves 94.5% average precision and 
88.2% F1 score. The details of such experiment are reported in9.

•	 The output of the classifier was further validated by experts with the help of Class Activation Maps (CAMs)24 
to highlight the image regions where the classifier focused its attention.

Classification architecture. The binary classifier exploits ResNet5025 as the backbone and augments it with a 
Feature Pyramid Network (FPN) architecture26. The FPN improves object detection performances when different 
scales must be considered27,28 and can benefit also classification tasks in which objects of the same class appear with 
variable sizes. The multi-scale feature pyramid is obtained by combining low resolution semantically strong features 
with high resolution semantically weaker ones. This is realized by complementing the bottom up feature extraction 
path typical of CNNs with a top down path that builds the feature pyramid by extracting, adapting, and merging 
features at multiple levels. Figure 11 shows the structure of the FPN architecture added to the ResNet50 backbone.

The initialization of ResNet50 was performed with transfer learning from ImageNet29,30. The best results were 
obtained by freezing the first two layers during the fine-tuning. In the training phase, data augmentations (flip, 
rotation, and crop) were applied and the input images were resized to a fixed dimension to cope with different 
sizes in the same batch and to optimize GPU memory usage. The pixel values were also normalized based on the 
mean and standard deviation of the data set. After the last FC classification layer, a Sigmoid function is used to 

Type Label #masks

TO Rubble/excavated earth and rocks 128

TO Bulky items 69

TO Fire wood 63

TO Vehicles 70

TO Tires 36

SM Heaps not delimited 172

SM Containers 188

SM Big bags 60

SM Delimited heaps (by barriers/walls/etc) 55

TOTAL 841

Table 2. Type of Object (TO) and Storage Mode (SM) labels and total amount of segmentation masks per label.

https://doi.org/10.1038/s41597-023-01976-9
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obtain a value between 0 and 1, which denotes how confident the model is that the image belongs to the positive 
class30,31. Additional details on how the training was performed are available in the Git repository of the model. 
A threshold of 0.5 over such a value was used to classify each image.

Qualitative assessment and empirical validation with professional photo interpreter. A visual inspection of the results 
helps understand the quality of the predictions. To understand which objects are responsible for classifying a site as 
a waste dump, Class Activation Maps (CAMs)24 were computed. CAMs are matrices in which each cell contains a 
value denoting the relevance of the pixel with respect to the class of interest. Figure 12 shows some examples of cor-
rectly predicted images overlaid with the heat maps derived from the respective CAMs. The first example illustrates 

Fig. 9 Examples of manually annotated segmentation masks for the various TO and SM classes present in the 
testing split of the dataset.

https://doi.org/10.1038/s41597-023-01976-9
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the AGEA image of a residential area in which a backyard contains a small dump of sparse items. The model focuses 
on the relevant spot, as shown by the CAM heat map. The second example is a WV3 image of a production site with 
bulky items, well delineated by the CAM heat map. The third example is a GE image of a site disseminated with 
scrap, plastic, and other unidentified objects, which are correctly highlighted by the heat map peak regions.

The binary classifier trained with the AerialWaste data set was used by ARPA Lombardy analysts to assist in 
the scanning of the AGEA imagery of a novel territory. A dedicated Inspection Tool was implemented to ease the 
visualization of the aerial photos, of the model predictions, and of the CAMs. A total of 69 sites were identified 
as containing waste dumps, of which 65 corresponded to locations predicted by the CNN model as relevant. The 
model trained only on AGEA orthophotos classified all the 69 locations as relevant. Approximately 50% of the 
identified sites were located in scenes with a confidence score of the positive class higher than 0.75. The global 
average confidence score of the sites reported by the analysts is 0.66.

Usage Notes
Dataset usage. The dataset can be used to train models for the binary and multi-label classification tasks and 
for the weakly supervised localization task. The AerialWaste website provides the link to the public repository to 
download the dataset. Utilities to plot the dataset statistics (e.g., the distribution diagrams presented in this paper) 
and to visualize it are also provided. A utility class extending the https://pytorch.org/docs/stable/data.html#torch.
utils.data.DatasetPyTorch DataSet class is also provided to load the dataset with the PyTorch data processing library.

