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Abstract
Pipeline infrastructures, carrying either gas or oil, are often affected by internal corrosion, which is a dangerous phenomenon
that may cause threats to both the environment (due to potential leakages) and the human beings (due to accidents that may
cause explosions in presence of gas leakages). For this reason, predictive mechanisms are needed to detect and address the
corrosion phenomenon. Recently, we have seen a first attempt at leveraging Machine Learning (ML) techniques in this field
thanks to their high ability in modeling highly complex phenomena. In order to rely on these techniques, we need a set of
data, representing factors influencing the corrosion in a given pipeline, together with their related supervised information,
measuring the corrosion level along the considered infrastructure profile. Unfortunately, it is not always possible to access
supervised information for a given pipeline since measuring the corrosion is a costly and time-consuming operation. In this
paper, we will address the problem of devising a ML-based predictive model for internal corrosion under the assumption
that supervised information is unavailable for the pipeline of interest, while it is available for some other pipelines that can
be leveraged through Transfer Learning (TL) to build the predictive model itself. We will cover all the methodological steps
from data set creation to the usage of TL. The whole methodology will be experimentally validated on a set of real-world
pipelines.
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1 Introduction

Internal corrosion in pipeline infrastructures used to trans-
port gas and oil poses various threats to the environment and
human beings in terms of both contamination and accidents,
which may lead also to explosions in presence of gas leak-
ages [1]. Therefore, the need to develop mechanisms able to
predict the presence of such detrimental phenomenon is of
utmost importance.

Unfortunately, this harmful phenomenon is very complex
to be modeled or predicted. This is due to the incredible
amount of factors it depends on. In carbon-steel pipelines,
corrosion may be influenced by CO2, H2S, oil or water
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wetting, steel composition, and internal surface condi-
tions [2]. Additionally, bacteria activity, fluid dynamics,
transport conditions over the entire operating lifespan, as
well as geometrical characteristics of the pipeline are cer-
tainly important influencing factors [3].

The complexity of the envisaged phenomenon is not the
only critical issue for corrosion prediction. In fact, the dif-
ficulty in gathering information about all the influencing
factors is an additional key concern. Indeed, only the geo-
metrical characteristics of the pipeline and its fluid-dynamic
information are available (the latter via simulation). On
the other hand, information about all the other influenc-
ing factors is extremely difficult (or often impossible) to be
gathered from the field. This is the reason why physical-
based corrosion prediction models, e.g., [4], revealed to be
not accurate in real-world corrosion scenarios.

Recently, Machine Learning (ML) techniques have proved
to be able to model complex phenomena. Specifically, in our
application scenario, there has been an increasing interest
in leveraging these kinds of approaches in the context of
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internal corrosion modeling and prediction. For instance,
in [3], a Neural Network (NN) is employed to build a
predictive model of the corrosion phenomenon. Before
training the NN, the most important features are selected
with a Mutual Information-based approach. Similarly, a
feature selection approach based on the sensitivity of
the NN output w.r.t. infinitesimal variations of the input
is applied in [5] before building a predictive model of
internal corrosion, whereas in [6] the feature selection step
is performed via a Grey Relational Analysis. One major
critical point of these ML solutions is that, following a
supervised approach, they require information about the
presence of corrosion in a given pipeline. Such information
is gathered directly from the field employing Pipeline
Inspection Gauges (PIGs) that are robot inspection systems
measuring the presence of corrosion within a pipeline.
In other words, the main limitation of such supervised
approaches for corrosion prediction is that a model is built
only when information about the real presence of corrosion
is already available (which is not usually the case for
companies managing pipeline infrastructures).

Therefore, it is crucial to overcome such a limitation by
designing corrosion prediction models able to operate even
in the scenario where supervised information is not available
for a given target pipeline. Achieving this goal would
completely change the traditional way corrosion prediction
is managed in oil and gas pipelines. Indeed, it would allow
defining a predictive model of internal corrosion without
sending a PIG through the target pipeline, hence avoiding
such an expensive and time-consuming operation.

In this paper, to achieve this goal, we will leverage
Transfer Learning (TL) to design an algorithmic solution
for corrosion prediction when supervised information is
not available for the target pipeline. TL allows overcoming
the lack of supervised information on the target pipeline
by exploiting a set of source pipelines where supervised
information is available, which is a very common real-
world scenario for oil and gas companies. In more detail,
the proposed approach will rely on the joint use of a
transductive TL technique and an Importance Weighted
Cross-Validation (IWCV) technique; the former to build the
predictive model onto the target pipeline and the latter to
rank the sources w.r.t. their estimated performance over the
pipeline of interest. Remarkably, the effectiveness of the
proposed solution has been tested on a set of real-world gas
pipelines.

