

POLITECNICO **MILANO 1863**

J. Ianes*, B. Cantoni*, E. U. Remigi**, F. Polesel**, L. Vezzaro***, M. Antonelli*

* Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy

** DHI A/S, Agern Allé 5, 2970, Hørsholm, Denmark

E-mail: jessica.ianes@polimi.it

INTRODUCTION

>Intense rainfall events: activation of **Combined Sewer Overflows** (CSOs) and **Bypass** of the WWTP (BP)

"Good" ecological and chemical **status** in **natural waters** required by 2027¹

Wet-weather discharges: major cause of **degradation** of surface water quality compared to WWTP effluent,² including **chronic risk** for **micropollutants**³

GAP >Discharge of WWTP **bypass** >**Volumes** released by wet-weather discharges of an **entire** sewer system **>Environmental chronic risk assessment** caused by wet-weather discharges

AIM

Concentration of (micro-)pollutants in wet-weather discharges: large variability in time and space²

1. Which **discharge** and class of **pollutants** pose the highest **environmental chronic risk**? 2. How can different **choices** in the **risk assessment procedure** affect the result?

METHODS

RESULTS

DATA COLLECTION For each *i-th* discharge type: 1. Water **quantity**: V_i , Q_R 2. Water **quality** for *j*-th (micro-)pollutants: C_{i,i}

S \geq GLE SIN

PAH, Polycyclic Aromatic Hydrocarbons **HM**, Heavy Metals **PHARM**, Pharmaceuticals **PEST**, Pesticides 6 Standard indicators

PARAMETERIZATION

MICROPOLLUTANTS

> Higher risk by CSOs, with micropollutant order: PAH>H PEST

Number of micropollutants exceeding the threshold RQ=1 for each	
discharge and scenario	

micropollutants in the	SCENARIOS			n _{RQ_{i,i}>1}				n _{RQi,i} >1				n _{RQi,i} >1			
order: PAH>HM>PHARM>	DF	СР	RQP	CSOs	BP	EFF	DF	CSOs	BP	EFF	DF	CSOs	BP	EFF	
PEST			5 RQ50	0	0	0		1 PAH	0	0		3 PAH 2 PHARM 2 HM 2 PEST	3 PAH	3 PAH 3 PHARM 1 HM 1 PEST	
> PAH mainly cause the risk		а ч У S С75 С50	C50	RQ7	0	0	0		2 PAH	0	1 PHARM		ALL	3 PAH 1 PHARM	ALL
across all scenarios, due to wet-weather discharges			RQ95	1 PAH	0	0		3 PAH 1 HM	1 PAH	3 PHARM	w	ALL	3 PAH 3 PHARM 1 HM	ALL	
(CSOs+BP)			RQ50	0	0	0	м	1 PAH	0	0		3 PAH 3 PHARM 3 HM	3 PAH	3 PAH 3 PHARM 1 HM 2 DEST	
In the effluent PHARM is	S A E		RQ75	0	0	0	E D I U	2 PAH 3 PAH	1 PAH 1 PAH	1 PHARM O 3 PHARM 1 PAH S T	O R	ALL	3 PAH 2 PHARM 1 HM	ALL	
the class posing the highest risk to river	E		RQ95	1 PAH	0	0		1 PHARM 2 HM 1 PEST			S T	ALL	3 PAH 3 PHARM 1 HM	ALL	
\mathbf{BP} is the discharge nosing			RQ50	0	0	0		2 PAH	1 PAH	0		3 PAH 3 PHARM 3 HM	3 PAH 2 PHARM 1 HM	3 PAH 3 PHARM 2 HM	
the lowest risk for the river		<i>C95</i>	RQ75	1 PAH	0	0		3 PAH 1 HM	1 PAH	2 PHARM	ALL	3 PAH 2 PHARM	ALL		
Significant differences in risk assessment depending			RQ95	1 PAH	0	0		3 PAH 2 PHARM 2 HM 2 PEST	1 PAH	1 PAH 3 PHARM		ALL	3 PAH 3 PHARM 1 HM 1 PEST	ALL	

Fitting distributions to data (C_{i,i})

STANDARD INDICATORS

on the selected RQ percentile

Contribution of single discharge types to total annual load discharged to the river for Medium DF and C75 scenario

CONCLUSIONS

> There is a high impact of CSOs on chronic environmental risk in receiving water bodies > The highest impact is related to the release of micropollutants: PAH>HM>PHARM>PEST > PHARM in the effluent cause a significant risk already in the Medium DF scenario, but only in the Worst one during wet-weather

> Wet-weather discharges, and CSOs in particular, should not be neglected to properly address chronic environmental risk

REFERENCES

1. EU (2000) Water Framework Directive, Directive 2000/60/EC, European Parliament and Council, 23/10/2000

2. L. Mutzner, C. Bohren, S. Mangold, S. Bloem and C. Ort, Spatial Differences among Micropollutants in Sewer Overflows: A Multisite Analysis Using Passive Samplers, *Environ. Sci. Technol.*, 2020, **54**, 6584–6593.

3. E. Gooré Bi, F. Monette, J. Gasperi and Y. Perrodin, Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach, Environ. Sci. Pollut. Res., 2015, 22, 4460-4474.

