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Abstract
We construct a large class of superoscillating sequences, more generally of F -
supershifts, where F is a family of smooth functions in (t, x) (resp. distributions
in (t, x), or hyperfunctions in x depending on the parameter t) indexed by λ ∈ R. The
frame in which we introduce such families is that of the evolution through Schrödinger
equation (i∂/∂t−H (x))(ψ) = 0 (H (x) = −(∂2/∂x2)/2+V (x)),V being a suitable
potential). If F = {(t, x) �→ ϕλ(t, x) ; λ ∈ R}, where ϕλ is evolved from the initial
datum x �→ eiλx , F -supershifts will be of the form {∑N

j=0 C j (N , a)ϕ1−2 j/N }N≥1

for a ∈ R\[−1, 1], taking C j (N , a) = (Nj
)
(1 + a)N− j (1 − a) j/2N . Our results rely

on the fact that integral operators of the Fresnel type govern, as in optical diffraction,
the evolution through the Schrödinger equation, such operators acting continuously on
the weighted algebra of entire functions Exp(C). Analyzing in particular the quantum
harmonic oscillator case forces us, in order to take into account singularities of the
evolved datum that occur when the stationary phasis in the Fresnel operator vanishes,
to enlarge the notion ofF -supershift,F being a family of C∞ functions or distribu-
tions in (t, x), to that where F is a family of hyperfunctions in x , depending on t as
a parameter.
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1 Introduction

The Aharonov–Berry superoscillations are band-limited functions that can oscillate
faster than their fastest Fourier component. These functions (or sequences, to be more
precise) appear in many settings, both in classical phenomena, as well as in the study
of weak measurements, [7, 14, 15, 29]. A thorough review of the various situations in
which superoscillations arise is [30]. Not surprisingly, the literature related to super-
oscillations is very large, and without claiming completeness, we mention [23–25, 27,
28, 36, 37, 43, 45]. Quite recently, this class of functions has been investigated from
the mathematical point of view, see [1, 2, 8–12, 16, 18–20, 31, 33, 34] and the mono-
graph [13]. For a unified approach to Schrödinger evolution of superoscillations and
supershifts see the recent paper [3]. Finally, we mention that different field equations
has been recently considered such as Klein–Gordon see [5], and that superoscillations
also appear in Schur analysis, see [17].

In this paper we will extend naturally some of the ideas developed in those articles,
and we will discover exciting new features that need to be considered when we apply
the theory of superoscillations to the study of specific Schrödinger equations, in which
singularities naturally arise.

In order to set up the stage, let a > 1 be a real number. The archetypical superoscil-
latory sequence is the sequence of complex valued functions {FN (x, a)}N≥1 defined
on R by

FN (x, a) =
(
cos
( x

N

)
+ ia sin

( x

N

))N
. (1.1)

It is immediate to see that if we fix x ∈ R, and we let N go to infinity, we obtain that

lim
N→∞ FN (x, a) = eiax .

However, by expanding the trigonometric functions sin x and cos x through Euler’s
formula, it is also easy to see that in fact we can rewrite FN (x, a) as

FN (x, a) =
N∑

j=0

C j (N , a)ei(1−2 j/N )x ,

where

C j (N , a) =
(
N

j

)(
1 + a

2

)N− j (1 − a

2

) j

, (1.2)

and
(N
j

)
denotes the binomial coefficient. This simple observation is significant because

we now have a sequence of functions whose frequencies (1− 2 j/N ) are bounded by
one, and yet their limit has the arbitrarily large frequency a. This explains why the
sequence {FN (x, a)}N≥1 is called superoscillatory.
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There is also a different way to conceptualize this phenomenon by saying that the map
that associates to a real number a ∈ R\[−1, 1] the sequence {FN (x, a)} is a supershift
with respect to the map which associates to the real parameter λ the complex function
eiλx . Though this is simply a different way to restate what we said before, it indicates
a change of perspective since the supershift is now associated to maps whose variables
are real numbers and whose range are spaces of functions. This approach will be made
precise in Definition 5.1.

Most of the work done in recent years has been devoted to two fundamental
questions, inspired by the physical considerations that led to the discovery of super-
oscillatory phenomena. The first question asks how to construct larger families of
superoscillating sequences, and the second question asks whether superoscillations
persist once they are propagated according to the Schrödinger equation with a given
potential. As it turns out, the two questions are intimately connected, and this paper
explores further this connection. To begin with, it is easy to show that if P(z) is a
polynomial of one complex variable, then the sequence

ψP,N (t, x, λ) =
N∑

j=0

C j (N , λ) ei(1−2 j/N )x eit P(1−2 j/N ),

with t and x real variables, is a solution of the Cauchy problem for the modified
Schrödinger equation

[

i
∂

∂t
+ P

(

−i
∂

∂x

)]

(ψP,N (t, x, λ)) = 0,

with the initial condition

ψP,N (0, x, λ) = FN (x, λ).

In Sect. 3, however, wewill show that this new sequence {ψP,N (t, x, λ)} converges,
with all of its derivatives in both t and x , to the suitable derivative of ei(λx+t P(λ)). We
are therefore able to show that this process allows us to construct a large class of
superoscillating sequences of the form {x �→ ψP,N (t, x, a)}N≥1 from the original
“superoscillating” sequence {x �→ FN (x, a)}N≥1 . In these sequences the superoscil-
lating convergence property propagates through any differential operator in t, x , the
convergence being uniform on any compact subset of the real plane. Note that this
process as well allows us to extend the notion of supershift to functions that associate
to a real parameter λ a function of two variables t and x .

The more significant situation, however, arises when one considers a general
Schrödinger operator of the form

i
∂

∂t
+ 1

2

∂2

∂x2
+ V (x)
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with a suitable real potential V and associated Green function GV (t, x, 0, x ′) such
that the response, at time t , to the initial value eiλx for t = 0, is given by

ϕλ(t, x) =
∫

R

GV (t, x, 0, x ′) eiλx ′
dx ′

for λ ∈ R and (t, x) in the phase domain. Note that we need to interpret the integral
as a regularized integral on R in a sense that will be clarified in Sect. 4). In this case
we will find sufficient conditions that ensure that the integral operator

T ( f (x ′))(t, x) =
∫

R

GV (t, x, 0, x ′) f (x ′) dx ′

is such that for any λ ∈ R,

T

⎛

⎝
N∑

j=0

C j (N , λ) ei(1−2 j/N )x ′
⎞

⎠ (t, x) =
N∑

j=0

C j (N , λ) ϕ1−2 j/N (t, x)

converges to

T (eiλx
′
)(t, x) = ϕλ(t, x)

locally uniformly in some open subset U of the phase space (in R
2
t,x ) on which V

is smooth and which is entirely determined by the explicit expression of the Green
function GV (Theorem 5.1). In such a situation the sequence defined on U by

⎧
⎨

⎩

N∑

j=0

C j (N , a) ϕ1−2 j/N

⎫
⎬

⎭

(where a ∈ R\[−1, 1]) is a supershift for (ϕλ)|U . Moreover, for any λ ∈ R, ϕλ ∈
C∞(U , C) and for any (μ, ν) ∈ N

2,

∂μ+ν

∂tμ∂xν

⎛

⎝
N∑

j=0

C j (N , λ) ϕ1−2 j/N

⎞

⎠ N−→∞−→ ∂μ+ν

∂tμ∂xν
(ϕλ)

locally uniformly in U for any λ ∈ R, in particular λ = a ∈ R\[−1, 1].
Interesting situations occur when λ ∈ R �→ ϕλ makes sense as a continuous map

from R into D ′(U ′, C) for some open subset U ′
� U in the phase space. Such is

the case in the example of the quantum harmonic oscillator, where V (x) = x2/2, the
phase space is R

+∗ × R and

U = (R+ × R)\{(k π/2, x
) ; k ∈ N, x ∈ R} ⊂ U ′ = R

+∗ × R.
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In such case, given k′ ∈ N and x0 ∈ R, it is impossible to interpret

⎧
⎨

⎩

⎛

⎝
N∑

j=0

C j (N , a) ϕ1−2 j/N

⎞

⎠

about ((2k′+1)π/2,x0)

⎫
⎬

⎭
(1.3)

(when a ∈ R\[−1, 1]) as a supershift for λ �−→ (ϕλ)|about ((2k′+1)π/2,x0) (all maps
being considered here as distribution-valued about ((2k′ + 1)π/2, x0)), while it
is possible to do so about a point (k′′π, x0), where k′′ ∈ N

∗. In order to inter-
pret (1.3) as a supershift for λ �→ (ϕλ)about ((2k′+1)π/2,x0), one needs to consider
(ϕλ)|about ((2k′+1)π/2,x0) as a hyperfunction (in t) times a distribution (in x) instead of
distribution in (t, x). We will discuss such questions in Sect. 6.

The plan of the paper is the following: the paper contains five sections, besides this
introduction. In Sect. 2 we introduce the spaces Ap(C), Ap,0(C), and we define some
infinite order differential operators with nonconstant coefficients which will play a
crucial role to prove our main results. In Sect. 3 we recall the definition of generalized
Fourier sequence and (complex) superoscillating sequence in one and several variables
together with some examples; we then study two Cauchy–Kowalevski problems (one
of which of Schrödinger type) and we show that superoscillations persist in time. In
Sect. 4 we address the problem of explaining the process of regularization of formal
Fresnel-type integrals which is a necessary step to obtain further results in the paper.
Fresnel-type integrals are shown to be continuous on A1(C) in Sect. 5, in which we
also treat a Cauchy problem for the Schrödinger equation with centrifugal potential
and also for the quantum harmonic oscillator. Finally, in Sect. 6, we investigate the
evolution of superoscillating initial data with respect to the notion of supershift for the
quantum harmonic oscillator, andwe focus on singularities. It is interesting to note that
in this case one needs to extend the concept of supershift in the case of hyperfunctions.

Notations. We use the notations with capital letters Z , d/dZ ,W , d/dW , Ž in the
expressions of formal differential operators, besides the usual notation z for the com-
plex variable and t (time) x, x ′ (space) real variables.

2 On Continuity of Some Convolution Operators

Let f be a non-constant entire function of a complex variable z. We define

M f (r) = max|z|=r
| f (z)|, for r ≥ 0.

The non-negative real number ρ defined by

ρ = lim sup
r→∞

ln lnM f (r)

ln r

is called the order of f . If ρ is finite then f is said to be of finite order and if ρ = ∞
the function f is said to be of infinite order.
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In the case f is of finite order we introduce the non-negative real number

σ = lim sup
r→∞

lnM f (r)

rρ
,

and call it the type of f . If σ ∈ (0,∞) we say f is of normal type, while we say it is
of minimal type if σ = 0 and of maximal type if σ = ∞. Constant entire functions are
considered of minimal type and order zero. In the sequel we will extensively make use
of weighted spaces Ap(C) or Ap,0(C) of entire functions whose definition follows ;
such spaces are classical, see e.g. [22, 47].

Definition 2.1 Let p be a strictly positive number. We define the space Ap(C) as the
C-algebra of entire functions such that there exists B > 0 such that

sup
z∈C
(| f (z)| exp(−B|z|p) < +∞.

The space Ap,0(C) consists of those entire functions such that

∀ ε > 0, sup
z∈C
(| f (z)| exp(−ε|z|p) < +∞.

