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Nonlinear Tracking Differentiator based Prescribed Performance Control for 

Space Manipulator 

Yidi Fan*, Wuxing Jing, and Franco Bernelli-zazzera 

Abstract: A low-complexity prescribed performance controller is proposed for motion tracking control of a space 

manipulator in this paper. First of all, a prescribed-time prescribed performance function is designed. Based on the 

function, the proposed controller is capable of guaranteeing the system transient and steady-state control 

performances satisfy the prescribed boundary constraints. Moreover, all tracking errors converge to stability 

domains before the user-defined settling time. A nonlinear tracking differentiator based on a hyperbolic sine 

function is adopted to estimate the derivatives of joint angles and reconstruct the angular velocity for the controller, 

which lowers hardware requirements for the controlled system to a certain extent. Without any time-consuming 

operations and model information, the proposed control scheme has a superiority in low computation complexity 

and robustness against model uncertainties. With the Lyapunov theory, the prescribed-time stability within 

prescribed performances of the closed-loop has been rigorously proven. Numerical simulation and the comparison 

with the traditional prescribed performance control demonstrates the effectiveness and superior performances of 

the proposed control scheme. 

Keywords: Prescribed performance control, prescribed-time stability, space manipulator, motion tracking control, 

tracking differentiator. 

1. INTRODUCTION

Considerable developments of on-orbit service has 

been witnessed with the sharply increasing number of 

launched satellites, where space manipulators play a 

significant role for on-orbit assembly, object inspection, 

deorbiting of space debris [1-3] and retrieval of 

malfunctioning satellites [4,5]. In such space missions, 

the trajectory tracking capability is a direct practical 

important issue, where accuracy and transient and steady 

state performance of the closed-loop system is of 

outmost significance [6,7]. In general, trajectory tracking 

controllers were mainly designed based on computed 

torque, inverse dynamic and passivity-based methods [7-

9], which need the knowledge of full exact dynamic 

models. However, model uncertainties bring an obstacle 

for handling this issue but appear in most cases. For 

instance, the control of a space robot after capturing a 

non-cooperative target is a challenging task as the 

dynamic model of the combination is always unknown 

[10,11]. In this case, approximation has been employed 

in manipulator tracking controllers, such as adaptive 

control and neural network control [12,13]. But these 

approximation methods require to guarantee beforehand 

that the system state is restricted to the compact set 

where the approximation capability hold, which is a 

tedious task because the usual means is regulating the 

control parameters and initial parameter estimates to 

attain the goal. As a consequence, these model-based 

controllers are very dependent on the complexity and 

uncertainty of dynamic models, and they are 

computationally demanding. Thus it is valuable to design 

model-free controllers for space manipulators, capable of 

not only increasing the applicability as well as robustness 

against model uncertainties but also lowering the 

computation requirement. 

Proportional-Integration-Derivative (PID) control 

method, which is a typical representative of model-free 

method, has been proved to be capable of stabilizing 

manipulator systems based on effective adoption of the 

passivity property [9]. The asymptotic stability of the 

PID controller for a robot joint angles control problem 

has been established in a global sense [14] and in semi-

global sense [15] by integrating a combined error 

composed of joint angle errors and angular velocities. In 

Ref. [16], a PD controller is designed to maintain the 
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stability of the robot system after the space capture. 

Although it has been shown that PID controller can 

guarantee that the tracking error is uniformly ultimate 

bounded by selecting appropriate control gains, too large 

gains have an impact on the performance of the closed-

loop system directly [17,18]. Attempting to improve the 

closed-loop system performance, PID gain tuning 

procedures is presented in Ref. [19] and some advanced 

methods such as sliding mode control and fuzzy neural 

network control are introduced Refs. [12,20,21], whereas 

they all require a prior knowledge of the dynamic model. 

Furthermore, currently, robotic systems adopt 

lightweight and flexible materials, embedded sensors and 

actuators, which make the nonlinear inertia and 

couplings among the joints become more and more 

dominant and influential in system performance [22]. In 

this case, simple PID controller is insufficient to achieve 

high performance and model-based controllers become 

fairly complicated and time-consuming. In addition, the 

accurate angular velocity is sometimes difficult to be 

achieved from the measurement devices in certain cases 

for power availability, limited sensing and costs. An 

approximate angular velocity achieved by the difference 

between joint angles at adjacent times is usually utilized 

in practice as a substitute, which is seriously influenced 

by bandwidth, transmission rate and noise and limit the 

performance of the controller [23,24]. The above 

problem imposes limits on the direct application of the 

full-state-based control scheme. 

Most papers on manipulator control problems focus on 

the stability issue rather than the transient and steady 

state performance of the closed-loop system, where the 

performance usually relies on tuning the control 

parameters, which is a dreary task. In some practical 

space missions, for example in on-orbit assembly, it is 

important to control the time attribute of tracking errors 

since undesirable overshoot may cause damage to 

assembly units [25]. Prescribed performance control 

(PPC) is proposed for a variety of uncertain nonlinear 

systems, by introducing a performance function and an 

error transformation, to guarantee the convergence of the 

tracking error to a predefined arbitrarily small residual 

set, with the convergence rate more than a predefined 

value and the maximum overshoot less than a 

sufficiently small one [26-28]. A robust inertia-free 

attitude takeover control scheme, guaranteeing the 

prescribed transient and steady-state performance of the 

closed-loop system, is designed for the postcapture 

combined spacecraft in [29]. The idea of error 

transformation extract from [26] has been adopted in 

robot control problems [30,31]. Specifically, a model-

based prescribed performance adaptive controller for the 

force/position tracking of robot is proposed in Ref. [30]. 

