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Abstract
The effects of flexibility on attitude control using internal torques that change the shape of multibody
spacecraft is studied. Conservation of angular momentum provides a nonholonomic constraint that can be
leveraged to relate attitude changes to those of joint angles, assumed to be controllable via internal torques
dictating the angles’ accelerations. Open-loop torques can be subsequently designed using a profile in the
shape space, the attitude change from which can be numerically computed in advance. This paper shows
that even small amounts of flexibility can significantly alter the attitude changes, but such influences could
be minimized by conducting slower manoeuvres.

1. Introduction

The problem treated in this paper is that of reorientation via shape change in the context of multibody spacecraft, in
particular in the presence of flexibility effects. Examples of earlier works on a similar problem involving rigid bodies
were presented by Krishnaprasad,4 Sreenath,9 Walsh and Sastry,12 Rui et al,8 and Cerven and Coverstone,1 among
others. It is also interesting to note that the overall control mechanism via shape change is inspired by the so-called
falling cat problem related to the reorientation manoeuvres performed by cats when released upside down, studied
by Kane and Scher,2 for example: a phenomenon that finds applications in other contexts as well, such as astronaut
reorientation and springboard diving.

Whereas the research in the area of attitude control via shape change has thus far focused on rigid systems,
the present document introduces flexibility and explores the effects of the appendages’ deflections. The kinematics
and dynamics of the flexible problem are based on the mathematical derivations presented elsewhere by this paper’s
authors, Vatankhahghadim and Lovera,11 along with further references to the relevant literature and using a control
mechanism similar to that by Walsh and Sastry.12 The control approach is based on calculating the geometric phase for
a given profile, that is, determining the amount of change in the configuration space (overall attitude) resulting from a
given profile in the shape space (defined by the joint angles).4 Other applications of geometric phases in the context
of spacecraft attitude control can be found in the works of Krishnaprasad and Yang,5 Sreenath,10 Reyhanoglu and
McClamroch,7 and Narikiyo and Ohmiya,6 among others. Also relevant is the in-depth survey by Kolmanovsky and
McClamroch3 on the broader topic of nonholonomic control, including the aspects of motion planning and geometric
phases.

The focus of the present paper is on validation of the basics of the models and the corresponding multibody simu-
lations by reproducing the results (assuming negligible flexibility) for a fully rigid system—namely that by Reyhanoglu
and McClamroch7—and then demonstrating the effects of large flexible deflections on the reorientation manoeuvres.
Whereas the authors’ earlier work11 considered a central hub with large and heavy appendages (all bodies identical),
used multiple periodic loops in the shape space and commanded joint angle rates, the present work treats a more prac-
tical example with thinner appendages connected in a chain—hence affecting each other’s motion—and uses a single
rectangular shape profile, providing angular accelerations as inputs. This enables the comparison of the results against
those of the existing literature. In addition, the present paper primarily focuses on the dynamics as opposed to the con-
trol aspect, as well as the dynamics’ dependence on the system’s configuration which becomes particularly important
in the presence of flexibility.

Throughout this paper, a three-body system with a rigid hub and two flexible appendages, connected to each
other in a chain format, is considered. It is assumed that the joint angles between the two appendages and between the
hub and the inner appendage are controllable by applying known joint torques designed to achieve given joint angle
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profiles. Section 2 discusses the required changes and additions to the models of Vatankhahghadim and Lovera11 in
order to make them applicable to the configuration of interest. Section 3 presents validation and simulation results for
an attitude control problem using the torque functions designed by Reyhanoglu and McClamroch,7 followed by a more
detailed examination of the effects of flexibility and manoeuvre rate on the dynamics. Lastly, some concluding remarks
are offered in Section 4.