The paper is structured as follows. In Section 2, an intro-
duction to TL and the problem formulation are provided. In
Section 3, our methodological approach is described in all
its components, whereas, in Section 4 experimental results
on a set of real-world pipelines are presented to thoroughly
validate the proposed approach. Finally, in Sections 5 and 6,
discussions and conclusions are drawn, respectively.

2 From supervised to transfer learning
in corrosion prediction

From a machine learning perspective, predicting the
presence of corrosion in an oil or gas pipeline requires
effective modeling of the relationships between the
corrosion-influencing factors and the presence of corrosion
in a pipeline. More specifically, a pipeline is divided into
bars, i.e., independent segments of the pipeline, and the
machine learning task aims at modeling the relationship
between the corrosion-description factors of each bar and its
level of corrosion.

Let us define a learning task as the tuple (X, P (x), Y,

P (y|x)), where Y is the label set, P(y|x) is the conditional
distribution, X is the feature space and P(x) is the marginal
distribution. Here x represents the feature vector associated
with a bar and y its corrosion level. In the context of a
learning task, the objective is to learn a function correctly
predicting y when evaluated on x.

In this setting, two main problems arise. First, as com-
mented in Section 1, not all the corrosion influencing factors
are available. Hence the feature vector x comprises only
geometrical and fluid dynamical information about a bar:
the former is available given the pipeline on-the-field deploy-
ment, while the latter is provided by a fluid-dynamical
simulator [7]. Second, as highlighted in Section 1, the super-
vised information, i.e., the presence or absence of corrosion
in a bar, is provided through an inspection campaign where
a PIG passes inside the pipeline collecting a set of corrosion
level measurements together with their GPS coordinates
along the pipeline profile. This poses a relevant compat-
ibility issue since the geometrical characteristics, mainly
represented by the inclination and curvature of the pipeline
profile, are not directly compatible with the fluid dynam-
ical descriptors creating a resolution mismatch between
the information gathered through the PIG and the simula-
tor [7]. More precisely, we can obtain fluid-dynamical data
down to a certain granularity under which the simulator
starts returning non-stationary solutions. This issue has been
highlighted and addressed in [8] and we will follow this
approach in the context of this work to build a given data
set D = {(xi, yi)}ni=1 with x representing the feature vector,
made of fluid dynamical and geometrical components, and
y representing the corrosion level.

From the machine learning perspective, supervised learn-
ing techniques, like the ones mentioned in Section 1, work
under the assumption that the distribution of training and
test data is the same. In real-world oil and gas pipeline
infrastructures, it may happen that we would like to solve
a certain target task (XT , PT (x), YT , PT (y|x)) for which
some of the elements allowing a proper application of
supervised learning techniques are missing (e.g., we do not
have access to the labels since they are too costly to be
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retrieved), but we can access another related source task
(XS, PS(x), YS, PS(y|x)) that may help us overcome the
difficulties we would have in learning the target task by
itself. This implies that we cannot directly build a predic-
tive model onto a given pipeline (XS, PS(x), YS, PS(y|x))

for which the supervised information is available and then
reuse it onto another pipeline (XT , PT (x), YT , PT (y|x)) for
which the supervised information is missing. We empha-
size that there is a potential distributional shift to take into
account and our predictive models may suffer a performance
hindering if this is not properly considered.

In this setting, TL allows us to leverage the source task
in order to better approximate the conditional distribution
of the target task. In the TL literature, several approaches
are available differing in how source and target tasks
relate to each other (see [9] for an extensive treatment).
For instance, we can talk about inductive TL whenever
(YS, PS(y|x)) �= (YT , PT (y|x)) (notice that (XS, PS(x)) =
(XT , PT (x)) or (XS, PS(x)) �= (XT , PT (x))), whereas
we have transductive TL whenever (YS, PS(y|x)) =
(YT , PT (y|x)) and (XS, PS(x)) �= (XT , PT (x)). The
former requires access to at least a set of labeled data from
the target context, whereas the latter only requires a set of
unlabeled data coming from it. Furthermore, we can classify
TL approaches w.r.t. the knowledge being transferred
across the two tasks: parameters [10, 11], features [12–
15], samples [16–18] or relational knowledge [19, 20].
Finally, TL techniques may be either homogeneous or
heterogeneous as they are classified in [21, 22], where, in
[22], we may find a review of recent works with the main
focus on homogeneous approaches.