In Ref. [32], funnel control is utilized to achieve 

prescribed performance of a robot system output by 

introducing an auxiliary state consisting of the joint 

angle and angular velocity tracking errors. The 

prescribed performance of the auxiliary state, however, 

does not imply that either joint angle or angular velocity 

errors are confined within pre-specified boundaries. 

Authors in Ref. [33] design a model-free controller for a 

manipulator to guarantee prescribed performance 

specifications for both joint angle and angular velocity 

tracking errors, where the accurate measurement of joint 

angular velocity is a necessary and the system settling 

time cannot be guaranteed in advance. To the best of 

authors’ knowledge, there does not exist any model-free 

continuous control scheme that achieves prescribed time 

and prescribed performance of both joint angle and 

angular velocity tracking errors for space manipulators. 

In this paper, based on a nonlinear tracking 

differentiator (TD), a low-complexity model-free 

controller guaranteeing both prescribed time and 

prescribed performance is proposed for motion tracking 

control of a space manipulator. The contributions of this 

paper are as follows: 

1) This paper proposes a low-complexity prescribed-

time prescribed-performance control (PTPPC) method 

for space manipulators, which requires no time-

consuming operations (iterative computation, for instant) 

and thus can be utilized online in space missions. 

2) The traditional prescribed performance function is

extended to prescribed-time prescribed-performance 

function which is able to guarantee that not only the 

system transient and steady-state control performances 

satisfy the prescribed boundary constraints but also 

tracking errors converge to stability domains before the 

user-defined settling time. 

3) The proposed control scheme is partial-state-based

with a hyperbolic-sine-function-based tracking 

differentiator. This lowers hardware requirements for the 

controlled system to a certain extent and is suitable for a 

wide range of applications, since the accurate angular 

velocity is sometimes difficult to be inferred from the 

measurement devices in certain cases for power 

availability, limited sensing or costs. 

4) The control scheme designed in this note is model-

free in the sense that it does not incorporate either any 

information regarding the space manipulator model or 

approximation computation, which increases its 

applicability as well as robustness against model 

uncertainties. Moreover, it is an easy task to select the 

controller gain because adjusting them to generate 

reasonable input torques is the only consideration. 

The remainder of this paper is organized as follows. 

The manipulator control problem is formulated in 

Section II. A nonlinear tracking differentiator and a low-

complexity model-free controller utilizing prescribed-

time prescribed-performance functions are designed in 

Section III. A stability analysis based on the Lyapunov 

theory is presented as well. Numerical simulation results 

are presented in Section IV to demonstrate the 

effectiveness of the control method. The conclusions in 

Section V end the paper. 

2. PROBLEM FORMULATION

Consider a servicing spacecraft equipped a 6-DOF 

manipulator without kinematic singularities. One may 

consider a redundant manipulator in order to actively 

avoid singularities via a redundancy resolution algorithm. 

The dynamics of the whole system is given by the 

following general equation: 
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b bm b b

T
m mbm

        
          

        

M M c dfΦ

c dτqM D
(1) 

where Φ  is the generalized velocity of the spacecraft 

base consisting of the linear and angular velocities, and q 

is the joint angle position of the manipulator. Mb and D 

denote inertia matrices of the spacecraft base and 

manipulator, respectively, while Mbm denotes the 

coupling inertia matrix between them. cb and cm denote 

nonlinear terms, containing Coriolis and centrifugal 

forces, acting on the spacecraft base and manipulator, 

respectively. f represents the generalized force imposed 

on the spacecraft base and τ stands for the controls 

vector of joints. db and dm denote external disturbances 

acting on the spacecraft base and manipulator, 

respectively, which can be assumed as continuous 

bounded terms according to practice. 

In this paper, we consider a manipulator and assume 

that it does not experience kinematic singularities. 

Nonetheless, one may consider a redundant manipulator 

in order to actively avoid singularities via a redundancy 

resolution algorithm. Because we are interested in only 

controlling the motion of the manipulator, it can be 

assumed that the torque is applied to the spacecraft base 

by the actuators of its attitude control system to remain 

stable. Then, the dynamics of the manipulator can be 

written as 

  Dq Cq Δ τ (2) 

where D is a positive definite and symmetric matrix 

related to q. m c Cq  where C is related to q and q . 

Δ denotes the disturbance term, including external 

disturbances dm and 
T

bmM Φ which is the disturbance

that the base exerts on the manipulator. This term is 

bounded when the base keeps stable, and will be tackled 

with the robust controller to be designed. For simplicity 

hereafter, we define that   denotes the Euclidean 

norm, and min ( )  and max ( )  denote the minimum 

and maximum eigenvalue, respectively. Some critical 

properties of Eq.(2) are introduced as follows. 