To define a topology in these spaces we follow [22, Section 2.1]. For p > 0, B > 0
and for any entire function f , we set

‖ f ‖B := sup
z∈C

{| f (z)| exp(−B|z|p)}.

Let AB
p (C) denote the C-vector space of entire functions satisfying ‖ f ‖B < ∞.

Then ‖ · ‖B defines a norm on AB
p (C) so that (AB

p (C), ‖ ‖B) is a Banach space and the

natural inclusionmapping AB
p ↪→ AB′

p (when 0 < B ≤ B ′) is a compact operator from
(AB

p (C), ‖ ‖B) into (AB
p (C), ‖ ‖B′). For any sequence {Bn}n≥1 of positive numbers,

strictly increasing to infinity, we can introduce an LF-topology on Ap(C) given by the
inductive limit

Ap(C) := lim−→ ABn
p (C).

Since this topology is stronger than the topology of the pointwise convergence, it
is independent of the choice of the sequence {Bn}n≥1. Thus, in this inductive limit
topology, given f and a sequence { fN }N≥1 in Ap(C), we say that fN → f in Ap(C)

if and only if there exists n ∈ N
∗ such that f , fN ∈ ABn

p (C) for all N ∈ N
∗, and

‖ fN − f ‖Bn → 0 for N → ∞. The topology on Ap,0(C) is given as the projective
limit

Ap,0(C) := lim←− Aεn
p (C)
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where {εn}n≥1 is a strictly decreasing sequence of positive numbers converging to 0. It
can be proved, see [22, Section 6.1], that Ap(C) and Ap,0(C) are respectively a DFS
space and an FS space. When p > 1, Ap,0(C) is the strong dual of Ap′(C) (where
1/p + 1/p′ = 1), the duality being realized as

μ ∈ (Ap′ (C))′ �−→
[
Fourier − Borel Transform of μ : w ∈ C �−→ μz(e

−zw)
]

∈ Ap,0(C).

In the extreme case p = 1, A1(C) (also denoted as Exp(C)) is isomorphic to the space
Ĥ(C) of analytic functionals, the duality being realized as

T ∈ Ĥ(C) �−→
[
Fourier − Borel Transform of T : w ∈ C �→ Tz(e

−zw)
]

∈ A1(C).

Here H(C) is equipped with its usual topology of uniform convergence on any
compact subset.
The following result is an immediate consequence of the definition of the topology in
the spaces Ap(C) for p > 0.

Proposition 2.1 Let f = { fN }N≥1 be a sequence of elements in Ap(C). The two
following assertions are equivalent:

• the sequence f converges towards 0 in Ap(C) ;
• the sequence f converges towards 0 in H(C) and there exists A f ≥ 0 and B f ≥ 0
such that

∀ N ∈ N
∗, ∀ z ∈ C, | fN (z)| ≤ A f e

B f |z|p . (2.1)

Proof The first assertion means that there exists B > 0 with limN→∞ ‖ fN‖B = 0
(in particular ‖ fN‖B ≤ 1 for N ≥ N1), which implies that the sequence f converges
to 0 in H(C) and that | fN (z)| ≤ AeB|z|p with B and A = sup( Ã1, . . . , ÃN1 , 1)
independent of N ( Ã j = supC(| f j (z)| e−B|z|p ) for j = 1, . . . , N1). Conversely,
assume that the second assertion holds and take B > B f , so that, given ε > 0, there
exists Rε > 0 such that

∀ N ∈ N
∗, sup

|z|≥Rε

| fN (z)| e−B|z|p ≤ A f e
(B f −B)Rp

ε < ε.

On the other hand, since f converges to 0 uniformly on any compact subset of C, in
particular on D(0, Rε), there exists Nε ∈ N

∗ such that

N ≥ Nε �⇒ sup
|z|≤Rε

| fN (z)| e−B|z|p ≤ sup
|z|≤Rε

| fN (z)| < ε.

Therefore supN≥Nε
‖ fN‖B < ε and the sequence f converges to 0 in Ap(C). ��

To prove our main results we need an important lemma that characterizes entire func-
tions in Ap(C) in terms of the behaviour of their Taylor development, see Lemma 2.2
in [18].
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Lemma 2.1 The entire function f : z �→∑∞
j=0 f j z j belongs to Ap(C) if and only if

there exists C = C f > 0 and b = b f > 0 such that f ∈ AC,b
p (C), where

AC,b
p (C) =

⎧
⎨

⎩

∞∑

j=0

f j z
j ∈ Ap(C) ; ∀ j ∈ N, | f j | ≤ C

b j

�( j/p + 1)

⎫
⎬

⎭
. (2.2)

The following lemmas are refinements of results previously stated in [18], except that
we need here some extra dependency with respect to auxiliary parameters. They will
be of crucial importance in order to prove the main results in the next sections.

Lemma 2.2 Let T be a set of parameters and τ ∈ T �→ D(τ ) be a differential
operator-valued map

τ ∈ T �−→ D(τ ) =
∞∑

j=0

b j (τ )
( d

dW

) j

(with b j : T → C for j ∈ N) whose formal symbol

F : (τ,W ) ∈ T × C �−→
∞∑

j=0

b j (τ )W j

realizes for each τ ∈ T an entire function of W such that

sup
τ∈T ,W∈C

(|F(τ,W )| e−B |W |p) = A < +∞ (2.3)

for some p ≥ 1 and B ≥ 0. Then D(τ ) acts as a continuous operator from A1(C) into
itself uniformly with respect to the parameter τ ∈ T .

Proof It follows from Lemma 2.1 that the coefficient functions τ �−→ b j (τ ) satisfy
then uniform estimates

∀ j ∈ N, ∀ τ ∈ T , |b j (τ )| ≤ C
b j

�( j/p + 1)

for some positive constants C = C(D) and b = b(D) depending only on the finite
quantity A in (2.3) and B. Let f : W �→ ∑∞

�=0 a�W � ∈ A1(C). There are then (see
again Lemma 2.1) positive constants γ and β such that |a�| ≤ (γ /�!) β� for any � ∈ N.
Consider the action of D on such f . One has (for the moment formally)

∀ τ ∈ T , D(τ )( f ) =
∞∑

j=0

b j (τ )(d/dW ) j ( f ) =
∞∑

j=0

b j (τ )

( ∞∑

�=0

( j + �)!
�! a�+ j W

�

)
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=
∞∑

�=0

⎛

⎝
∞∑

j=0

( j + �)!
�! b j (τ )a�+ j

⎞

⎠ W � (2.4)

with

∞∑

j=0

( j + �)!
�! |b j (τ )| |a�+ j | ≤ γ C

β�

�!
∞∑

j=0

(b β) j

�( j/p + 1)
= K (b,C, β, γ )

β�

�! .

(2.5)

Therefore the formal identity (2.4) is in fact a true one for any W ∈ C, which shows
that D(τ )[ f ] ∈ A1(C) for any τ ∈ T , with

∀ τ ∈ T , ∀W ∈ C, |D(τ )( f )| ≤ K (b,C, β, γ ) eβ|W |.

Let f = { fN }N≥1 be a sequence converging towards 0 in A1(C) which is equivalent
to say that sup(b fN + C fN ) < +∞ and that f converges towards 0 in H(C), see
Proposition 2.1. Then the sequence {D(τ )( fN )}N≥1 = D(τ )( f ) is such that

∀ N ∈ N
∗, ∀ τ ∈ T , ∀W ∈ C, |D(τ )( fN )(W )| ≤ A f e

B f |W |

for some positive constants A f and B f depending only on D and f . LetB > B f and
ε > 0. Let R = Rε large enough such that

∀ τ ∈ T , ∀ N ∈ N
∗, ∀W ∈ C with |W | > R, |D(τ )( fN )(W )|e−B|W | ≤ ε.

Since D(τ )( fN )(W ) = ∑∞
�=0 aN ,�(τ )W � with |aN ,�(τ )| ≤ (C f /�!) b�

f for some
constants C f and b f independent on τ ∈ T and on N (see (2.5)) and the sequence f
converges to 0 in H(C), one can find N = Nε such that

∀ N ≥ Nε, ∀ τ ∈ T , ∀W ∈ C with |W | ≤ R, |D(τ )( fN )(W )| ≤ ε.

Hence the sequence D(τ )( f ) converges towards 0 in A1(C), uniformly with respect
to the parameter τ . ��
Since the next lemma involves as set of parameters T the set which is now given as
split in the formT = T× CZ , where CZ is already a copy of the complex plane, one
needs to duplicate CZ into an extra copy of C denoted as CW .

Lemma 2.3 Let T be a set of parameters and t ∈ T �→ D(t, Z) be a differential
operator-valued map

t ∈ T �−→ D(t, Z) =
∞∑

j=0

b j (t, Z)
( d

dZ

) j
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(with b j : T × C → C, holomorphic in Z for j ∈ N) such that

∀ ε > 0, sup
t∈T,(Z ,W )∈C2

⎛

⎝

⎛

⎝
∞∑

j=0

|b j (t, Z)| |W | j
⎞

⎠ exp(−ε |Z | p̌ − B |W |p)
⎞

⎠ = A(ε) < +∞ (2.6)

for some p̌ > 1, p ≥ 1 and B ≥ 0. Then D(t, Z) acts as a continuous operator from
A1(C) into A p̌,0(C) uniformly with respect to the parameter t ∈ T.

Proof The function

F : (t, Z ,W ) �−→
∞∑

j=0

( ∞∑

κ=0

b j,κ (t)Zκ

)

W j =
∞∑

κ=0

Zκ

⎛

⎝
∞∑

j=0

b j,κ (t)W j

⎞

⎠ (2.7)

is well defined and depends as an entire function of two variables of the variables
Z and W (which also justifies in (2.7) the application of Fubini theorem). Cauchy
formulae in C × C show that for any t ∈ T, for any j, κ ∈ N,

|b j,κ (t)| = 1

4π2

∣
∣
∣

∫

|Z |=ř ,|W |=r
F(t, Z ,W )

dZ

Zκ+1 ∧ dW

W j+1

∣
∣
∣ ≤ A(ε) inf

ř>0

eεř
p̌

rκ
× inf

r>0

eBr
p

r j

= A(ε)
( 1

κ

)κ/ p̌ ×
( 1

j

) j/p
((ε p̌ e)1/ p̌)κ ((Bpe)1/p) j

≤ Cη
1

�(κ/ p̌ + 1)�( j/p + 1)
(η b̌)κ b j (2.8)

for each η > 0, with constantsCη, b̌ and b independent on the parameter t. Let now
f = { fN }N≥1 be a sequence of elements in A1(C) which converges to 0 in A1(C).
All differential operators

Dκ(t) :=
∞∑

j=0

b j,κ (t)(d/dW ) j (κ ∈ N)

act continuously on A1(C), as seen in Lemma 2.2. Moreover, one has (plugging in
(2.5) the estimates (2.8)) that

∀ f ∈ Aγ,β
1 (C), ∀ t ∈ T, ∀ κ ∈ N, ∀ � ∈ N,

(Dκ(t)( f ))� ≤ γ C̃η

(η b̌)κ

�(κ/ p̌ + 1)
E1/p,1(β b)

β�

�!

where E1/p,1 : ζ ∈ C �−→ ∑∞
0 ζ k/�(k/p + 1) is the entire (with order 1/p and

type 1) Mittag–Leffler function. One has therefore for such f ∈ Aγ,β
1 (CW ) that
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∀ t ∈ T, ∀ κ ∈ N, ∀W ∈ C, |Dκ(t)( f )(W )| ≤ γ Cη E1/p,1(β b)
eβ|W |

�(κ/ p̌ + 1)
(2.9)

and (taking now W = Z )

∀ t ∈ T, ∀ Z ∈ C,

∞∑

κ=0

|Z |κ |Dκ (t)( f )(Z)| ≤ γ Cη E1/p,1(β b) eβ|Z |
∞∑

κ=0

(η b̌ |Z |)κ
�(k/ p̌ + 1)

. (2.10)

Since the Mittag–Leffler function E1/ p̌,1 has order p̌ > 1, the estimates (2.10)

(uniform in the parameter t as well as on the function f ∈ Aγ,β
1 (C)) show that the

differential operator acts continously from A1(C) into Ap̌,0(C), uniformlywith respect
to the parameter t ∈ T. One just needs to repeat here the end of the proof of Lemma 2.2.