In the context of this work, we will focus on transductive
TL techniques because companies managing pipelines
usually have supervised information only for some of
their pipeline infrastructures. In particular, this approach
is justified by the assumption that, as commented by the
domain experts, the corrosion phenomenon is the same
in two different pipelines provided that the influencing
factors are equal, which translates into PS(y|x) = PT (y|x)

(trivially, the label set Y does not change w.r.t. the
considered pipeline). This implies that, in the context
of corrosion prediction for pipeline infrastructures, we
can assume that (YS, PS(y|x)) = (YT , PT (y|x)) and
(XS, PS(x)) �= (XT , PT (x)), where the change is given by
PS(x) �= PT (x) since the feature space is the same.

3 The proposed transfer-learning approach
for corrosion prediction

An overview of the proposed approach based on TL for
corrosion prediction in pipeline infrastructures is given in
Fig. 1. More specifically, we have a set of source pipelines

for which the supervised information is available and a
target pipeline where only the influencing factors of the
corrosion are accessible. Our goal is to create a predictive
model for the target pipeline leveraging the source pipelines
thanks to TL. This last step is done in two phases: at first,
we rank the models built on a given source w.r.t. an estimate
of their performance on the target (Algorithm 1 in Fig. 1);
then the best B sources (being B a tunable parameter of the
algorithm) are selected to build a predictive model for the
target in a multi-task manner (Algorithm 2 in Fig. 1). Finally
the predictive model θ̄ is used onto the target pipeline to get
the corrosion levels.

In the rest of this section, we will initially discuss how
to build a model for the target pipeline when only one
source is available, then we will review how to estimate the
performance of a model onto the target pipeline, and finally,
we will show how to leverage more than one source to build
the target model in a multi-task manner.

3.1 Transfer Learning from a source to a target
pipeline

Given DS = {(xs
i , y

s
i )}ni=1 and DT = {xT

i }n′
i=1 representing

the source and target pipelines data, the problem we want to
tackle is:

θ∗ ∈ arg min
θ∈Θ

E(x,y)∼PT (·,·) [l(x, y, f (x, θ))] , (1)

where θ is the vector parametrazing our predictor f (x, θ)

and l is a fixed loss function measuring the mismatch
between predictions and ground truth. We emphasize that
samples coming from PT (x, y) are not available, but we
have samples coming from PT (x) and PS(x, y). Therefore,
by exploiting Importance Sampling (IS) [23], we can rewrite
the objective of (1) in the following way:

E(x,y)∼PS(·,·)
[
PT (x, y)

PS(x, y)
l(x, y, f (x, θ))

]
. (2)

Now, since we have finite samples, we reformulate our
problem by optimizing the empirical version of the above
objective function:

θ̂ ∈ arg min
θ∈Θ

1

n

n∑
i=1

PT (xS
i , yS

i )

PS(xS
i , yS

i )
l(xS

i , yS
i , f (xS

i , θ)), (3)

which gives us a consistent estimator of θ̂ [24].
The problem of optimizing (3) can be tackled only if

we can estimate the ratio PT (x,y)
PS(x,y)

. Since we do not have
labels coming from the target pipeline, the aforementioned
estimation, in a general case, cannot be achieved. In our sce-
nario, we know that, by assumption of the domain experts,
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Fig. 1 Comprehensive scheme of the approach (this image has been designed using resources from Flaticon.com)

PS(y|x) = PT (y|x). Hence, by definition of conditional
probability, PT (x,y)

PS(x,y)
= PT (x)

PS(x)
, allowing an estimation of (3)

on the available data.
In order to estimate the ratio ω(x) = PT (x)

PS(x)
, we will resort

to the approach proposed in [18], which consists in solving
the following Kernel Mean Matching (KMM) optimization
problem:

minω ||μ(PT ) − Ex∼PS(·) [ω(x)Φ(x)] ||,
subject to :

ω(x) ≥ 0 and Ex∼PS(·)[ω(x)] = 1,

(4)

where μ(PT ) = Ex∼PT (·) [Φ(x)] and Φ : X → F

(being F a feature space). Then, under the assumptions
that PT is absolutely continuous w.r.t. PS and F is a
Reproducing Kernel Hilbert Space (RKHS) with universal
kernel k(x, u) = 〈Φ(x), Φ(u)〉, we have that a solution
to (4) is such that PT (x) = ω(x)PS(x). Unfortunately,
both μ(PT ) and PS(x) are a priori unknown, but we have
samples {xS

i }ni=1 and {xT
i }n′

i=1 to rely on. Considering the
empirical version of the objective function in (4), under
the assumptions that ω : X → [0, W ] is a fixed function
with finite mean and non-zero variance given xS

i ∼ PS

(W is an upper bound on how much the two distributions
can be different on a given x ∈ X), {xT

i }n′
i=1 is an iid

(independent and identically distributed) set of samples

drawn from PT (x) = ω(x)PS(x) and ||Φ(x)|| ≤ R for any
x ∈ X then with probability at least 1 − δ:∣∣∣∣∣∣