Lemma 1 [34]: The matrices D  and C  satisfy the 

following properties: 

1) The matrix D satisfies the inequality 
1 1 1

min max0 ( ) ( )     D D D . 

2) The matrix C  is bounded when all joint angle

positions and velocities are bounded. 

3) The matrix 2D C  is skew-symmetric, that is
T ( 2 ) s D C s 0 , 

n s . 

Without loss of generality, the reference signals satisfy 

the following assumption. 

Assumption 1: The reference joint angle velocity rq

and its derivative rq are both bounded and continuous

over t. More specifically, r qrlq  and r qrlq with 

two bounded unknown nonnegative constants qrl and

qrl .

3. PRESCRIBED-TIME PRESCRIBED-

PERFORMANCE CONTROL SCHEME DESIGN 

In this section, a low-complexity model-free PTPPC 

control scheme based on prescribed-time prescribed-

performance functions is presented and its closed-loop 

performance is analyzed with the Lyapunov theory.  

3.1. Prescribed-time prescribed-performance function 

Prescribed performance is achieved if a generic 

tracking error e  satisfies the following inequality: 

( ) ( ),   0t e t t     (3) 

where the performance boundaries ( )t  and ( )t  are 

continuous, bounded and positive time functions. 

Defining a constant (0,1)   denoting the maximum 

overshoot index and a continuous, bounded and positive 

time function ( )t , the performance boundaries in Eq. 

(3) can be given by

( ) ( ), ( ) ( ), if (0) 0

( ) ( ), ( ) ( ), else.

t t t t e

t t t t

   

   

   


  
(4) 

And the transient and steady state performances of the 

tracking error e are bounded in the open set D, i.e. for 

0t  , one has  

e D (5) 

where 

( ( ), ( )), if (0) 0

( ( ), ( )), else.

t t e
D

t t

 

 

 
 



The prescribed-time prescribed-performance function 

is designed as 

 

1

01( ) ( ) , if 0

, else

T T

T

T t
t T

t T

   





 
    

 



(6) 

where (0,1)  determines the decrease rate of the 

performance function before the prescribed time T. 
0  

represents the initial value of ( )t , which should be 

selected to satisfy prescribed stability domain at 0t   

in applications. 
T  represents the maximum allowable 

value of the tracking error at the steady state. The 

piecewise performance function is able to not only 

confine tracking errors to prescribed performance 

boundaries but also enable them to converge to stability 

domains before the user-defined settling time T. An 

illustration of an error evolution with the prescribed-time 

prescribed-performance is shown in Fig. 1, where the 

vertical dotted lines denote the prescribed time T. It 

should be noted that for any given prescribed time T and 
0 0T   , ( )t is monotone decreasing when 

0 t T  and continuous for 0t  . Its first-order time

derivative ( )t is continuous when 0t   as well. 

Defining a normalized tracking error 

( )
( )

( )

e t
t

t



 (7) 

and the error transformation mapping 
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ln , if (0) 0
(1 )

( ) ( )
(1 )

ln , else

e

t

 

 
  

 

 


 

  


 

(8) 

which is apparently a smooth, strictly increasing and 

invertible function, the prescribed performance 

inequality Eq. (3) can be expressed as 

  (9) 

where 

( ,1), if (0) 0
,  0

( 1, ), else

e
t





 
   


. 

Differentiating Eq.(8) with respect to   and time 

respectively, one can obtain the following properties 

concerning the error transformation mapping ( )  . 

1
if (0) 0

( )(1 )( )

1
else,

( )(1 )

e


   



  


   

 
 

  

，

，

(10) 

( ) 4
,

1

 

 

  
   

，  (11) 

( ) 4
( ) ,

1

 
 

 

 
    

(12) 

where ( )   is a continuous function in its domain of 

definition (9) and its continuity in the singular point 

0  can be easily proved by the L’Hospital’s rule. 

( ) [ ( ) ( )]t R e t He t   (13) 

where 

0

( ) 1 4
,

( ) (1 )
R

t

 

   

 
  

  
, 

( )
0

( )

t
H

t




   . 

The satisfaction of the prescribed performance 

boundary Eq.(5) concerning the tracking error ( )e t  can 

be transformed to the boundedness of the error 

transformation mapping ( )t . In fact, given ( )t  , 

where   is a positive constant, the normalized tracking 

error ( )t  is confined to a compact set J  , where 

1 1[ ( ), ( )]J       (14) 

which implies that the tracking error ( )e t evolves 

strictly within the prescribed performance boundary 

Eq.(5). 

To summarize, selecting 0 such that Eq.(5) is 

satisfied at 0t  , the error transformation mapped state

( )t is initially well defined to be finite. Then, 

designing a control law that restricts the boundedness of 

( )t  for 0t   thus arrives Eq.(5). 

3.2. Tracking differentiator 

The joint angles q  as well as the angular velocity q

in the nonlinear system (2) are the key information for 

control design. However, the accurate angular velocity is 

sometimes difficult to be achieved from the sensors in 

certain cases for power availability, limited sensing and 

costs, which imposes limits on the direct application of 

the full-state-based control scheme. In this paper, to 

address this problem, we employ a hyperbolic-sine-

function-based TD to estimate the derivatives of joint 

angles and reconstruct the angular velocity for the 

controller. 