��
We conclude this section by proving a quantitative lemmawhich reveals to be essential
in the sequel. It is a refinement of Lemma 1 in [34].

Lemma 2.4 Let a ∈ C with α := max(1, |a|) and, for any z ∈ C,

FN (z, a) :=
(
cos
( z

N

)
+ i a sin

( z

N

))N

as in (1.1) (with z, a ∈ C instead of x, a ∈ R). For any N ∈ N
∗ and any z ∈ C, one

has

|FN (z, a)| ≤ exp
(|a| |z| + |Im(z)|) ≤ exp

(
(|a| + 1) |z|)

|FN (z, a) − eiaz | ≤ 2

3

|a2 − 1|
N

|z|2 exp
(
(α + 1)|z|).

(2.11)

Proof Let

sinc : z ∈ C �−→ sin z

z
=
∫ 1

0
t cos(t z) dt

be the sinus cardinal function; it satisfies |sinc(z)| ≤ e|Im(z)| for any z ∈ C. One has
then the upper uniform estimates

∀ N ∈ N
∗, ∀ z ∈ C, |FN (z, a)| =

∣
∣
∣ cos
( z

N

)
+ ia sin

( z

N

)∣
∣
∣
N

=
∣
∣
∣ cos
( z

N

)
+ i

az

N
sinc
( z

N

)∣
∣
∣
N

≤ e|Im(z)|(1 + |az|
N

)N ≤ exp(|a| |z| + |Im(z)|) ≤ exp
(
(|a| + 1)|z|), (2.12)

which is the first chain of inequalities in (2.11). For any N ∈ N
∗, one has also

∣
∣
∣ cos
( z

N

)
− cos
(az

N

)∣
∣
∣ = 2
∣
∣
∣ sin
( (a − 1)z

2N

)
sin
( (a + 1)z

2N

)∣
∣
∣
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≤ |a2 − 1|
2N 2 |z|2 exp

( |a − 1| + |a + 1|
2N

|z|
)

≤ |a2 − 1|
2N 2 |z|2 exp

(α + 1

N
|z|
)

(2.13)

and

∣
∣
∣a sin
( z

N

)
− sin
(az

N

)∣
∣
∣ =
∣
∣
∣

∞∑

k=0

(−1)k

(2k + 1)! (a − a2k+1)
( z

N

)2k+1∣∣
∣

= |a2 − 1|
N 2 |z|2

∣
∣
∣
∣
∣

∞∑

k=1

(−1)k

(2k + 1)!

(
k−1∑

�=0

a2�+1

)
( z

N

)2k−1
∣
∣
∣
∣
∣

≤ |a2 − 1|
2N 2 |z|2

∞∑

k=1

α2k−1

(2k − 1)!(2k + 1)

( |z|
N

)2k−1

≤ |a2 − 1|
6N 2 |z|2

∞∑

k=1

1

(2k − 1)!
(α|z|

N

)2k−1 ≤ |a2 − 1|
6N 2 |z|2 exp

( α

N
|z|
)
.

(2.14)

It follows from the identity AN − BN = (A − B)
N−1∑

k=0
Ak BN−1−k , together with

estimates (2.13), (2.14) and (2.12), that for any N ∈ N
∗ and z ∈ C,

|FN (z, a) − eiaz | =
∣
∣
∣ cos
( z

N

)
− cos
(az

N

)
+ i
(
a sin
( z

N

)
− sin
(az

N

))∣
∣
∣

×
N−1∑

k=0

|FN (z, a)|k/N
∣
∣
∣ exp
(
iaz

N − 1 − k

N

)∣∣
∣

≤ 2

3

|a2 − 1|
N2 |z|2 exp

(α + 1

N
|z|
) N−1∑

k=0

exp
(
k
( |a| + 1

N

)
|z| + N − 1 − k

N
|a| |z|
)

≤ 2

3

|a2 − 1|
N

|z|2 exp
(
(α + 1)|z|).

The second inequality in (2.11) is thus proved. ��

One can now state as a consequence of Proposition 2.1 and Lemma 2.4 the following
theorem.

Theorem 2.1 For any a ∈ C, the sequence {z �→ FN (z, a)}N≥1 converges to z �→ eiaz

in A1(C).

Proof It follows from estimates (2.12) that the sequence f = {z �→ FN (z, a)}N≥1
satisfies the estimates (2.1) with p = 1, B f = |a| + 1 and C f = 1. Lemma 2.4
implies on the other hand that the sequence f converges towards z �→ eiaz in H(C).
The result is then a consequence of Proposition 2.1. ��
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3 Uniform Convergence of Superoscillating Sequences

Let m ∈ N
∗ and (F (Rm, C))N

∗
be the family of all sequences Y = {x ∈ R

m �→
YN (x)}N≥1 of complex valued functions defined on R

m . We first recall in this sec-
tion the notions of (complex) generalized Fourier sequence (CGFS) and (complex)
superoscillating sequence (CSOscS) in (F (Rm, C))N

∗
. We start first with the case

m = 1.

Definition 3.1 A sequence Y ∈ (F (R, C))N
∗
is called a complex generalized Fourier

sequence if each entry YN is, after re-indexation, of the form

YN : x ∈ R �−→
N∑

j=0

C j (N ) exp(ik j (N )x), (3.1)

where C j (N ) ∈ C and k j (N ) ∈ R for any N ∈ N
∗ and j = 0, . . . , N .

Example 3.1

1. If f ∈ L1
(
T, C
)
, where T = R/(2πZ), is any subsequence of the Fourier (resp.

Fourier-Fejér) sequences {x �→ SN (x)}N≥1 (resp. {x �→ FN (x)}N≥1), where

SN (x) =
2N∑

j=0

( ∫

T

f (θ)e−i ( j−N ) θ dθ

(2π)

)
ei ( j−N ) x

FN (x) =
2N∑

j=0

(
1 − | j − N |

N

) ( ∫

T

f (θ)e−i ( j−N ) θ dθ

(2π)

)
ei ( j−N ) x ,

then it realizes, after re-indexation, an archetypical example of a complex gener-
alized Fourier sequence in (F (R, C))N

∗
This fact justifies the terminology.

2. When m = 1 and a ∈ R, the sequence {x �→ FN (x, a)}N≥1 is also an example of
a complex generalized Fourier sequence in (F (R, C))N

∗
. In this case, note that

C j (N ) = C j (N , a) ∈ R for any j ∈ N.
3. Let P = ∑κ∈Z∗ γκ Xκ ∈ C[X , X−1] be a Laurent polynomial and L(P) the

diameter of its support. Any sequence {x �→ YN (x)}N≥1 such that

YN (x) =
N∑

j=0

C j (N )P(eik j (N )x ) =
N∑

j=0

∑

κ∈Z∗
λκC j (N )eiκκ j (N )x

=
L(P) N∑

j=0

C̃ j (N ) ei κ̃ j (N )x

is after re-indexation a complex generalized Fourier sequence in (F (R, C))N
∗
.

Definition 3.2 A complex generalized Fourier sequence {x �→ YN (x)}N≥1 in
(F (R, C))N

∗
is called a complex superoscillating sequence if
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• each entry YN is of the form (3.1) with |k j (N )| ≤ 1 for any j ∈ N such that
0 ≤ j ≤ N ;

• there exists an open subset U sosc ⊆ R which is called a superoscillation domain
such that {x �→ YN (x)}N≥1 converges uniformly on any compact subset of U sosc

to the restriction to U sosc of a trigonometric polynomial function

Y∞ : x �−→ P∞(eik(∞)x )

where P∞ ∈ C[X , X−1] is a Laurent polynomial with no constant term and
k(∞) ∈ R\[−1, 1].

Remark 3.1 If Y is a superoscillating sequence in the sense of Definition 3.2, it is
Y∞-superoscillating in the sense of Definition 1.1 in [33], with superoscillation set
any segment [a, b] such that b − a > 0 is included in the superoscillation domain
U sosc.

Example 3.2 1. Any subsequenceof theFourier (resp. Fourier-Fejér) sequences {x �→
SN (x)}N≥1 (resp. {x �→ FN (x)}N≥1) introduced in Example 3.1 (1) fails to be
superoscillating since the condition |k j (N )| ≤ 1 is not fulfilled.

2. If a ∈ R\[−1, 1], the sequence {x �→ FN (x, a)}N≥1 is a superoscillating sequence
in (F (R, C))N

∗
with superoscillation domain equal to R, with Y∞ : x ∈ R �→

eiax . This follows from Lemma 2.4 (namely from the inequalities (2.11) for a ∈ R

and x ∈ R). This is themodel that inspired us originally and that wewill generalize
in this paper.

Inspired by physical considerations which we will discuss later on, we extend as
follows Definitions 3.1 and 3.2 to the higher dimensional setting where m > 1. The
model we will use in order to extend Definition 3.1 will be the one in Example 3.1 (3).

Definition 3.3 A sequence Y ∈ (F (Rm, C))N
∗
is called a complex generalized

Fourier sequence if, after re-indexation, each entry YN is of the form

YN : x = (x1, . . . , xm) ∈ R
m �−→

N∑

j=0

C j (N ) P
(
eix1k j,1(N ), . . . , eixmk j,m (N )

)
(3.2)

where P ∈ C[X1, . . . , Xm] ∈ C[X±1
1 , . . . , X±1

m ] is a Laurent polynomial (indepen-
dent of N ), C j (N ) ∈ C and N �→ k j (N ) is a map from N

∗ to R
m for any N ∈ N

∗
and j = 0, . . . , N .

Example 3.3 Let t, x be two real variables, C j (N ) ∈ C, κ j (N ) ∈ R, k j (N ) ∈ R for
any N ∈ N

∗ and 0 ≤ j ≤ N . Then

{
x �→

N∑

j=0

C j (N )eiκ j (N ) t eik j (N ) x
}

N≥1

is a complex generalized Fourier sequence in the two real variables t, x , the polynomial
P ∈ C[T , X ] being here P(T , X) = T X .
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Definition 3.2 extends to the multivariate case as follows.