Usage with the oDIN diagnostic tool. ODIN21,32 is an open source diagnosis framework for generic 
ML classification tasks and for CV object detection and instance segmentation tasks. ODIN lets developers add 
custom annotations to their data sets, compute performance metrics split by annotation values, and visualize 
diagnosis reports. Its annotation functionality was used to draw the segmentation masks illustrated in Fig. 9. The 
AerialWaste Git repository contains scripts that exploit the ODIN tool for:

Fig. 10 Variation of the F1 score metrics based on the image provenance source.

1x1conv5 (C5)
stride 32

0.5x

1x1conv4 (C4)
stride 16

0.5x

1x1conv3 (C3)
stride 8

0.5x

1x1conv2 (C2)
stride 4

0.5x

conv1 (C1)
stride 2

Image

3x3M4

M5

3x3M3

3x3M2

Bottom-up Top-down

P5

P4

P3

P2

Smoothing

Smoothing

Smoothing

Flatten

Flatten

Flatten

Flatten

P5'

P4'

P3'

P2'

FC Concat FC
Class

ResNet50

Bilinear 2x

Bilinear 2x

Bilinear 2x

Concat

Concat

Concat

GAP

GAP

GAP

GAP

Fig. 11 The architecture of the binary classifier extending Resnet50 with FPN links used for the technical 
validation of the AerialWaste data set.
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•	 Importing the dataset and obtaining statistics (e.g. samples per class, distribution of annotation values).
•	 Visualizing the images, with a function to browse the samples and a form-based interface to select them based 

on a user-defined criterion.
•	 Visualizing the segmentation masks, with a function to browse the samples annotated with a mask and a 

form-based interface to select those that meet a user-defined criterion.

Furthermore, when predictions are available, ODIN can be exploited to compute reports of the model per-
formances and to visualize the CAMs and the performance metrics.

Fig. 12 Examples of sites correctly classified as containing waste: AGEA (top), WV3 (center), GE (bottom). 
In each row, the left image is the input sample overlaid with manually drawn bounding boxes surrounding the 
areas with waste. The center image shows the heat map derived from the CAM of the positive class. The right 
image zooms over the bounding box region.

https://doi.org/10.1038/s41597-023-01976-9
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Usage with the inspection tool. The AerialWaste dataset is equipped with an Inspection Tool that sup-
ports the visualization of predictions of waste detectors. Its main functions are:

•	 Map exploration. The user can move around a map of the region of interest by dragging the mouse to differ-
ent positions or by using an iteration function. The iteration mode superimposes a grid over the area under 
analysis and lets the user move by changing the grid position with the previous and next commands. The GUI 
also offers the usual zoom controls.

Fig. 13 The Inspection Tool showing the model predictions and their confidence levels. The legenda in the 
lower right corner of the image specifies the color conventions used to display the prediction confidence. The 
red box corresponds to a scene classified with a score higher than 0.8 while the orange one corresponds to a 
classification higher than 0.5. In this example, the model was executed using a sliding window of 800 × 800 
pixels with an offset of 600 pixels (this is why the prediction areas overlap). The blue polygons display the CAMs 
generated for the predicted scenes, which highlight the image regions where the model focused the attention.

Fig. 14 Inspection Tool. Left: the function to create the segmentation mask of a suspicious site. Right: the form-
based interface to edit the metadata.

https://doi.org/10.1038/s41597-023-01976-9
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•	 Predictions visualization. The user can display the previously computed model output on the map. Predic-
tions are shown by means of color-coded rectangles, where the color indicates the confidence of the model. 
Very low confidence predictions (below 0.20) are filtered out.

•	 CAMs Visualization. The user can visualize the CAMs associated with the predictions. This function helps 
identify the most relevant spots and prevents the oversight of suspicious objects.

•	 Source selection. The user can choose the map layer among the configured sources. Each source may provide 
different information. For example, the Google Maps layer provides street names and references to different 
points of interest, which can be useful to better understand the context.

•	 Mask definition. The user can mark the presence of waste objects by drawing a polygon around the relevant 
areas.

•	 Annotation creation. The user can add or modify metadata about a location. The descriptive fields by default 
include severity, evidence, environmental risk, waste type, and waste storage mode, plus a free text input for 
additional information.

•	 Data export. The user can export the session data in different formats: as a Comma Separated Values (CSV) 
file to visualize in a spreadsheet or as a Keyhole Markup Language (KML) file to display in a GIS (e.g., QGIS).