The TD is developed as follows: 

2

0 1 1

2 2 0

( ) ( )

( ) ( sinh( ( ( ) ( )))

sinh( ( ) ))

i i

i i i i i i

i i i i

y t t

t p p s y t q t

p s t p










  



(15) 

where 0ip , 1ip , 2ip , 1is and 2is are positive 

constants to be designed. iy is the estimation of iq

and i is the estimation of iq , 1, ,6i  . 

Proof: To prove the system (15) is asymptotical 

stable, we consider a following representative system 

where the subscript i is dropped.  

1 2

2 2

2 0 1 1 1 0 2 2 2

( ) ( )

( ) sinh( ( )) sinh( ( ))

z t z t

z t p p s z t p p s z t




  
 (16) 

where 1( ) ( ) ( )z t y t q t  and 2 0( ) ( )z t t p . 

Let us define a Lyapunov function candidate as 

1 2 2

0 1 1 2
0

1
sinh( )

2

z

zV p p s d z   . (17) 

Owing to the odd function sinh( ) , one has the 

derivative of zV : 

2

0 2 2 2 2( )sinh( ( )) 0zV p p z t s z t   . (18) 

In the light of the definition of weak convergence, the 

system (16) is asymptotical stable at the origin. 

Invoking Lemma 1 in [35] thus arrives that for a 

bounded and integrable function ( )q t  and a constant 1t , 

one gets 
1

0
1

0
lim ( ) ( ) 0

t

p
z t q t dt


  . (19) 

This is the end of proof.    

Thus one can obtain that the estimation error denoted 

by T

,1 ,6( ) [ ( ), , ( )]est est estt e t e te satisfies ( )est estt le

for 0t   and its derivative ( )est te  is bounded as well,

where , ( ) ( ) ( )est i i ie t t q t  , 1, ,6i  , and estl is a

unknown bounded constant. 

 Fig. 1. Illustration of an error evolution with the 

prescribed-time prescribed-performance. 
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Remark 1: The design parameters 0ip , 1ip , 2ip , 

1is and 2is have different effects on the tracking and

differentiation performance of the TD in (15). The 

relationship between the state 1z and each parameters 

are shown in Figs 2-3. Obviously, the larger 0ip , 1ip

and 1is  and smaller 2ip  and 2is bring higher 

convergence rate and accuracy, and vice versa. Yet too 

large 1ip  and 1is  and too small 2ip  and 2is  may 

lead to an undesired overshoot.

3.3. Controller design 

The control objective of the tracking control problem 

in Eq.(2) is to propose a robust controller to ensure that 

the tracking joint angle error r q q q  and angular 

velocity error 
r q q q are capable of reaching their

prescribed stability regions before the prescribed time T 

which can be predefined by users. Both of the transient 

and steady state performances can be guaranteed during 

the convergence process.  

Since the angular velocity ( )tq  is estimated as 

T

1 6( ) [ ( ), , ( )]t t t ω by the TD in Eq.(15), we 

define the tracking angular velocity error 

( ) ( ) ( )rt t t ω ω q . Thus a nonlinear auxiliary state 

T

1 6( ) [ ( ), , ( )]t x t x tx is defined as follows: 

( ) ( ) ( )t t t x q ω (20) 

where   is a design positive constant. 

To proceed, in (21) and (22), define two prescribed-

time prescribed-performance functions ( )qi t  and 

( )xi t in the form of Eq.(6) with identical   and T to 

impose on iq  and ix , 1, ,6i  , respectively. We 

have the boundary constraints in (23) and (24). 
1

01( ) ( ) ,  if 0
( )

    ,      else,

T T

qi qi qi
qi

T

qi

T t
t T

t T

   





 

   
 



 (21) 

1

01( ) ( ) ,  if 0
( )

    ,      else,

T T

xi xi xi
xi

T

xi

T t
t T

t T

   





 
    

 



 (22) 

( ) ( ) ( ), if (0) 0

( ) ( ) ( ), else,

qi i qi i

qi i qi

t q t t q

t q t t

 

 

   

  

(23) 

( ) ( ) ( ), if (0) 0

( ) ( ) ( ), else

xi i xi i

xi i xi

t x t t x

t x t t

 

 

   

  

(24) 

where 0

qi , T

qi , 
0

xi and T

qi denote the initial 

values and maximum allowable values of the q  and x , 

respectively. Then we have T

1 6[ , , ]q q q α and

T

1 6[ , , ]x x x α . 

Define the normalized tracking errors 

( )
( )

( )

i

qi

qi

q t
t

t



 , (25) 

( )
( )

( )

i

xi

xi

x t
t

t



 (26) 

where 1, ,6i  ,and transform them into mapped states 

( )qi t and ( )xi t  via Eq.(8). Differentiating ( )qi t  

and ( )xi t yield that 

( ) [ ( ) ( )]qi qi i qi it R q t H q t   , (27) 

( ) [ ( ) ( )]xi xi i xi it R x t H x t   (28) 

where 1, ,6i  , and the definitions of qiR , qiH , xiR

and xiH are similar to R and H in Eq.(13). 