Definition 3.4 A complex generalized Fourier sequence {x �→ YN (x)}N≥1 in
(F (Rm, C))N

∗
is called a complex superoscillating sequence if

• each entry YN is of the form (3.2) with additionally |k j,�(N )| ≤ 1 for any j ∈ N

such that 0 ≤ j ≤ N and � = 1, . . . ,m;
• there exists an open subsetU sosc ⊆ R

m which is called a superoscillation domain
such that {x �→ YN (x)}N≥1 converges uniformly on any compact subset of U sosc

to the restriction to U sosc of a trigonometric polynomial function

Y∞ : x �−→ P∞(eik1(∞)x1, . . . , eikm (∞)xm )

where P∞ ∈ C[X±1
1 , . . . , X±1

m ] is a Laurent polynomial with no constant term
and k j (∞) ∈ (R\[−1, 1])m .

In order to illustrate Definition 3.4with an example which is derived fromExample 3.2
(2), consider, for p ∈ N and a ∈ R\[−1, 1], the complex generalized Fourier sequence
in two real variables t, x

{
ψp,N (·, ·, a) : (t, x) ∈ R

2 �−→
N∑

j=0

C j (N , a) ei(1−2 j/N )p t ei(1−2 j/N )x
}

N≥1
(3.3)

(see Example 3.3). An immediate computation shows that for any (t, x) ∈ R
2,

∂

∂t

(
ψp,N (t, x, a)

) = i
N∑

j=0

C j (N , a) (1 − 2 j/N )p ei(1−2 j/N )p t ei(1−2 j/N )x

∂ p

∂x p

(
ψp,N (t, x, a)

) = i p
N∑

j=0

C j (N , a) (1 − 2 j/N )p ei(1−2 j/N )p t ei(1−2 j/N )x ,

which shows that (t, x) ∈ R
2 �−→ ψp,N (t, x, a) is the (unique) global solution of the

Cauchy–Kowalevski problem

(

i p−1 ∂

∂t
− ∂ p

∂x p

)

(ψ) ≡ 0, [ψ(t, x)]|t=0 = FN (x, a). (3.4)

One can extend analytically ψp,N (·, ·, a) as a function from R×C to C, such that one
has formally

ψp,N (t, z, a) =
N∑

j=0

C j (N , a)

( ∞∑

�=0

i�(1−p) t�

�!
(
i(1 − 2 j/N )

)p�
)

ei(1−2 j/N )z

=
( ∞∑

�=0

i�(1−p) t�

�! Dp�

)

(FN (·, a))(z) = Dp(t)(FN (·, a))(z). (3.5)
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One can prove here the following result.

Theorem 3.1 The operatorDp(t) acts continuously from A1(C) into itself. The gener-
alized Fourier sequence (3.3) is superoscillating with R

2 as superoscillation domain
and limit function

Y∞ : (t, x) �−→ eita
p
eiax ,

(P∞(T , X) = T X, k1(∞) = a p, k2(∞) = a) uniformly on any compact in R
2. For

any (μ, ν) ∈ N
2, the sequence of functions

∂μ+ν

∂tμ∂xν
(ψp,N (t, x, a)) = i−μ(1−p) ∂ pμ+ν

∂x pμ+ν
(ψp,N (t, x, a))

= i−μ(1−p)((d/dW )pμ+ν � Dp(t))(FN (·, a)(x) (N ∈ N
∗) (3.6)

converges uniformly on any compact in R
2 to the function

(t, x) ∈ R
2 �→ ((d/dW )pμ+ν � Dp(t))(e

ia pt eia(·))(x).

Proof The first assertion follows from Lemma 2.2 with Rt = T as set of parameters
and p ≥ 1 as order of the symbol of the differential operator Dp(t) as a differ-
ential operator in W . Since {z �→ FN (z, a)}N≥1 converges to z �→ eiaz in A1(C)

(see theorem 2.1), the sequence {z �→ Dp(t)(FN (·, a))(z)}N≥1 converges towards
z �→ Dp(t)(eia(·))(z) locally uniformly with respect to t ∈ R. One can check that
Dp(t)(eia(·))(z) = eia

pt eiaz thanks to an immediate computation. Since (1−2 j/N )p

and (1 − 2 j/N ) lie in [−1, 1] for any j ∈ {0, . . . , N } and a ∈ R\[−1, 1], the gener-
alized Fourier sequence (3.3) is superoscillating with P∞(T , X) = T X , k1(∞) = a p

and k2(∞) = a, the superoscillation domain being here R
2. The expressions of the

partial derivatives in t in terms of the partial derivatives in x in (3.6) follow from the fact
that ψp,N (·, ·, a) satisfies the partial differential equation in the Cauchy–Kowalevski
problem (3.4). The last assertion in the theorem results from the continuity of the
differentiation d/dz as an operator from A1(C) into itself. ��
Let now P ∈ R[X ] be an even polynomial P(X) = γ0 + γ1X2 + · · · + γ2d ′ X2d ′

and
a ∈ R\[−1, 1]. Consider in this case the generalized Fourier sequence

⎧
⎨

⎩
ψP,N (·, ·, a) : (t, x) ∈ R

2 �−→
N∑

j=0

C j (N , a) ei P(1−2 j/N ) t ei(1−2 j/N )x

⎫
⎬

⎭
N≥1

.

(3.7)

As in the previous case, an easy computation shows that the function ψP,N (·, ·, a)

is the unique global solution (on the whole space R
2) of the Cauchy–Kowalevski

problem

(
i

∂

∂t
− P̌
( ∂

∂x

))
(ψ) ≡ 0, [ψ(t, x)]|t=0 = FN (x, a) (3.8)
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where P̌ = ∑d ′
κ ′=0(−1)κ

′+1γ2κ ′ X2κ ′
, and the partial differential operator is here of

Schrödinger type. Let us introduce the differential operator DP (t) defined as

DP (t) =
d ′
⊙

κ ′=0

( ∞∑

�=0

(i1−2κ ′
tγ2κ ′)�

�! (d/dW )2κ
′�
)

with symbol in A2d ′(CW ) (the set of parameters T being again T = Rt ).

Theorem 3.2 Let P ∈ R[X ] be an even polynomial with degree 2d ′. For any λ ∈ R,
the Cauchy–Kowalevski problem (of Schrödinger type)

(
i

∂

∂t
− P̌
( ∂

∂x

))
(ψ) ≡ 0, [(t, x) �→ ψ(t, x)]|t=0 = [x �→ eiλx ] (3.9)

admits as unique global solution in R
2 the function (t, x) �→ ϕλ(t, x) = eit P(λ)eiλx .

One has ψP,N (·, ·, λ) = ∑N
j=0 C j (N , λ) ϕ1−2 j/N and the sequence {(t, x) �→

ψP,N (t, x, λ)}N≥1 converges uniformly on any compact set in R
2 to (t, x) �→

eit P(λ)eiλx . For any (μ, ν) ∈ N
2, the sequence of functions

∂μ+ν

∂tμ∂xν
(ψP,N (t, x, λ)) = (−i)μ

(
P̌
( ∂

∂x

))�μ

�
( ∂

∂x

)�ν

(ψp,N (t, x, λ)

= (−i)μ
((

P̌(d/dW )
)�μ � (d/dW )ν � DP (t)

)(
FN (·, λ)

)
(x) (N ∈ N

∗)
(3.10)

converges uniformly on any compact in R
2 to the function

(t, x) ∈ R
2 �→ (−i)μ

((
P̌(d/dW )

)�μ � (d/dW
)�ν � DP (t)

)(
ei P(λ)t eiλ(·))(x).

Proof One has

(
i

∂

∂t
− P̌
( ∂

∂x

))
(ϕλ) = (−P(λ) + P(λ)) eit P(λ)eiλx ≡ 0

and ϕλ(0, x) = eiλx for all x ∈ R. It follows from Lemma 2.2 that the operator DP (t)
acts continuously on A1(C), locally uniformly with respect to the parameter t ∈ R.
Since the sequence {z ∈ C �→ FN (·, λ)}N≥1 converges to z �→ eiλz in A1(C), the
sequence {z ∈ C �→ DP (t)(FN (·, λ))(z)}N≥1 converges to z �→ DP (t)(eiλ(·))(z) =
eit P(λ)eiλz in A1(C) locally uniformly with respect to the parameter t ∈ R. The first
equality in (3.10) follows from the fact that ψP,N (·, ·, λ) is solution of the Cauchy–
Kowalevski problem (3.8). The final assertion follows from the continuity of d/dz :
A1(C) → A1(C). ��
One can even drop the hypothesis about P and take P = ∑d

κ=0 γκ Xκ as polyno-
mial of degree d in C[X ] with associate polynomial P̌ = ∑d

κ=0(−i)κ+1γκ Xκ . The
Cauchy–Kowalevski problem (3.8) is not anymore of the Schrödinger type (since
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P̌ /∈ R[X ] in general), which makes the only difference with the case previously
studied. Nevertheless, one can state exactly the same result, with this time

DP (t) =
d⊙

κ=0

( ∞∑

�=0

(i1−κ tγκ)�

�! (d/dW )κ�

)

.

Theorem 3.3 Let P ∈ C[X ] be a polynomial of degree d. All the assertions in The-
orem 3.2 are valid, except that (3.8) is not anymore a Cauchy–Kowalevski problem
of the Schrödinger type. When a ∈ R\[−1, 1], the generalized Fourier sequence
{x �→ ψB,N (t, x, a)}N≥1 is superoscillating for any t ∈ R. Moreover, given such
a and P ∈ R[X ] such that sup[−1,1] |P| ≤ 1 < |P(a)|, the generalized Fourier
sequence

⎧
⎨

⎩
(t, x) �→ ψP,N (t, x, a) =

N∑

j=0

C j (N , a) ϕ1−2 j/N (t, x)

⎫
⎬

⎭
N≥1

is superoscillating as a generalized Fourier sequence in two variables (t, x), with R
2

as domain of superoscillation.

Proof The proof follows that of Theorem 3.2. The sequence {x �→ ψB,N (t, x, a)}N≥1
is superoscillating for any t ∈ R since it converges on any compact of Rx (locally
uniformly in t) to x �→ eit P(a) eiax . As for the last assertion, to define Y∞ one takes
P∞(T , X) = T X , κ(∞) = P(a) and k(∞) = a in Definition 3.4. ��
Let now E(X) =∑∞

κ=0 γκ Xκ ∈ C[[X ]] be a power series with radius of convergence
ρ ∈]0,+∞], together with the convolution operator

DE (t) := lim
d→+∞

d⊙

κ=0

( ∞∑

�=0

(i1−κ tγκ)�

�! (d/dW )κ�

)

with formal symbol

FE (t) : W �−→ exp

(

i t
∞∑

κ=0

i1−κ γκW
κ

)

.

Since F and
∑∞

κ=0 i
1−κγκ Xκ share the same radius of convergence ρ > 0, FE (t)

realizes, for each t ∈ R) an holomorphic function in D(0, ρ) ⊂ CW (with Taylor
series about 0 depending on t ∈ R). More precisely, one has

∀ t,W ∈ R × D(0, ρ), FE (t)(W ) =
∞∑

j=0

( ∞∑

κ=0

b j,κ t
κ

)

W j =
∞∑

j=0

b j (t)W
j ,
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where, for R > 0, the radius of convergence of the power series
∑

j≥0

(∑
κ≥0

|β j,κ |Rκ
)
X j is at least equal to ρ.

For any λ ∈] − ρ, ρ[ and z ∈ C, one has formally

eit E(λ)eizλ = lim
d→+∞

d∏

κ=0

( ∞∑

�=0

(i1−κ tγκ)�

�! (iλ)κ�

)

eiλz

= lim
d→+∞

d∏

κ=0

( ∞∑

�=0

(i1−κ tγκ)�

�! (d/dW )κ�
)
)

(eiλ(·))(z) = DE (t)(eiλ(·))(z).