2. Mathematical Models

This paper focuses on a three-body system with two slender appendages connected in a chain configuration—sharing
a joint with each other—the inner one of which is also attached to a large rigid hub as shown in Figure 1. This allows
comparing the results to those of Reyhanoglu and McClamroch,7 and considering the current space applications and
existing systems, could be viewed as a more realistic example than the one considered elsewhere by Vatankhahghadim
and Lovera.11 Most of the pertinent mathematical derivations and results for both rigid and flexible systems can be
found in the authors’ earlier work,11 but because of the differences in their assumed multibody configurations and the
fact that the flexible deflections in this case would now depend on each other—that is, the appendages are no longer
only connected to the rigid hub, thus are not independent of each other—some changes are necessary and are briefly
summarized in this section.

The first set of modifications to the models involves incorporating the motion of the inner appendage (directly
connected to the hub) into the position, attitude, and velocity expressions of the second appendage:

ρ02
0 = ρ

01
0 + L

[
cosψ1 sinψ2 0

]⊺
(1a)

C20 = C21C10 = Cz(ψ2)Cz(ψ1) (1b)

ω20
2 = ω

21
2 + C21(ψ2)ω10

1 (1c)

where L is the appendages’ length, ρ0 j
0 contains the hub-frame components of the position vector from the hub’s centre

of mass to the joint of Body j, C ji is the rotation matrix from frame Fi to frame F j, and ω ji
j represents the angular

velocity of Body j relative to Body i as expressed in F j denoted by the subscript. The joint angles ψ1 and ψ2 are those
between Body 1 (the inner appendage) and the hub, and the two appendages, respectively.

In addition, because the appendages’ shared joint position ρ02
0 is no longer fixed, its derivative should also be

added to some of the rate expressions developed by Vatankhahghadim and Lovera.11 For example, the position and
velocity of the hub relative to the system’s centre of mass as expressed in the hub’s frame, denoted by r0,0 and .r0,0, now

Figure 1: Sketch of the three-body system, with flexible appendages in a chain configuration
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take the following forms:

r0,0 = −
1
M

2∑
j=1

[
m jρ

0 j
0 + σC0 j

L∫
0

(
ρ jx

j + w jm
j

)
dx j

]
(2a)

.r0,0 = +
1
M

2∑
j=1

[
m j

.
ρ0 j

0 + σC0 j

( L∫
0

ρ jx
j dx j

)
ω j0

j + σC0 j

( L∫
0

w jm
j dx j

)
ω j0

j − σC0 j

L∫
0

.w jm
j dx j

]
(2b)

where (.·) represents time derivative, m j is the mass of Body j, M ≜ m0 + m1 + m2 is the total system mass, σ is the
appendages’ uniform linear density, and w jm

j (x j) is the point-wise flexible deflection of mass element dm at position x j

on Body j. Note the presence of the .
ρ0 j

0 term that would drop out the in the case of hub-fixed joints. A similar comment
holds for the position and velocity of each mass element, rm,0 and .rm,0, which now should include the motion of the
appendages relative to each other:

rm,0 = r0,0 + ρ
0 j
0 + C0 jρ

jx
j + C0 jw

jm
j , j ∈ {1, 2} (3a)

.rm,0 =
.r0,0 +

.
ρ0 j

0 − C0 j

[
(ρ jx

j )× + (w jm
j )×
]
ω j0

j + C0 j
.w jm

j , j ∈ {1, 2} (3b)

where (·)× represents the cross product operator. Along with the position and velocity expressions in Eqs. (2) and (3),
the system’s angular momentum and energy expressions can be used to obtain its kinematics and dynamics models.
For the purposes of this paper, only the dynamics model is required, and using a Largangian framework, the energy
expressions would suffice to derive the system dynamics. After separating the flexible deflections into space- and time-
varying parts as w jm

j ≜W j(x j)q j(t) and defining the overall system states as the complete set of generalized coordinates
x ≜ [ ψ1 ψ2 ψ0 q⊺1 q⊺2 ]

⊺
, the following equations of motion can be derived:

M..x +
( .
M + D

) .x + k̂ = τ , k̂(x, .x) ≜ − .x
⊺ ∂M
∂x

.x + Kx (4)

where τ represents external torques, and M, K, and D are the system’s overall mass, stiffness, and damping matrices,
respectively. The nonlinear term k̂ captures both partial effects from the kinetic energy and the contribution of the
strain energy due to the appendages’ elasticity.