Then, we define the following vectors and matrices: 
T

1 6( ) [ ( ), , ( )]q q qt t t θ , 

T

1 6( ) [ ( ), , ( )]x x xt t t θ , 
T

1 6( ) [ ( ), , ( )]q q qt t t η , 

T

1 6( ) [ ( ), , ( )]x x xt t t η , 

T

1 6diag([ , , ] )q q qR RR , 

T

1 6diag([ , , ] )x x xR RR , 

T

1 6diag([ , , ] )q q qH HH , 

T

1 6diag([ , , ] )x x xH HH . 

Given the system dynamics (2) and subject to 

boundary constraints (23) and (24), the control law 

q q x x x   τ R q η k R η (29) 

will drive the joint angle error q  and angular velocity 

error q  to fulfil the control objectives, and the design 

parameter xk is a positive diagonal matrix.

Fig. 3. Time histories of z1 for different parameters. 

Fig. 2. Time histories of z1 for different parameters. 
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Applying the Lyapumov stability theory, a crucial 

conclusion is derived as follows: 

Theorem 1: Consider the tracking control problem in 

Eq.(2) under Assumption 1, the TD in Eq.(15) and 

PTPPC in Eq.(29). If the prescribed-time prescribed-

performance functions ( )qi t  and ( )xi t  are selected 

to satisfy 0 (0)qi iq  and 0 (0)xi ix  , respectively, 

 meets Hql  , where max( )Hq qi
i

l H , the

parameters 0ip , 1ip , 2ip , 1is and 2is in TD are 

appropriately selected and the control parameter xk is 

assigned as a proper positive diagonal matrix, the 

developed control law in (29) guarantees that: 

1) The prescribed performance boundary constraints

for q  and x  always hold for 0t  . 

2) The tracking errors ( )iq t and auxiliary states 

( )ix t , 1, ,6i  converge to their stability regions 

qiD and xiD respectively before the prescribed time T, 

where 

( , ), if (0) 0

( , ), else,

T T

qi qi i

qi T T

qi qi

q
D

 

 

  
 



(30) 

( , ), if (0) 0

( , ), else.

T T

xi xi i

xi T T

xi xi

x
D

 

 

  
 


(31) 

3) The joint angular velocity errors q  remains

bounded for 0t  . 

Proof: In the first place, the relationship among the 

boundedness of q , x  and q  is derived. 

According to Eq.(20), it can be obtained that 

est  q x q e . (32) 

Owing to ( )est estt le , where estl is a unknown

bounded constant, thus if x  and q  are bounded, the 

boundedness of q  is achieved. 

In the following, we will prove that the prescribed 

performance boundary constraints for q  and x  

always hold for 0t  . The first step is proving that there 

exists a time interval [0, )ft so that the state variables 

( )iq t , ( )ix t and ( )iq t converge to their stability 

regions simultaneously during the interval. 

The relative errors qθ and xθ can be denoted as 

1diag ( )q q

θ α q and
1diag ( )x x

θ α x , and we define 

T T T[ , ]q xθ θ θ and T T T[ , ]q xα α α . Since ( )qi t and 

( )xi t satisfy 0, (0)qi iq  and 0, (0)xi ix  , 

respectively, it is obvious to obtain that (0) Dθ , 

where 1 12D D D     and 

( ,1), if (0) 0
,   1, ,12

( 1, ), else

i

iD i

 



 
 


. 

To continue, the dynamics of the space manipulator 

can be rewritten in the following form: 

1 1

( , )

( )
diag ( ( )) diag ( ( ))diag( ( ))

( )

f t

t
t t t

t

 



 
  

 

θ θ

q
α α α θ

x

(33) 

where ( , )f tθ :
12D

  . 

It is obvious that ( , )f tθ is continuous over 0t 

and Dθ . Besides, ( , )f t θ θ  is also continuous 

over Dθ . Invoking Lemma 3.2 in [36], ( , )f tθ is 

locally Lipschitz with respect to θ . Furthermore, we 

have  

1

1

(0)
( (0), ) diag ( ( ))

(0)

diag ( ( ))diag( ( )) (0)

f t t

t t





 
  

 



q
θ α

x

α α θ

(34) 

where ( (0), )f tθ is a continuous and bounded function 

over the time interval [0, ) , which implies that it is 

locally integrable related to t. Consequently, exploring 

Theorem 54 in [37] reaches a conclusion that there exists 

a time ft  so that ( )tθ  remains in the compact set D  

for all [0, )ft t . In other words, the boundary 

constraints of ( )iq t , ( )ix t and ( )iq t are satisfied

simultaneously in the time interval [0, )ft . 

Then, it will be proved that the mapped state qη and

xη satisfy the prescribed performance boundary 

constraints during the time interval [0, )ft . 

Taking the derivative of (20), premultiplying by the 

inertia matrix D both sides of the equation and 

substituting the nominal form of (2) yields 

.est r r





 

     

Dx Dq Dω

Dq De τ Dq Cq Cq

(35) 

Assign a Lyapunov function V1 as follows: 

T T

1

1

2
qV  x Dx η q . (36) 

Taking the derivate of V1, one can obtain 

T T T T

1

T

T T T

1

2

( )

1
( )

2

q q q

est r r

q q q q

V



   

     

   

x Dx x Dx η q q η

x Dq De Dq Cq Cq τ

x Dx η q q R q H q

T T

T T T T

1
( ) ( 2 )

2

( )

q q q

q q est q est q q 

     

    

x f τ η R q x D C x

η q η e q R e q R I H q

(37) 

where q est r r est      f Dq De Dq Cq Cq Ce . 