Figure 13 shows the map interface of the Inspection Tool and Fig. 14 illustrates the interface for creating and 
annotating a site.

Supported use cases and extension. The AerialWaste dataset is offered to the scientific community for 
promoting the progress of computer-aided waste discovery in aerial images. It is the first public collection of 
aerial images portraying landfills and other types of waste dumps curated by professional photo interpreters and 
made available publicly.

AerialWaste can be used “as is” to train a CV model for the binary (waste/no waste) classification of aerial 
images. From an application perspective, we found that this level of intelligence is sufficient for environmental agen-
cies seeking to accelerate their territory monitoring processes. When a location is detected as suspicious, the next 
step is an on-site recognition to ascertain whether the detection is an actual true positive. However, when the area 
to monitor is large and densely populated the number of positive identifications quickly grows and makes inspect-
ing all the potentially relevant sites impossible. In this case, a multi-class object-based classification is a better aid, 
because the type of detected waste objects may support the assessment of risk and the prioritization of interventions.

Accurate object localization is the next usage level. In this case, the position and the number of relevant 
objects can be estimated, which further contributes to proper characterization of the site from remote. The 
present version of AerialWaste can support the training and testing of weakly supervised localization (WSL) 
architectures33,34 by providing segmentation masks for the images in the test set. Given the high cost of creating 
object-level masks34 we have added to the dataset a number of segmentation masks sufficient to evaluate a WSL 
model trained with the provided whole-image labels of the object types. We expect that this feature will promote 
the development of more discriminative predictors advancing the state of the art in computer-aided waste dis-
covery and environmental risk assessment.

The planned extensions of AerialWaste pursue different directions:

•	 Geographical expansion. The present locations belong to the same Italian region (Lombardy), which albeit 
very diversified in terms of territory configuration and land use may induce some selection bias. We plan to 
extend the collaboration to environment agencies in other territories so as to improve the dataset diversity.

•	 Hard negative sampling. Besides intra-class diversity, aerial images of landfills and of waste disposal sites have 
also high inter-class similarities. An operational production plant sometimes can be confounded with an aban-
doned one used for illegal waste storage. We plan to search hard negative examples and add them to the data set.

•	 Multi-modal imagery. AerialWaste contains only RGB images. The addition of samples acquired with differ-
ent remote sensing products beyond the visible band could support the design of multi-modal detectors, e.g., 
exploiting the NIR band to identify the presence of stressed vegetation as a clue for buried waste.

•	 Multi-temporal imagery. Some sources archive aerial images acquired over time. Analyzing images taken at 
different dates could provide information on the site activity, e.g., growing or shrinking. Adding time series 
of images of the same location to AerialWaste may help environmental agencies to plan interventions better, 
e.g., by prioritizing missions based on the growth rate of the dumping sites.

•	 Additional metadata. The metadata currently present in AerialWaste are the result of the annotations that 
experts routinely create in order to characterize the site and are not conceived with the specific purpose of 
supporting machine learning tasks. We plan to improve the metadata by adhering to the EU waste codes20 so 
as to foster interoperability with future waste discovery datasets and by adding technical annotations support-
ing the diagnosis of machine learning models.

•	 Object localization. We are training a WSL component for detecting waste objects with the whole image 
labels of the data set. We plan to use the segmentation masks output by such a detector as a starting point for 
the next round of expert annotations. We think that the availability of object mask proposals, albeit not fully 
accurate, can accelerate the annotation task substantially.

code availability
The data presented in this study, as well as the list of tools employed, are publicly released:

• AerialWaste toolkit: Instructions and scripts to visualize it and draw basic statistics are published in the fol-
lowing repository https://github.com/nahitorres/aerialwaste.

https://doi.org/10.1038/s41597-023-01976-9
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• AerialWaste model: the models and the code to execute them are released on https://github.com/nahitorres/
aerialwaste-model.

• Inspection Tool: the Jupyter notebook-based tool is also publicly released on https://github.com/nahitorres/
demo-inspection-tool. After the execution of the models in new areas, the predictions can be visualized with the 
inspection tool.

• ODIN: the tool used for the dataset annotation process and for the model evaluation phase is a previous 
work, available at https://nahitorres.github.io/odin-docs/.
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