Numerical integration of Eq. (4), as is used in Section 3.1 below, provides a prediction of the system dynamics
by generating time histories of the states: the joint angles, the attitude angle, and the deflection coordinates. It must
be noted that the system matrices are state dependent, so they should be recomputed at each integration step using
updated states. In this paper, commanded joint accelerations are assumed, namely specific ψ̈1 and ψ̈2 functions that
would result in desired profiles for ψ and ψ2 in the shape space, using which feedforward torques to be applied at the
joints can be determined. The selection of the joint angle profiles is a design choice that involves consideration of how
much attitude change they can offer and how achievable they would be in practical terms.

As a side note, the angular momentum expression mentioned earlier, together with the law of conservation
of angular momentum that would require such an expression to remain zero in the absence of any external torques,
would prove useful for controller design and computing the geometric phases as was done by Walsh and Sastry,12

for example: given that the angular momentum is related to the angular velocity and deflection rate terms—that is,
h = J

⊺ .x, where J generically represents the state-dependent coefficients corresponding to each rate term—setting it
to zero and integrating the result over time would offer a correlation between the attitude changes—called “geometric
phase”, the difference ψ0(t f ) − ψ0(ti) between the attitude angle at some initial and final times, ti and t f —and those of
the joint angles and deflection coordinates (via ψ̇1, ψ̇2, .q1, and .q2). Interested readers are referred to Vatankhahghadim
and Lovera11 for more details on this approach in the presence of flexibility, as well as for each term and the general
form of the expressions in Eq. (4)—which would be similarly applicable to this paper’s models—as the rest of this
document is focused on the simulations and the effects of flexibility and appendage configuration on the dynamics.

3. Simulation Results

A numerical example and some simulation results are presented in this section. Section 3.1 uses the same shape
space profile and nearly rigid appendages to compare the results against those previously reported by Reyhanoglu
and McClamroch,7 while Section 3.2 uses a simpler profile to focus on the effects of appendage flexibility of various
amounts on the attitude control manoeuvre.
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Figure 2: Shape space profile obtained using the joint accelerations designed by Reyhanoglu and McClamroch7
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Figure 3: Time history of the joint and attitude angles of the rigid system in response to the shape space profile in
Figure 2

Consistent with the geometrical and physical parameters used by Reyhanoglu and McClamroch,7 a square-
shaped “planar” rigid hub of mass 120 kg and diameter 1 m, and negligible thickness 0.01 m; and two slender ap-
pendages of mass 12 kg, length 1 m and cross-sectional square side length 0.01 m are assumed. For the flexible
appendages, structural damping with mass and stiffness proportionality coefficients of 1 s−1 and 1 s, respectively, are
used. The appendages’ Young’s modulus is varied in Section 3.2 to simulate various degrees of flexibility.

3.1 Validation against Past Results

In this section, the results from Reyhanoglu and McClamroch7 are reproduced for a fully rigid system, using the
same joint acceleration profiles. Applying the changes described in this paper to the models of Vatankhahghadim and
Lovera,11 the attitude changes of a completely rigid three-body system—which could also be viewed as a limiting case
of having negligible flexibility—are simulated. Shown in Figure 2 is the shape space profile used, which illustrates
the evolution of the joint angles: starting from their initial configuration, (ψ1, ψ2) = (π,−π) shown by a blue asterisk,
completing a square path centred at (2π/3, 5π/6)—selected based on a study of how much change in attitude can be
obtained by changing the joint angles in the vicinity of such a centre—and back to the final configuration at (0, 0). The
reader is referred to Reyhanoglu and McClamroch7 for the complete set of piece-wise acceleration terms used to obtain
such a profile, but to illustrate what such control functions could look like, the following is a possible choice for the
joint accelerations to take an initial ψi ≜ [ ψ1(ti) ψ2(ti) ]