According to previous proof, we get that q , q  and 

x all satisfy their boundary constraints when [0, )ft t

and este and este are bounded if the TD is well 

designed. Owing to Lemma 1 and the fact that r qrlq

and r qrlq in Assumption 1, there exists a constant 

0fql  such that 
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q fqlf . (38) 

Recalling Lemma 1 and substituting the control law 

(29), we have 

T T T

1

T T T T T

T

1

2

( )

q q

q x x x q q est q est

q q

V





  

    

 

x Dx x Dx η η

x f x k R η η q η e q R e

q R I H q

 (39) 

where I  is a unit matrix. Owing to   is selected to 

meet max( )qi
i

H  , one obtains T ( ) 0q q q  η R I H q . 

Employing Young’s inequality, we have 

2 2

T Tmin

2 2

min

2 2

T 2min

2 2

min

16 ( ) (1 )

16 ( )(1 )

16 ( ) (1 )1 1

2 2 16 ( )(1 )

x x

q q

xx

x x

fq

xx

l

l

l
l

l









 



 




 




   



k
x f x f

k

k
x x

k

(40) 

where maxx xi
i

l  . 

Owing to the properties of the error transformation 

mapping Eq.(8), one obtains 
T T T

min

T

T

Tmin

2 2

( )

4
( )

(1 )

4 4

(1 ) (1 )

16 ( )
,

(1 )

x x x x x x

x x

x x

x

x x

x

x

l

l l

l



 







 





  

  


  
 

 


x k R η x k R R η

x
x k ρ θ

α

x k x

k
x x

(41) 

T T T T 2

min

T

( )
( )

8

(1 )

q

q est q est est q est

q

est

xl





    

 


ρ θ
η e q R e e q q R e

α

q e

(42) 

where 
T

1 6( ) diag([ ( ), , ( )] )q q q   ρ θ , 

T

1 6( ) diag([ ( ), , ( )] )x x x   ρ θ . 

Substituting (40)-(41) into (39) yields 
2 2

T 2min

1 2 2

min

T T Tmin

2 2

16 ( ) (1 )1 1

2 2 16 ( )(1 )

16 ( ) 8

(1 )(1 )

x x

fq

xx

x

q est

xx

l
V l

l

ll







 









   



  


k
x x

k

k
x x η q q e

T Tmin

2 2

2 2 2

T

min

T Tmin

2 2

max

2 2 2 T

min

16 ( ) 1

2(1 )

(1 )1 8
( )
2 16 ( ) (1 )

16 ( ) 1

2(1 ) ( )

(1 ) 8
( ).

32 ( ) (1 )

x

q

x

x fq

est

x x

x

q

x

x fq est

x x

l

l l

l

l

l l

l




















 




 



 

   



  



   



 



k D
x x η q

D

q e
k

k
x Dx η q

D

q e

k

(43) 

Define 
2 2 2 T

12

min

(1 ) 8

32 ( ) (1 )

x fq est

x x

l l
c

l







 


 



q e

k

which is a bounded constant on account of the 

boundedness of q  and este . Thus, there exists a 

constant 

min

11 2 2

max

16 ( )
min ,

(1 ) ( )

x

x

c
l




 

 
  

 

k

D

such that 

1 11 1 12V c V c   . (44) 

Integrating (44) yields 

11 1112

1 1

11

12

1

11

( ) (0) (1 )

(0) .

c t c tc
V t V e e

c

c
V

c

 
  

 

(45) 

The boundedness of 1V in (45) indicates that qη is 

bounded when [0, )ft t . 

For the boundedness of xη , assign a Lyapunov 

function 

T

2

1

2
x x xV  η k η . (46) 

Similar to the previous step, the derivative of 2V

along Eq.(2) satisfies 
T 1

2

T 1

T 1 T 1

( )

(

)

( )

x x x x

x x x est r r

x

x x x q x x x x x x x

V







 

 

   

  

  

η k R D Dx DH x

η k R D Dq De Dq Cq

Cq τ DH x

η k R D f f η k R D k R η

(47) 

where x q q x    f Cx R q η DH x . qη has been 

proven to be bounded and thus qR is bounded as well. 

q and x satisfy their boundary constraints and xH

is bounded when [0, )ft t . Recalling Lemma 1, we can 

state that there exists a constant 0fxl  as well such 

that 

x fxlf . (48) 

Then employing Young’s inequality and the properties 

of the error transformation mapping Eq.(8) yields that  
T 1 T 1

2

2

max 1

maxmax

( )

( )
( )

( )( )

x x x q x x x x x x x

x x x x x x

q x

V





 



  

  

η k R D f f η k R D k R η

k R η D k R η
D f f

DD

2
2 2

1max

max

2

max min

22 2 2

min max

( )

2 2 ( )

( )( ) 16 ( )
.