(3.11)

One requires the following lemma in order to justify the formal relations (3.11).

Lemma 3.1 When ρ = +∞, the convolution operatorDE (t) acts continuously locally
uniformly with respect to t ∈ R from A1(C) into itself. When ρ ∈]0,+∞[ it acts
continuously locally uniformly with respect to t ∈ R from the space

{ f ∈ A1(C) ; ∀ ε > 0, ∃Cε > 0 such that | f (W )| ≤ Cεe
(ρ−ε)|W |} = lim←− A

Bρ,n
1 (C)

(where {Bρ,n}n≥1 is a strictly increasing sequence converging to ρ) into itself.

Proof Suppose first that ρ = +∞. Let R > 0 and K ⊂ [−R, R] ⊂ Rt be a
compact set. One recalls here that the radius of convergence of the power series∑

j≥0

(∑
κ≥0 |b j,κ |Rκ

)
X j equals +∞. Let γ > 0, β > 0 and f = ∑�≥0 f� W � ∈

Aγ,β
1 (C). One can check as in the proof of Lemma 2.2 (compare to (2.5)) that, for any

t ∈ K and j ∈ N,

∞∑

j=0

( j + �)!
�! |b j (t)| | f�+ j | ≤ γ

β�

�!
∞∑

j=0

( ∞∑

κ=0

|b j,κ |Rκ
)
β j = KDE (β, γ )

β�

�! .

This is indeed enough to conclude as in the proof of Lemma 2.2 that DE (t) acts
continuously locally uniformly in t from A1(C) into itself.

Consider now the case where ρ ∈]0,+∞[. For any R > 0, the radius of con-
vergence of the power series

∑
j≥0

(∑
κ≥0 |b j,κ | Rκ

)
X j is now at least equal to ρ.

Repeating the preceeding argument (but taking now β ≤ ρ − ε for some ε > 0 arbi-
trary small), one concludes that DE (t) acts continuously locally uniformly in t from

lim←− A
Bρ,n
1 (C) into itself. ��

We can now state the last result of this section.

Theorem 3.4 Let E = ∑∞
κ=0 γκ Xκ ∈ C[[X ]] be a power series with radius of

convergence ρ ∈]2,+∞]. Then Ě := ∑∞
κ=0(−i)κ+1γκDκ acts continuously from
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lim←− A
Bρ,n
1 (C) into itself. For any t ∈ R and a ∈ R with 1 < |a| < ρ − 1, the

generalized Fourier sequence

{
x ∈ R �−→ ψE,N (t, x, a) =

N∑

j=0

C j (N , a) ei E(1−2 j/N )t ei x(1−2 j/N )
}

N≥1

is superoscillating. Moreover, for any such a and (μ, ν) ∈ N
2, the sequence of func-

tions

∂μ+ν

∂tμ∂xν
(ψE,N (t, x, a)) = (−i)μ

(
Ě�μ � (d/dW )ν

)(
ψp,N (t, ·, a)

)
(x)

= (−i)μ
(
Ě�μ � (d/dW )ν � DE (t)

)(
FN (·, a)

)
(x) (3.12)

converges then uniformly on any compact in R
2
t,x to the fonction

(t, x) �−→ (−i)μ
(
Ě�μ � (d/dW )ν � DE (t)

)(
eit E(a) eia(·))(x).

Proof The fact that Ě acts continuously from lim←− A
Bρ,n
1 (CW ) into itself follows

from Lemma 3.1, considering just Ě (independent of the parameter t) instead of
DE (t). For any λ ∈ R with |λ| < ρ, the operator Ě then acts on eiλ(·) and it is
immediate to check that for any t ∈ R

∀ x ∈ R,
[(

i
∂

∂t
− Ě
)(
eit E(λ) eiλW

)]

W=x
= 0 ; (3.13)

moreover
[
(t, x) �→ eit E(λ) eiλx

]
t=0 is x �→ eiλx . Therefore, for any a ∈ R and

N ∈ N
∗, one has by linearity (since ρ > 1)

∀ (t, x) ∈ R
2,
[(

i
∂

∂t
− Ě
)( N∑

j=0

C j (N , a)ei E(1−2 j/N )t ei(1−2 j/N )W
)]

W=x
= 0.

(3.14)

Lemma 3.1 (applied this time with DE (t)), combined with Theorem 2.1 and the esti-
mates in the first line of (2.11) in Lemma 2.4, imply that as soon as one has |a| < ρ−1
the sequence {z ∈ C �→ DE (t)(F(·, a))(z)}N≥1 converges (locally uniformly with
respect to the parameter t) to z �→ eiaz in A1(C). The last assertion in the particular
case μ = ν = 0 follows. The first equality in (3.12) comes from the identity (3.14),
while the second one comes from (3.11) (as justified by Lemma 3.1). The last asser-
tion of the theorem when μ, ν are arbitrary is then a consequence of the continuity of

d/dz from ←−
lim

A
Bρ,n
1 (C) into itself. The superoscillating character of the sequence

{ψP,N (t, ·, a)}N≥1 follows from Definition 3.2. ��
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Remark 3.2 When E ∈ R[[X ]], 1 < |a| < ρ − 1 and sup[−1,1](E) ≤ 1 < |E(a)|, the
generalized Fourier sequence
⎧
⎨

⎩
(t, x) ∈ R

2 �−→ ψE,N (t, x, a) =
N∑

j=0

C j (N , a) ei E(1−2 j/N )t ei x(1−2 j/N )

⎫
⎬

⎭
N≥1

is also superoscillating, this time according to Definition 3.4 (with P∞(T , X) = T X ,
κ(∞) = E(a) and k(∞) = a).

4 Regularization of Formal Fresnel-Type Integrals

In order to settle from the mathematical point of view the approach to non-absolutely
convergent integrals on the half-lineR

+∗ or the whole real lineR through the so-called
principle of regularization that we will invoke in the remaining Sects. 5 and 6 (with
respect to supershift considerations related to Schrödinger equations with specific
potentials), we need to explain what regularization of formal Fresnel-type integrals on
R

+∗ or R means.
Suppose that T is a set of parameters. Let G : (t, Z) ∈ T × C �−→ G(t, Z) be

a function which is entire as a function of Z for each t ∈ T fixed. Let also φ be a
non-vanishing real function on T that will play the role of a phase function. Let finally
χ be a real number such that χ > −1. In order to give a meaning to the formal integral

∫ ∞

0
(x ′)χ e−iφ(t)(x ′)2 G(t, x ′) dx ′ (χ > −1) (4.1)

we distinguish the cases where φ(t) > 0 and φ(t) < 0. In the first case (φ(t) > 0),
we rewrite this (for the moment formal) expression (4.1) as

∫ ∞

0
(x ′)χ e−iφ(t)(x ′)2 G(t, x ′) dx ′

= e−i(χ+1)π/4
∫

R+∗ eiπ/4
Zχ e−φ(t) Z2

G(t, e−iπ/4Z) dZ

=
∫

R+∗ eiπ/4
Zχ e−φ(t) Z2

F+(t, Z) dZ (4.2)

with F+(t, Z) := e−i(χ+1)π/4G(t, e−iπ/4Z) for any t ∈ T and Z ∈ C. In the second
case (φ(t) < 0), we rewrite it as

∫ ∞

0
(x ′)χ e−iφ(t)(x ′)2 G(t, x ′) dx ′

= ei(χ+1)π/4
∫

R+∗ e−iπ/4
Zχ eφ(t) Z2

G(t, eiπ/4Z) dZ

=
∫

R+∗ e−iπ/4
Zχeφ(t) Z2

F−(t, Z) dZ (4.3)
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with F−(t, Z) := ei(χ+1)π/4G(t, eiπ/4Z) for any t ∈ T and Z ∈ C. The following
elementary lemma will reveal to be essential.

Lemma 4.1 Let T, φ, χ as above and F : T × C −→ C be a function with is entire
in the complex variable Z and satisfies the growth estimates

∀ ε > 0, sup
t∈T,Z∈C

(|F(t, Z)| exp(−ε|Z | p̌)) < +∞ (4.4)

for some p̌ ∈]1, 2], that is F(t, ·) ∈ Ap̌,0(C) uniformly in t. Then, for any u = eiθ

with θ ∈] − π/4, π/4[, the integral
∫

R+∗ u
Zχ e−|φ(t)| Z2

F(t, Z) dZ (4.5)

is absolutely convergent and remains independent of u ; it equals in particular its
value for u = 1.

Proof The absolute convergence follows from the estimates (4.4), together with the
fact that if u = eiθ , Re((tu)2) = t2 cos(2θ) > 0 for t > 0. The fact that the integrals
do not depend of u follows from residue theorem (applied on the oriented boundary
of conic sectors with apex at the origin). ��
In view of this lemma, the regularization of an integral of the Fresnel-type such as
(4.1) consists in the successive two operations:

1. first transform the formal expression (4.1) into one of the representations (4.2) or
(4.3) according to sign(φ(t));

2. then invokeLemma4.1 (provided the requiredhypothesis are satisfied) and regular-
ize (4.1) as

∫∞
0 Zχe−φ(t)Z2

F+(t, Z) dZ whenφ(t) > 0or
∫∞
0 Zχeφ(t)Z2

F−(t, Z)

dZ when φ(t) < 0.

Remark 4.1 In order to give a meaning (if possible of course) to the formal integral
expression

∫

R

|x ′|χ e−iφ(t)(x ′)2 G(t, x ′) dx ′, (4.6)

one splits it as

∫ ∞

0
(x ′)χ e−iφ(t)(x ′)2 G(t, x ′) dx ′ +

∫ ∞

0
(x ′)χ e−iφ(t)(x ′)2 G(t,−x ′) dx ′

and proceed as above for the two formal expressions involved into this formal decom-
position.

It is immediate to compare this approach to regularization to the alternative following
one.
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Proposition 4.1 Let G ∈ A2,0(C) and χ > −1. Then, for all � ∈ R
∗

lim
ε→0

∫ ∞

0
(x ′)χ ei �(x ′)2 e−ε(x ′)2 G(x ′) dx ′

exists and coincides with the integral regularized under the approach described above.