⊺
at time ti to a final ψ f at t f for a given segment in the shape
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Figure 4: Profile used for the flexible system, using the joint acceleration functions proposed by Reyhanoglu and
McClamroch:7 (a) shape space representation and (b) time-domain representation
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Figure 5: Time history of the joint and attitude angles of the flexible system in response to the shape space profile in
Figure 4 (a) completed in 60 s and (b) completed in 120 s

space defined by the joint angles:7

..
ψ(t) =

2π(ψ f − ψi)

(t f − ti)2 sin
[
2π(t − ti)

t f − ti

]
, t ∈ [ti, t f ) (5)

In short, the overall idea is completing each segment using a smooth profile—starting and ending with zero accelerations—
and traversing the desired square path that physically implies keeping one of the angles constant while increasing or
decreasing the other one. The side-length of the square path is set to z∗ = 1.35 rad in this case. It should be noted that
the various results obtained by Reyhanoglu and McClamroch7 and their comparison suggest that their joint angle ψ2 is
measured from the outer to the inner appendage, so the same definition is assumed in this section—in contrast to the
definitions in Figure 1, which are in the opposite direction and are retained in the subsequent sections’ simulations.

The time histories of the joint and attitude angles are shown in Figure 3, obtained by numerically integrating
the system dynamics in Eq. (4), and offer a good match with the time responses provided in Figure 4 of the paper by
Reyhanoglu and McClamroch.7 This adds another layer of validation for the formulation of Vatankhahghadim and
Lovera11—albeit for a different configuration and circular profiles, and rate-based as opposed to acceleration control
inputs—and provides a reliable foundation for studying the flexibility effects in the subsequent section.
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Figure 6: Time history of the flexible deflections of the first (inner) appendage in response to the shape space profiles
in Figure 4: (a) completed in 60 s and (b) completed in 120 s
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Figure 7: Time history of the flexible deflections of the second (outer) appendage in response to the shape space profiles
in Figure 4: (a) completed in 60 s and (b) completed in 120 s

3.2 Effects of Flexibility

A slightly simpler and larger profile, as shown in Figure 4 and consistent with the definitions in Figure 1, is used to
illustrate the effect of flexibility on the attitude change as a result of appendage motions. The square path in the shape
space, represented in Figure 4a, is assigned a length of z∗ = 1.5 rad. The resulting joint angles (in dashed blue and
dash-dotted red curves for the inner and outer appendages, respectively) are shown in Figure 4b. The attitude angle
history, produced by a SimscapeTM simulation of the system, is shown in Figure 5 for three cases: near-rigid appendages
(with a very large modulus of flexibility) in solid black, appendages with Young’s modulus E = 5 GPa in dashed green,
and appendages with E = 2 GPa in dash-dotted purple. Separate results are provided for different rates of traversing
the shape space profile: in 1 minute, as in Figure 5a, or in 2 minutes, resulting in the dynamics in Figure 5b.

Also examined in this section are the appendages’ flexible deflections, presented in Figures 6 and 7, using solid
green and dash-dotted purple curves to identify the cases with E = 5 GPa and E = 2 GPa, respectively. Figures 6a
and 6b show the deflections of the first (inner) appendage, with each subplot corresponding to a different manoeuvre
rate (completed in 60 s or 120 s), while Figures 7a and 7b do the same for the second (outer) appendage. As evident
from the results, even relatively small flexibility effects that cause deflections of no more than around 0.2 m—for 10 m
long appendages—can have a significant effect on the resulting attitude changes, in these cases up to ∼ 1.3 rad in the
1-minute simulation of Figure 5a with E = 2 GPa.
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Figure 8: Snapshots of the attitude change maneouvre, with 5 s intervals (with darker hubs corresponding to the starting
times of each interval), at times: (a) 0 s, (b) 5–10 s, (c) 15–25 s, (d) 30–40 s, (e) 45–55 s, and (f) 60 s