( ( )) ( )(1 )

x x x

q x

fq fx x

x

l l
V

l





 

  

  


 



k R ηD
D f f

D

D k

D D

(49) 

Apparently, there exist two constants 

min

21 2 2

max

16 ( )

( )(1 )

x

x

c
l



 




k

D
, 

2

max

22 2

min

( )( )

( ( ))

fq fxl l
c








D

D

such that 

2 21 2 22V c V c   . (50) 

Similarly to the previous proof, one can obtain that 
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2V and xη are both bounded during the time interval

[0, )ft . 

Finally, we will prove that the boundary constraints 

for ( )tq  and ( )tx  always hold for 0t  . 

In the previous steps, we get that T( ) [ ( ),qt tη η

T T( )]x tη is bounded, i.e. ( )t l
η when [0, )ft t , 

where l  is a bounded constant. Recalling Eq.(14), we 

can find a compact set 1 1[ ( ), ( )]l l     for each iD

such that ( )i t is within the compact set when 

[0, )ft t . From Proposition C.3.6 in [37], we get 

ft   , i.e. the prescribed performance boundary 

constraints for ( )tq  and ( )tx  always hold for all 

0t  . Thus restrained by the prescribed-time prescribed-

performance functions, ( )tq  and ( )tx  converge to the 

stability regions in Eqs.(30) and (31) before the 

prescribed time T. 

Based on Eq.(32), the joint angular velocity errors q

remains bounded for 0t   as well. 

The control objectives are all achieved. This is the end 

of proof.                                      

Remark 2: The prescribed time T can be pre-specified 

theoretically to a sufficiently small value. However, the 

control inputs are always limited when the specific 

actuators are considered in practical space missions. 

Therefore the actuator saturation problem may be 

encountered. It should be noted that fast convergence 

speed is based on large control inputs, which may not be 

realized for actual manipulator control systems. 

Consequently, a reasonable T should be designed on the 

basis of the requirements and actuator’s ability.  

4. SIMULATION ANALYSIS

To illustrate the performance of the proposed PTPPC 

control scheme, the system dynamics (2) are propagated 

by adopting controller Eq.(29). The spacecraft base 

attitude is controlled by a simple PD controller to remain 

at its initial state. The influence of the spacecraft base 

attitude and external disturbance are both taken into 

consideration. The mass of the spacecraft base is 200kg 

and the its inertia is 
T 2diag([30,  30, 30] ) kg m . The 

mass and length of each link is as follow: 

1 4 5 6 1.2 kgm m m m    , 2 3 6.5 kgm m  , 1 4l l

5 6 0.2 ml l   , 2 3 1.8 ml l  . The total simulation 

time is 40s and the prescribed time is preassigned as 20s. 

The initial conditions of the spacecraft base attitude and 

manipulator joint angles are set as Φ 0  and (0) q

(0) q 0 , respectively. The reference signals of the joint 

angles are set as 
T[30 ,30 ,30 ,10 ,30 ,15 ]r q  and 

r q 0 . A sinusoidal external disturbance of peak 

amplitude equal to 0.1 N m  is exerted on the whole 

system. The control parameters are set as follows: 
0 1.32qi  , T

qi  0.01 , 
0 1.72xi  , 0.1T

xi  , 0.8  , 

0.9  ,   0.6 , 
T diag([3, 25, 6, 8, 25, 5] )k , 

0 1 2 18p p p  , 1 2  9s s  . 

Figs. 4-6 depict the joint angles, angular velocities and 

auxiliary states, which all satisfy their boundary 

constraints and converge to prescribed stability domains 

before the predefined settling time 20sT   in the 

presence of external disturbances. It can be observed 

from the subgraph of Fig. 4 that the steady-state errors of 

joint angles converge to their prescribed stability 

domains effectively and are always within the boundaries. 

In the entire control process, the proposed TD obtains a 

great tracking with a rapid transition and the estimation 

errors converge to zero after a short oscillation, as shown 

in Fig. 8, which illustrates the prescribed-time stability 

Fig. 6. Time histories of auxiliary states. 

 Fig. 5. Time histories of joint angular velocity 

errors. 

Fig. 4. Time histories of joint angle errors. 
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with prescribed performance and the robustness of the 

proposed controller. Fig. 7 shows the time histories of 

the control torques applied to the joints. The time 

histories of actual motion of the spacecraft base attitude 

and corresponding control torques are plotted in Fig. 9 

and Fig. 10, respectively, from which one can observe 

that the spacecraft base attitude experiences a slight 

oscillation during the initial stage but returns to stability 

rapidly under the contoller.  

To illustrate the influence of the spacecraft base 

attitude and external disturbance to the space 

manipulator, a simulation is carried out without the 

spacecraft base attitude controller and external 

disturbance. The time histories of joint angle errors and 

corresponding control torques are plotted in Fig. 11 and 

Fig. 12. Comparing with Fig. 4 and Fig. 7, it is obviously 

that the spacecraft base attitude and external disturbance 

resulted in larger overshoot of joint angle errors and 

increasing of control torques but joint angles satisfy their 

boundary constraints and converge to prescribed stability 

domains before the predefined settling time 20sT   

nevertheless.  