Proof It is enough to prove the result when � = ±1 since one reduces to one of these
two cases up to a homothety on the real half line. One has
∫ ∞

0
(x ′)χ e−ε(x ′)2e−i (x ′)2 G(x ′) dx ′ =

∫

eiπ/4R+∗
Zχ e−(1−i ε) Z2

F+(Z) dZ
∫ ∞

0
(x ′)χ e−ε(x ′)2ei (x ′)2 G(x ′) dx ′ =

∫

e−iπ/4R+∗
Zχ e−(1+i ε) Z2

F−(Z) dZ ,

where F+(Z) = e−i(1+χ)π/4F(e−iπ/4Z) and F−(Z) = ei(1+χ)π/4F(eiπ/4Z). Let
ρε = √

1 + ε2, and ξε = arg[0,π/2[
√
1 + iε. One has then

∫ ∞

0
(x ′)χ e−ε(x ′)2e−i (x ′)2 G(x ′) dx ′ =

( eiξε

√
ρε

)1+χ

∫

ei(π/4−ξε) R+∗
Zχ e−Z2

F+(eiξε Z/
√

ρε) dZ

∫ ∞

0
(x ′)χ e−ε(x ′)2ei (x ′)2 G(x ′) dx ′ =

(e−iξε

√
ρε

)1+χ

∫

e−i(π/4−ξε) R+∗
Zχ e−Z2

F−(e−iξε Z/
√

ρε) dZ . (4.7)

In the two integrals on the right-hand side of the equalities (4.7), the integration contour
can be replaced by the half-lineR

+∗ as a consequence of Lemma 4.1. It is then possible
to take the limit when ε tends to 0. Lebesgue’s domination theorem then applies and
since ρε tends to 1 and ξε to 0, one gets

lim
ε→0

∫ ∞

0
(x ′)χ e−ε(x ′)2e−i (x ′)2 G(y) dy =

∫ ∞

0
Zχ e−Z2

F+(Z) dZ

lim
ε→0

∫ ∞

0
(x ′)χ e−ε(x ′)2ei (x ′)2 G(x ′) dx ′ =

∫ ∞

0
Zχ e−Z2

F−(Z) dZ .

This concludes the proof of the Proposition. ��

5 Fresnel-Type Integral Operators

5.1 Continuity on A1(C) of Fresnel-Type Integral Operators

Let T be a set of parameters and t ∈ T �→ D(t, Z) (as in the statement of Lemma 2.3)
be a differential operator-valued map
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t ∈ T �−→ D(t, Z) =
∞∑

j=0

b j (t, Z)
( d

dZ

) j

(with b j : T × C → C, holomorphic in Z for j ∈ N) such that

∀ ε > 0, sup
t∈T,(Z ,W )∈C2

⎛

⎝

⎛

⎝
∞∑

j=0

|b j (t, Z)| |W | j
⎞

⎠ exp(−ε |Z | p̌ − B |W |p)
⎞

⎠ = A(ε) < +∞ (5.1)

for some p̌ ∈]1, 2], p ≥ 1 and B ≥ 0. Let also φ be a non-vanishing real function
on T and χ > −1. It follows from the estimates (5.1), together with Lemma 4.1, that
the regularization approach described in Sect. 4 allows to define the operator

t �−→
∫ ∞

0
Zχ e−iφ(t) Z2

∞∑

j=0

b j (t, Z)
( d

dZ

) j
(·) dZ . (5.2)

One needs to consider for the moment these operators as acting on entire functions of
the complex variable Z . For α ∈ C, let also Hα be the dilation operator Hα : f �→
f (α(·)) acting on such functions. The symbol � still stands for the composition of
operators. The discussion is with respect to the sign of φ(t).

• When φ(t) > 0,

∫ ∞

0
Zχ e−iφ(t) Z2

⎛

⎝
∞∑

j=0

b j (t, Z)
( d

dZ

) j
(·)
⎞

⎠ dZ

= e−i(1+χ)π/4
∫ ∞

0
yχ e−φ(t) y2

⎛

⎝
∞∑

j=0

b j (t, e
−iπ/4Z)

(

ei jπ/4
( d

dZ

) j � He−iπ/4

)

(·)
⎞

⎠ (y) dy. (5.3)

• When φ(t) < 0,

∫ ∞

0
Zχ e−iφ(t) Z2

⎛

⎝
∞∑

j=0

b j (t, Z)
( d

dZ

) j
(·)
⎞

⎠ dZ

= ei(1+χ)π/4
∫ ∞

0
yχ eφ(t) y2

⎛

⎝
∞∑

j=0

b j (t, e
iπ/4 Z)

(
e−i jπ/4

( d

dZ

) j � Heiπ/4

)
(·)
⎞

⎠ (y) dy. (5.4)
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Theorem 5.1 Suppose that the parameter space T is a topological space and that φ

is continuous. Consider functions B j : T × C × C → C ( j ∈ N) which are entire in
the two complex entries and such that

∀ ε > 0, ∃ A(ε), B(ε) ≥ 0 such that ∀ t ∈ T, ∀Z ∈ C,∀ Ž ∈ C, ∀W ∈ C,
∞∑

j=0

|Bj (t, Z , Ž)| |W | j ≤ A(ε) eε |Z | p̌+B(ε)|Ž | p̌+B |W |p (5.5)

for some p ≥ 1, p̌ ∈]1, 2], and B ≥ 0. Then the operator

∫ ∞

0
Zχ e−iφ(t) Z2

⎛

⎝
∞∑

j=0

Bj (t, Z , Ž)
( d

dZ

) j
(·)
⎞

⎠ dZ

(understood through the process of regularization as described above) acts continu-
ously locally uniformly in t from A1(C) into A p̌(C).

Proof It is enough to considerT as a neighborhood of a point t0 inwhichφ(t) ≥ ε0 > 0
(since φ is continuous). Let f = {Z �→ fN (Z)}N≥1 be a sequence of elements in
A1(C) that converges towards 0 in A1(C), which means (see Proposition 2.1) that all
fN belong to some AC,b

1 (C) for some constants C, b > 0 independent on N (namely
fN =∑� aN ,�Z� with |aN ,�| ≤ C b�/�! for any � ∈ N). It is clear that the operator

∞∑

j=0

Bj (t, e
−iπ/4Z , Ž)

(
ei jπ/4
( d

dZ

) j � He−iπ/4

)

involved in the integrand of (5.3) is governed by estimates of the form (5.5). It follows
then from Lemma 2.3, taking into account estimates (5.5), that for each N ∈ N

∗ the
function

H( fN ) : (t, Z , Ž) ∈ T × C × C

�−→
∞∑

j=0

Bj (t, e
−iπ/4Z , Ž)

(
ei jπ/4
( d

dZ

) j � He−iπ/4

)
( fN )(Z)

is such that for each ε > 0, there exists Ã(ε) ≥ 0 (depending on T, A(ε), the Bj , b and
C , but not on the N ) such that

∀ (t, Z , Ž) ∈ T × C × C, |H( fN )(t, Z , Ž)| ≤ Ã(ε) eε |Z | p̌+B(ε)|Ž | p̌ .

Take in particular ε < ε0. Then the function

Ž ∈ C �−→
∫ ∞

0
yχ e−φ(t)y2H( fN )(t, y, Ž) dy
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is in Ap̌(C) since it is estimated as

∣
∣
∣

∫ ∞
0

yχ e−φ(t)y2H( fN )(t, y, Ž) dy
∣
∣
∣ ≤ Ã(ε)

( ∫ ∞
0

yχ e−ε0 y2eεy
p̌
dy
)
eB

(ε)|Ž | p̌ ∀ Ž ∈ C

(remember that p̌ ∈]1, 2]). It remains to show that the sequence

{
Ž �−→

∫ ∞

0
yχ e−φ(t)y2H( fN )(t, y, Ž) dy

}

N≥1

converges to 0 in Ap̌(C). It is enough (see Proposition 2.1) to prove that it converges
to 0 uniformly on any closed disk D(0, r) in C. Fix ε < ε0 and η > 0. Choose then
Rη >> 1 such that

∀ N ∈ N,

∣
∣
∣

∫ ∞

Rη

yχ e−φ(t)y2H( fN )(t, y, Ž) dy
∣
∣
∣

≤ Ã(ε)
( ∫ ∞

0
yχ e−ε0 y2eεy p̌ dy

)
eB

(ε) |Ž | p̌ ≤ η e−B(ε)r p̌ eB
(ε)|Ž | p̌ ≤ η.

On [0, Rη], one uses the uniform convergence of f towards 0 on any compact set,
hence of H [ f ] on any compact set, to conclude that for N ≥ Nη >> 1, one has

∣
∣
∣

∫ Rη

0
yχ e−φ(t)y2H( fN )(t, y, Ž) dy

∣
∣
∣ ≤ η ∀ Ž ∈ D(0, r).

Note that our estimates show that the convergence towards 0 in Ap̌(C) thus obtained
is uniform in t ∈ T. ��

5.2 Superoscillations and Supershifts

Consider the Schrödinger equation

i
∂ψ

∂t
(t, x) = (H (x)(ψ)

)
(t, x) (5.6)

where H denotes the Hamiltonian operator attached to the physical system which
is under consideration. Suppose that Y = {x �→ YN (x)}N≥1 is a superoscillating
sequence. Since

(
i

∂

∂t
− H (x)

)
(ψ)(t, x) = 0,

[
ψ(t, x)]t=0 = Y (x)

is a Cauchy–Kowalevski problem (assuming that x lies in some open setU ⊂ Rwhere
the Hamiltonian operator is regular), any entry x ∈ U �→ YN (x) evolves in a unique
way from t = 0 towards t > 0 as (t, x) �→ ψN (t, x). Assume in addition that x lies



Superoscillating Sequences and Supershifts for Families… Page 27 of 37 34

in the maximal superoscillation domainU suposc
max ; the limit function x ∈ U ∩U sosc

max �→
Y∞(x) then also evolves from U ∩U sosc

max into some function (t, x) �→ ψ∞(t, x).
A natural question then occurs. As long as the evolution persists (let say for t ∈ [0, T ]),
is it true that the sequence {x ∈ U �→ ψN (t, x)}N≥1 is such that its restriction to
U∩U sosc

max converges (uniformly on any compact subset ofU∩U sosc
max ) to x �→ ψ∞(t, x)?

If this is the case, one will say that the superoscillating character of the sequence Y
persists in time through the Schrödinger evolution operator ∂/∂t − H which is here
considered.

In order to formulate such question in a different way, let us now consider the (t, x)
domain [0, T ] × (U ∩ U sosc

max ) = T × (U ∩ U sosc
max ) = T as a parameter set and focus

on the map λ ∈ R �−→ ϕλ, where ϕλ : T → R is evolved to [0, T ] × U (through
the Schrödinger operator) from the initial datum x ∈ U �→ eiλx , then restricted to the
parameter set T . Previous considerations lead to the following definition, which is
inspired by Definition 3.2.

Definition 5.1 Let T be a locally compact topological space and F = {ϕλ ; λ ∈ R}
be a family of C-valued functions on T indexed by R. A sequence ψ = {τ ∈ T �→
ψN (τ )}N≥1 of C-valued functions on T is called a F -supershift (or F admits ψ as
a supershift) if

• any entry ψN is of the form ψN =∑N
j=0 C j (N ) ϕk j (N ) with |k j (N )| ≤ 1 for any

N ∈ N
∗ and 0 ≤ j ≤ N ;

• there exists an open subset U ssh of T called a F -supershift domain such that
the sequence {τ ∈ U ssh �→ ψN (τ )} converges locally uniformly towards the
restriction to U ssh of a function ψ∞ which is a C-finite linear combination of
elements inF of the form ϕνk(∞) with ν ∈ Z

∗, where k(∞) ∈ R\[−1, 1].
Example 5.1 1. If T = R and F denotes the family of characters x ∈ R �→ eiλx

indexed by the dual copyR
�
λ ofRx ,F -supershifts are the complex superoscillating

sequences (see Definition 3.2).
2. Let a ∈ R\[−1, 1], T = R

2
t,x and F = {ϕλ ; λ ∈ R

�} as defined in The-
orem 3.2 or Theorem 3.3. For any a ∈ R\[−1, 1], the sequence {(t, x) �→
ψP,N (t, x, a)}N≥1 is a F -supershift which admits R

2
t,x = T as F -supershift

domain.