Comparing Figure 5a against 5b suggests an intuitive and simple way to alleviate such unwanted effects in real
applications: using slower manoeuvres that minimize the flexible deflections, hence making the actual dynamics more
in line with the rigid-based predictions. For example, with the overall manoeuvre time in Figure 5b being twice as
much as that in Figure 5a, the discrepancy (relative to the rigid case) between the final attitude in the case with the
appendages having E = 2 GPa is reduced to ∼ 0.16 rad, and the attitude pattern for the system with E = 5 GPa
becomes virtually identical to that of the rigid case. It is also interesting to contrast the flexible deflection patterns in
Figures 6a and 7a against those in Figures 6b and 7b: the resulting patterns of their troughs and crests are quite similar,
with the magnitudes in the first pair of subplots being about three times larger than the corresponding ones among the
latter pair with a slower manoeuvre.

Lastly, presented in Figure 8 are snapshots of the motion for the case with E = 2 GPa and using the profile in
Figure 4a traversed in 1 minute. This figure illustrates the attitude change manoeuvre achieved by actuating the joints,
and shows the effects of flexibility that induces curves in the appendages during the manoeuvre, subsequently affecting
the main hub’s rotational and translational motions. The initial and final configurations are shown in Figures 8a and 8f,
respectively: in the absence of flexibility, rigid appendages would be aligned along the hub’s diagonal also in the final
configuration, but now they have clear deflections that will eventually die out over time, depending on the structural
damping. Another observation is how the deflections of the inner appendage affect the motion of the outer one: an
aspect that would not be present in the previous example considered by the present authors,11 in which the appendages
are connected separately to the central hub. This highlights that importance of the system configuration, and how the
influence of flexibility on the dynamics can be augmented or diminished depending on the structural design.

4. Conclusion

This paper focuses on the effects of flexibility on attitude control manoeuvres performed by actuating the internal joints
of multibody spacecraft to change their shape. As a continuation of the earlier work by Vatankhahgahdim and Lovera,11

the necessary changes in the mathematical models are presented to render them applicable to the chained configura-
tion of interest (as opposed to having a central hub); however, most of the simulation results involving flexibility are
obtained using built-in multibody models—in turn verified against the predictions using the developed mathematical
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models. The numerical example, joint angle profiles, and commanded torques presented by Reyhanoglu and Mc-
Clamroch7 are then used to validate the model if the appendage were rigid. Lastly, to assess how various amounts of
appendage flexibility would affect the attitude control manoeuvre, a simpler square-shaped profile is selected and the
system’s attitude angle, flexible deflections, and overall planar motion are examined. It is observed that repeating the
same manoeuvre at a slower rate can significantly contribute to minimizing the amount of deflections, as well as the
subsequent attitude deviations.

It is clear that even small amounts of flexibility can have a significant impact on the system’s motion during the
attitude change manoeuvre. Some considerations and an approach to correct the attitude prediction using geometric
phases—based on the rigid dynamics—are presented elsewhere by the current authors,11 but more work would be
required to render such approaches more general, encompassing situations such as those involving the configuration
in this paper, or spacecraft with more than two appendages—some of which may inevitably be linked in a direct
manner, hence mutually affecting each other’s motion. Nevertheless, having verified in this paper the basics of the
models against the results of Reyhanoglu and McClamroch,7 and subsequently having assessed the effects of varying
the rigidity and maneouvre times in simple and representative cases, future work in the aforementioned directions can
ensue to more systematicaly and comprehensively account for flexibility in attitude control via shape change.
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