Simulating in the same scenario except the prescribed 

time is set as 30sT  , one can obtain the time histories 

of joint angles as shown in Fig. 13, where the system 

Fig. 12. Time histories of control torques for joints. 

Fig. 11. Time histories of joint angle errors. 

Fig. 10. Time histories of control torques for 

spacecraft base attitude. 

Fig. 9. Time histories of spacecraft base attitude. 

 Fig. 8. Time histories of estimation errors of joint 

angular velocities. 

Fig. 7. Time histories of control torques for joints. 
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states experience a longer transient process but all 

converge to a desired small neighbourhood around the 

origin with the prescribed performance before 30s and 

remain in the stability domains. Given that the prescribed 

time is independent of the system condition, it can be 

predesigned off-line by user in accordance with mission 

requirements. Fig. 14 shows the time evolution of control 

torques during the whole process. Comparing with Fig. 7, 

it is observed that the shorter prescribed settling time in 

general requires larger control inputs. Therefore, 

although the prescribed time T can be preassigned 

theoretically to a sufficiently small value, it is necessary 

to design it in the light of both mission requirements and 

the capability of actuators because an unreasonable one 

may bring actuator saturation problems in practical 

application. 

Time-varying reference signals are set to verify the 

tracking capability of the proposed control scheme. The 

reference signals of joint angles are given by 

1 2

3 4

5 6

0.436sin(0.025 0.5 ) 0.436

0.262sin(0.025 0.5 ) 0.262

0.175sin(0.025 0.5 ) 0.175.

r r

r r

r r

q q t

q q t

q q t

 

 

 

    


    
     

(51) 

To simulate a challenging scenario, the parameters 

related to performance functions are set as 0 0.1qi  , 

0.01T

qi  , 
0 0.5xi  , 0.01T

xi  and the prescribed 

time is set as 10sT  , while other design parameters are 

set as the same as the preceding scenario. 

Fig. 15 displays the time histories of joint angles, from 

which one can conclude that the joint angles converge to 

the desired joint angles rapidly before the prescribed 

time T and then highly precise tracking performance can 

be obtained. The joint angular velocities, as shown in Fig. 

16, converge to the user-defined stable regions, residing 

in the time-varying boundaries before the prescribed time 

T and the steady-state performances are excellent as well. 

The tracking performances and errors of joint angular 

velocities are given in Fig. 17. Notice that the proposed 

TD can provide a satisfactory tracking of the joint 

angular velocities with a rapid transition, and the 

tracking errors remain very small during the entire 

control process and can converge to zero in finite time. 

 Fig. 16. Joint angular velocities tracking 

performances. 

Fig. 15. Joint angles tracking performances. 

Fig. 14. Time histories of control torques for joints 

when T = 30s. 

 Fig. 13. Time histories of joint angle errors when T 

= 30s. 
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In order to illustrate the superiority of the proposed 

controller, a traditional prescribed performance 

controller, imposing an exponentially decaying 

performance function in the form of Eq.(52) on the 

auxiliary state, for the space manipulator system is 

designed as well and simulated in the same scenario. The 

responses of each state are shown in Figs. 18-20. 
0 0( ) ( ) ,  ( 0)tt e              (52) 

In comparison with Figs. 4-6, all states under the 

traditional prescribed performance control apparently 

experience a severer oscillation in transient stage. In 

addition, the traditional prescribed performance 

controller only guarantees the auxiliary state rather than 

all states to converge within the prescribed boundary 

constraints, which may cause that some states cross their 

practical boundary constraints, such as 5q in Fig. 14. 

This is a failure prescribed performance control. 

Moreover, to achieve a satisfactory settling time, a 

tedious regulation of the controller parameters is a 

necessity for the traditional prescribed performance 

control, while the user can pre-assign the settling time 

based on the mission requirement in the proposed 

PTPPC. 

5. CONCLUSION

A low-complexity prescribed performance controller 

guaranteeing both settling time and prescribed control 

performance is proposed for motion tracking control of a 

space manipulator in this paper. Compared with the 

traditional perescribed performance control baed on 

exponentially decaying performance functions, the 

proposed PTPPC control scheme not only guarantees the 

system transient and steady-state control performances 

satisfy the prescribed boundary constraints, but also 

confines all tracking errors to converge to stability 

domains before the user-defined settling time. To lower 

hardware requirements for the controlled system to a 

certain extent, a nonlinear tracking differentiator based 

on a hyperbolic sine function is adopted to estimate the 

derivatives of joint angles and reconstruct the angular 

velocity for the controller. Without time-consuming 

operations and model information, the proposed 

contriller has a superiority in low computation 

complexity and robustness against model uncertainties. 

Moreover, selecting the control gains is no longer a 

lengthy and gruelling task because adjusting them to 

generate reasonable input torques is the only 

consideration. Numerical simulation and the comparison 

with the traditional prescribed performance controller 

demonstrates the effectiveness and superior 

performances of the proposed control scheme. 

Fig. 20. Time histories of auxiliary states (under 

traditional prescribed performance control). 

Fig. 19. Time histories of joint angular velocity 

errors (under traditional prescribed performance 

control). 

Fig. 18. Time histories of joint angle errors (under 

traditional prescribed performance control). 

 Fig. 17. Time histories of joint angular velocities 

and their estimations. 
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