When T is of the form [0, T [×U , where U is an open subset in R
m−1
x (m ≥ 2)

and T ∈]0,+∞], one can consider as well families F = {ϕλ ; λ ∈ R} of C-valued
distributions inR×U with support in [0, T [×U . In order to define in this new context
the notion ofF -supershift, one needs to keep thefirst clause inDefinition 5.1 as it is and
modify the second clause as follows : “there exists an open subsetU ssh = V ssh ∩T
(where V is an open subset in R × U ), called a F -supershift domain, such that
the sequence {(ψN (τ ))|V ssh}N≥1 converges weakly in the sense of distributions in
V to the restriction to V of a distribution ψ∞ ∈ D ′(R × U , C) which is a C-
finite linear combination of elements in F of the form ϕνk(∞) with ν ∈ Z

∗, where
k(∞) ∈ R\[−1, 1]”.

One will need in Sect. 6 a further extension of this concept of F -supershift to the
case where T = [0, T [×U , U ⊂ R

m−1 with m ≥ 2 as above, but elements ϕλ ∈ F
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are now hyperfunctions inR×U with support inT . The sequence {(ψN (τ ))|V ssh }N≥1
needs in this case to converge still in the weak sense, but this time in the sense of
hyperfunctions inV , towards the restriction toV of the hyperfunctionψ∞. The notion
ofF -supershift can thus be enlarged to familiesF = {ϕλ ; λ ∈ R} of hyperfunctions
in R ×U with support in T .

5.3 The Schrödinger Cauchy Problemwith Centrifugal Potential

Wewill consider in this subsection the casewhereU = {x ∈ R ; x > 0} and the hamil-
tonian in (5.6) is x ∈ U �→ H (x) = −(∂2/∂x2)/2+u/(2x2), where u denotes a real
strictly positive physical constant. The corresponding Cauchy–Kowalevski problem
(with [0,+∞[×U as phase space) is the Schrödinger Cauchy problem with centrifu-
gal potential, see [32] for more references. For this Cauchy–Kowalevski problem, the
analysis of the evolution t �→ ψ(t, ·) of the solution (t, x) ∈ [0,∞[×U �→ ψ(t, x)
from an initial datum x ∈ U �→ ψ(0, x) can be carried through thanks to the explicit
form of the Green function (t, x, x ′) �→ G(t, x, t ′ = 0, x ′).

Let ν = √
1 + 4u/2 and the Bessel function Jν defined in � := C\] − ∞, 0] as

Jν : z ∈ � �−→
( z

2

)ν ∞∑

k=0

(−1)k

�(k + 1) �(ν + k + 1)

( z

2

)2k

=
( |z|
2

)ν
ei ν arg]−π,π [(z)

∞∑

k=0

(−1)k

�(k + 1) �(ν + k + 1)

( z

2

)2k

=
( |z|
2

)ν
ei ν arg]−π,π [(z) Eν(z). (5.7)

Then the Green function (t, x, x ′) �→ G(t, x, 0, x ′) can be explicited in this case as

G(t, x, 0, x ′) = (−i)ν+1

√
xx ′
t

exp

(

i
x2 + (x ′)2

2t

)

Jν

(
xx ′

t

)

(t > 0, x, x ′ ∈ U )

(5.8)

(see [37, 46, 48]).

Proposition 5.1 Let T =]0,+∞[×]0,+∞[, H : x ∈]0,+∞[�→ −(∂2/∂x2 −
u/x2)/2 for some physical constant u > 0. For any λ ∈ R, the initial datum
x ∈]0,+∞[�→ eiλx evolves through the Cauchy–Kowalevski Schrödinger equation
(5.6) to a function (t, x) �→ ϕλ(t, x) which is C∞ in T . For any a ∈ R\[−1, 1],
the family {ϕλ ; λ ∈ R} admits as a F -supershift (in the sense of Definition 5.1) the
sequence

{(t, x) ∈ T �→ ψN (t, x, a)}N≥1 =
⎧
⎨

⎩

N∑

j=0

C j (N , a) ϕ1−2 j/N

⎫
⎬

⎭
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with F -supershift domain equal to T . Moreover, for any (μ, ν) ∈ N
2, the sequence

of functions

∂μ+ν

∂tμ∂xν
(ψN (t, x, a)) = 1

(2i)μ

((
− ∂2

∂x2
+ u

x2

)�μ

� ∂ν

∂xν

)
(ψN (t, x, a))

converges uniformly on any compact K ⊂⊂ T to the function

(t, x) ∈ T �−→ 1

(2i)μ

((
− ∂2

∂x2
+ u

x2

)�μ

� ∂ν

∂xν

)
(ϕa(t, x)).

Proof Let λ ∈ R. The evolution of the initial datum x ∈ U �→ eiλx through the
Schrödinger equation (5.6) is explicited (for the moment formally) thanks to the
expression (5.8) of the Green function as

(t, x) ∈ T �−→ (−i)ν+1

2ν
eix

2/(2t) xν+1/2

tν+1

∫ ∞
0

(x ′)ν+1/2 ei(x
′)2/(2t) Eν

( xx ′
t

)
eiλx

′
dx ′.

(5.9)

For any M ∈ N such that 2M > ν − 1/2 and any y > 0, one has

Eν(y) = 1√
π

( 2

y

)ν+1/2 (
cos
(
y − νπ/4 − π/2

)( M−1∑

κ=0

(−1)κ
a2κ (ν)

y2κ
+ R2M (ν, y)

)

+ sin
(
y − νπ/4 − π/2

)( M−1∑

κ=0

(−1)κ
a2κ+1(ν)

y2κ+1 + R2M+1(ν, y)
))

with

|R2M (ν, y)| <
|a2M (ν)|
y2M

, |R2M+1(ν, y)| <
|a2M+1(ν)|
y2M+1 ,

where

ak(ν) = (−1)k
cos(πν)

π

�(k + 1/2 + ν)�(k + 1/2 − ν)

2k�(k + 1)
∀ k ∈ N

(see [49, pp. 207–209]). It follows from such developments, together with Proposi-
tion 4.1, that the integral in (5.9) exists for any (t, x) ∈ T as a semi-convergent integral
(of the Fresnel-type), whose value coincides with the regularized integral described
in Sect. 4. Set now

T =]0,+∞[, φ : t ∈ T �−→ − 1

2t
∈] − ∞, 0[

Bj : (t, Z , Ž) ∈ T × C
2 �−→

⎧
⎨

⎩
Eν

( Z Ž

t

)
if j = 0,

0 if j ∈ N
∗.

χ := ν + 1

2
,



34 Page 30 of 37 F. Colombo et al.

in order to fit with the setting described in Theorem 5.1. Since Eν ∈ A1(C) and

|Z Ž |
t

= 1

t
× ε|Z | × |Ž |

ε
≤ 1

2t

(
ε2 |Z |2 + |Ž |2

ε2

)
∀t > 0, ∀ (Z , Ž) ∈ C

2

the operator with order 0 given as t �→ B0(t, Z , Ž) (d/dZ)0 satisfies the hypothesis
of this theorem with p = 1 and p̌ = 2. Then the operator

D(t) =
∫ ∞

0
Zν+1/2 e−i Z2/(2t) Eν

( Z · Ž
t

)
(·) dZ

acts continuously locally uniformly in t ∈]0,+∞[ from A1(C) into A2(C). For any
λ ∈ R and t > 0, the function x ∈]0,+∞[�→ ϕλ(t, x) isC∞ because of its expression
(5.9). Moreover, when a ∈ R\[−1, 1], it follows from Theorem 2.1 that the sequence

{
z ∈ C �→ D(t)

( N∑

j=0

C j (N , a)ei(1−2 j/N )(·))(z)
}

N≥1

converges in A2(C) (locally uniformly with respect to t > 0) to z �→ D(t)(eia(·)).
One concludes then to the second assertion in the statement of the theorem. As for the
last assertion, it follows from the fact that the action of i∂/∂t and H (x) coincide on
solutions of (5.6), together with the continuity of the operator d/dz from A2(C) into
itself. ��

5.4 The Schrödinger Cauchy Problem for the QuantumHarmonic Oscillator

Let now U = R and the hamiltonian in (5.6) be x ∈ R �→ H (x) = −(∂2/∂x2)/2 +
x2/2. The corresponding Cauchy–Kowalevski problem (with [0,+∞[×R as phase
space) is the Schrödinger Cauchy problem for the quantum harmonic oscillator, see
[13,§5.3, §. 6.4] or [31] for more references. In this case again, the Green function
can be explicited and is therefore handable. It is the locally integrable function in
]0,+∞[×R × R defined as

G(t, x, t ′ = 0, x ′) =
√

1

2iπ sin t
e
i
( (x2 + (x ′)2) cos t − 2xx ′

2 sin t

)

=
(√ 1

2iπ sin t
e
i
cotan t

2
x2)

e
i
cotan t

2
(x ′)2

e
−i

xx ′

sin t (t > 0, x, x ′ ∈ R).

(5.10)

Proposition 5.2 Let T =]0,+∞[×R and H : x ∈ R �→ −(∂2/∂x2 − x2)/2. For
any λ ∈ R, the initial datum x ∈ R �→ eiλx evolves through the Cauchy–Kowalevski
Schrödinger equation (5.6) to a C-valued distribution ϕλ ∈ D ′(T , C) with singular
supportπ(2N+1)/2×R. LetU = T \(π(2N+1)/2×R). For any a ∈ R\[−1, 1], the
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family {(ϕλ)|U ; λ ∈ R}, considered as a family of functions, admits as aF -supershift
(in the sense of Definition 5.1) the sequence

{(t, x) ∈ U �→ ψN (t, x, a)}N≥1 =
⎧
⎨

⎩

N∑

j=0

C j (N , a) (ϕ1−2 j/N )|U

⎫
⎬

⎭
N≥1

with F -supershift domain equal to U . Moreover, for any (μ, ν) ∈ N
2, the sequence

of functions from U to C

∂μ+ν

∂tμ∂xν
(ψN (t, x, a)) = 1

(2i)μ

((
− ∂2

∂x2
+ x2
)�μ

� ∂ν

∂xν

)
(ψN (t, x, a))

converges uniformly on any compact K ⊂⊂ U to the function

(t, x) ∈ T �−→ 1

(2i)μ

((
− ∂2

∂x2
+ x2
)�μ

� ∂ν

∂xν

)
(ϕa(t, x)).

Proof Consider the two (for the moment formal) operators

t ∈ ]0,+∞[\πN
∗/2 �−→ | sin t |

∫ ∞
0

e
i
sin 2t

4
Z2

e−i� sign (sin(t)) Ž Z ◦ H� | sin t | (·) dZ
(5.11)

(� = ±1) which appear (after performing the change of variables Z ↔ | sin t | Z
on [0,+∞[) in the splitting of

t ∈ ]0,+∞[ \ πN
∗/2 �−→

∫

R

e
i
cotan t

2
Z2

e−i Ž Z/ sin t (·) dZ

(see Remark 4.1). Set now

T =]0, +∞[\πN
∗/2, φ : t ∈ T �−→ − sin(2t)

4

B j : (t, Z , Ž) ∈ T × C
2 �−→

{
exp(−i � sign (sin(t)) Z Ž) � H� | sin t | if j = 0,

0 if j ∈ N
∗.

χ = 0

(� = ±1) in order to fit with the setting described in Theorem 5.1. As in the
proof of Proposition 5.1, this theorem applies here and the two operators (5.11) act
continuously from A1(C) to A2(C) (locally uniformly with respect to the parameter
t ∈ T). Note again that the Fresnel-type integrals (5.11), where Z �→ eiλZ (λ ∈ R)

is taken inside the bracket and Ž ∈ R, are semi-convergent and their values as semi-
convergent integrals coincide with the values that are obtained by regularization as in
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Sect. 4. In fact, in the case where Ž = x ∈ R and t ∈ T, the value of

(√ 1

2iπ sin t
e
i
cotan t

2
Ž2) ∫

R

e
i
cotan t

2
Z2

e−i Ž Z/ sin t (·) dZ

(understood as a regularized integral, see Sect. 4, in particular Remark 4.1) equals

(cos t)−1/2e−i Ž2 tan(t)
2 e−iλ2 tan(t)

2 � H1/ cos t (e
iλ(·))(Ž)

(see [13,Proposition 5.3.1]). Since (t, x) ∈]0,+∞[×R �−→ (cos t)−1/2e−i x2 tan(t)

e−iλ2 tan(t) is a locally integrable function, the initial datum x ∈ R �→ eiλx evolves
through the Schrödinger equation (5.6) as a distribution ϕλ (in fact defined by a locally
integrable function). Let D(t) the differential operator

D : t ∈]0,∞[ \ π
2N + 1

2
�−→

∞∑

j=0

1

j !
(
i
sin 2t

4

) j
(d/dW )2 j .

Since

(cos t)−1/2e−i Ž2 tan(t)
2 e−iλ2 tan(t)

2 � H1/ cos t (e
iλ(·))(Ž)

= (cos t)−1/2e−i Ž2 tan(t)
2 D(t)(eiλ(·))(Ž),

and D acts continuously locally uniformly in t from A1(C) to A2(C) thanks to
Lemma 2.2, the sequence

{ N∑

j=0

C j (N , a) (ϕ1−2 j/N )|U
}

N≥1

is, for any a ∈ R\[−1, 1], a supershift for the family F = {(ϕλ)|U ; λ ∈ R} (with
F -supershift domain U ). The last assertion follows from the same argument than
that used for the last assertion in Proposition 5.1. ��

6 Singularities in the QuantumHarmonic Oscillator Evolution

This section is the natural continuation of Sect. 5.4. We continue to investigate with
respect to the notion of supershift the evolution of initial data x ∈ R �→ eiλx , when
λ ∈ R, through the Cauchy–Schrödinger problem for the quantum harmonic oscillator
and focus now on singularities. In this section we keep the same notations as in
Proposition 5.2 andfix apoint (t0, x0) inT \U .Wewill just consider the case t0 = π/2
since the situation is essentially identical at any point ((2k + 1)π/2, x0) with k ∈ N

and x0 ∈ R.
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Let, for λ ∈ R, ϕλ ∈ D ′(T , C) be the distribution evolved from the initial datum
x �→ eiλx through the Schrödinger operator for the quantum oscillator problem (5.6)
(withH : x ∈ R �→ (−∂2/∂x2 + x2)/2).

Let θ ∈ D(T , C) be a test-function with support in a small neighborhood of
(π/2, x0) and (t, x) �→ ξ(t, x) := θ(t, x) exp((i x2cotan t)/2)/

√
2iπ . One has (for-

mally) for any λ ∈ R,

〈ϕλ, θ〉 = −
∫

R2

[ ∫

R

ei
sin u
2 Z2

e−i Ž Z/
√
cos u(eiλ(·)) dZ

]

Ž=x
ξ(π/2 − u, x) du dx

=
∫

R2

[ ∫

R

ei
sin u
2 Z2

e−i Ž Z (eiλ(·)) dZ
]

Ž=x
ξ̃ (u, x) du dx, (6.1)

where ξ̃ (u, x) = −√
cos u ξ(π/2− u,

√
cos u x) is a test-function with support about

(0, x0). The regularized integral is then

lim
ε→0+

∫

R2

[ ∫

R

e−εZ2
ei

sin u
2 Z2

e−i Ž Z (eiλ(·)) dZ
]

Ž=x
ξ̃ (u, x) du dx

= lim
ε→0+

∫

R2

[ ∫

R

e−εZ2
ei

sin u
2

(
Z2−2(Ž−λ)/ sin u

)

dZ
]

Ž=x
ξ̃ (u, x) du dx

=
∫

R2

[
exp
( 2i

sin u
(Ž − λ)2

)
)
]

Ž=x

√
2iπ

sin u
ξ̃ (u, x) du dx

=
∫

R2

[
exp
( i

v
(Ž − λ)2

)
)
]

Ž=x

√
1

v
θ̃(v, x) dv dx

for some test-function (v, x) �→ θ̃ (v, x) with support about (0, x0) (one uses here
Lebesgue domination theorem and the change of variables (sin u)/2 ←→ v about u =
0). Though such expression makes sense when λ ∈ R (since | exp (i(x −λ)2/v)

)| = 1
for any point (v, x) ∈ Supp(̃ξ )), it does not make sense anymore when λ ∈ C. In
order to overcome this difficulty, one needs to formulate the following lemma.

Lemma 6.1 Let D(Ž) (Ž ∈ C) be a differential operator of the form

∞∑

κ=0

[ Aκ(Ž , (d/dZ))

κ! (·)
]

Z=0
(d/dv)κ , (6.2)

(where Aκ ∈ C[[Ž , d/dZ ]] for any κ ∈ N), considered as acting from the space of
entire functions of the variable Z to the space C[Ž ][[d/dv]]. Suppose that there exist
p ≥ 1 and p̌ ≥ 1 and B, B̌ ≥ 0 such that

sup
κ∈N,Ž∈C

(|Aκ(Ž ,W )| exp(−B |W |p − B̌ |W | p̌)) < +∞. (6.3)
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Then, for any b ≥ 0, there exists A(b) ≥ 0 such that

∀C ≥ 0, ∀ f ∈ AC,b
1 (C), sup

κ∈N

∣
∣Aκ(Ž , (d/dZ))( f )(0)

∣
∣ ≤ C A(b) eB̌ |Ž | p̌ .

In particular, for any f ∈ AC,b
1 (C), D(Ž)( f ) remains an infinite order differential

operator
∑

κ≥0 ακ(Ž)( f ) (d/dv)κ with coefficients satisfying (independently of f ∈
AC,b
1 (C))

∑

κ∈N
k! |ακ(Ž)( f )| exp(−B|Ž | p̌) = C A(b) < +∞.

Proof The coefficients of Aκ as a polynomial in d/dZ satisfy

∑

κ, j∈N, Ž∈C
|aκ, j (Ž)| ≤ C0

b j
0

�( j/p) + 1
eB̌|Ž | p̌

for some absolute constants C0 and b0 (Lemma 2.1). As in the proof of Lemma 2.2,
one concludes that for any f ∈ AC,b

1 (C) and any κ ∈ N, one has uniform estimates
|Aκ(Ž , d/dZ)( f )| ≤ C A(b) exp(b0b|Z | + B̌|Ž | p̌) for some positive constant A(b).
One gets the required estimates when evaluating at Z = 0. ��
One can then complete Proposition 5.2 into the following companion proposition.

Proposition 6.1 Let T =]0,+∞[×R and H : x ∈ R �→ −(∂2/∂x2 + x2)/2. For
any λ ∈ R, let ϕλ ∈ D ′(T , C) be the evolved distribution from the initial datum
x ∈ R �→ eiλx through the Cauchy–Kowalevski Schrödinger equation (5.6). Let
F = {ϕλ ; λ ∈ R}, where each ϕλ is considered as a hyperfunction in T . Then, for
any a ∈ R\[−1, 1], the sequence {∑N

j=0 C j (N ) ϕ1−2 j/N
}
N≥1 is a F -supershift of

hyperfunctions over theF -supershift domain T .

Proof Let θ ∈ D(R2
t,x , C)with support a small neighborhood V of the point (π/2, x0)

(x0 ∈ R) and θ̃ the test-function with support V − (π/2, 0) � (0, x0) that corresponds
to it through the successive transformations explicited previously. One has for any
λ ∈ R,

〈ϕλ, θ〉 =
∫

R

∫ ∞

0

[(
exp
( i

v
(Ž − λ)2

)]

Ž=x

θ̃ (v, x)√
v

dv dx

−i
∫

R

∫ ∞

0

[(
exp
(

− i

v
(Ž − λ)2

)]

Ž=x

θ̃ (−v, x)√
v

dv dx

=
∫

R

∫ ∞

0

([ ∞∑

κ=0

iκ

κ!
(Ž − λ)2κ

v1/2+κ

]

Ž=x
θ̃ (v, x)

−i
[ ∞∑

κ=0

(−i)κ

κ!
(Ž − λ)2κ

v1/2+κ

]

Ž=x
θ̃ (−v, x)

)
dv dx . (6.4)
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For any κ ∈ N, the distribution v
−1/2−κ
+ ∈ D ′([0,+∞[, R) can be expressed as

v
−1/2−κ
+ = 2κ

∏κ
�=1

(
2(κ − �) + 1

) (−d/dv)κ(v
−1/2
+ )

in the sense of distributions in D ′([0,+∞[, R). Then, one can reformulate formally
(6.2) as

〈ϕλ, θ〉 =
∞∑

κ=0

(2i)κ

κ!∏κ
�=1

(
2(κ − �) + 1

)

∫

R

〈[(
Ž + i

d

dZ

)2κ
(eiλ(·))

]

Ž=x
(0)
( d

dv

)κ
(v

−1/2
+ ), θ̃ (·, x) − i(−1)κ θ̃(−·, x)

〉
dx .

(6.5)

Lemma 6.1 applies to the two operators

D(Ž) =
∞∑

κ=0

1

κ!
[ (2i)κ (Ž + id/dZ)2κ
∏κ

�=1

(
2(κ − �) + 1

) (·)
]

Z=0
(d/dv)κ

D̃(Ž) =
∞∑

κ=0

1

κ!
[ (−i)κ+12κ (Ž + id/dZ)2κ

2
∏κ

�=1

(
(κ − �) + 1

) (·)
]

Z=0
(d/dv)κ

(6.6)

with p = p̌ = 2. These two operators act then continuously (locally uniformly
with respect to the parameter Ž ) from A1(C) into the space of infinite order dif-
ferential operators in d/dv (depending on the parameter Ž ∈ C). Such differential
operators can be considered as hyperfunctions on Rv (elements of H(Rv)). Since
v

−1/2
+ is a Fourier hyperfunction in the real line R, the two H(R)-valued operators

f ∈ A1(C) �−→ D(Ž)( f ) � v
−1/2
+ and f ∈ A1(C) �−→ D̃(Ž)( f ) � v

−1/2
+ are

well defined (see [40,Proposition 8.4.8 and Exercise 8.4.5]) and depend continuously
(locally uniformly with respect to Ž ) on the entry f in A1(C). Proposition 6.1 fol-
lows then from Theorem 2.1 and from the expression (6.4) (together with its formal
reformulation (6.5)) for the evaluations 〈ϕλ, θ〉 when λ ∈ R and ϕλ is considered as
an element in D ′(T , C) (acting on θ ∈ D(T , C)) which can be also interpreted an a
hyperfunction on T . ��
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