∣∣∣∣∣∣
1

n

n∑
i=1

ω(xS
i )Φ(xS

i ) − 1

n′
n′∑

i=1

Φ(xT
i )

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

(
1 +

√
− log

(
δ

2

))
R

√
W 2

n
+ 1

n′ , (5)

giving us an upper bound on the empirical optimization
outcome (notice that the larger W , the larger the number
of samples needed to obtain meaningful convergence
guarantees). Now, letting Ki,j = k(xS

i , xS
j ), κi = n

n′
∑n′

j=1 k

(xS
i , xT

j ) and ω̄i = ω(xS
i ), the left hand side of (5) squared

can be reformulated as follows:

1

n2
ω̄T Kω̄ − 2

n2
κT ω̄ + const, (6)

which yields the following optimization problem:

min
ω̄

1

2
ω̄T Kω̄ − κT ω̄

subject to :

ω̄i ∈ [0, W ] and

∣∣∣∣∣
n∑

i=1

ω̄i − n

∣∣∣∣∣ ≤ nε. (7)
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The first constraint in (7) provides an upper bound to the
degree up to which the two distributions may be different,
whereas the second one forces ω(x)PS(x) to be close
to a probability measure. For a more detailed discussion
about KMM please refer to [18] and the references therein.
Solving the optimization problem stated in (7) will return
us the weight vector ω̄ to correct the shift in distribution
between the source and target pipelines.

3.2 Ranking the source pipelines

In a real-world scenarios, we may have multiple available
source pipelines, {DSm}Mm=1. Hence, we would like to
identify the most appropriate source within the given
set. More precisely, we would like to select the source
pipeline which allows us to minimize the generalization
error defined as:

E{(xT
i ,yT

i )}ni=1,u,v

[
l(u, v, f (u, θ̂))

]
, (8)

where (u, v) is a test point coming from the target pipeline
and not present in the training set. The generalization
error is usually estimated through cross-validation (CV),
which, in this context, is useless because we do not have
access to the target pipeline labels. However, we can obtain
this estimate through k-fold Importance Weighted Cross-
Validation (kIWCV) [25] as follows:

1

k

k∑
j=1

1

|Dj
Sm

|
∑

(x,y)∈D
j
Sm

ω(x)l

(
x, y, f

(
x, θ̂

D
j
Sm

))
, (9)

where θ̂
D

j
Sm

is the parametrization learned over the data

set DSm \ D
j
Sm

(\ is the set difference operator) and the
estimation of ω(x) can be performed by solving (7). The
generalization error estimate provided by kIWCV with k =
n is almost unbiased and a similar claim can be proved for
k < n with a larger bias than that incurred with k = n (for
a more thorough treatment see [25]). Therefore, choosing
the source pipeline Sm maximizing the above equation will
allow us to get the best performance for our models on the
target pipeline. Moreover, from a more general standpoint,
(9) allows us to optimize all the hyperparameters of our
model to maximize performance on the target pipeline.

In Algorithm 1, we combine KMM, used to estimate
ω(x), and kIWCV. More specifically, at line 4, we compute
the importance weights to correct the distributional shift
between the current source and the target pipeline. At
line 5, we compute the optimal hyper-parameters and their
performance through kIWCV. At line 6, the performance
and hyperparameters of the current source pipeline are
appended to their respective lists, (i.e., Perf and ρ). Finally,
in line 8, we return the lists of performances and the

corresponding hyper-parameters. This completes the TL
framework we will use in the context of corrosion prediction
for pipeline infrastructures.

We could extend this solution by considering more than
one source pipeline for the corrosion prediction. This can
be done through a multi-task learning approach which could
use up to all the source pipelines together with their related
importance weights to build a model for the target one
[26, Chapter 9]. However, evaluating the performance of all
the possible subsets of source pipelines does not scale well.
To avoid this issue we could combine the B best sources
according to the ranking we obtain by sorting the results
of Algorithm 1 (the effect of B will be experimentally
evaluated in Section 4). This procedure is reported in
Algorithm 2, where, at lines 4 and 5, we concatenate the
data sets and the weights. At line 7, we compute the optimal
hyperparameters of the learning algorithm, and, finally, at
line 8, the best parametrization for the predictor is computed
and subsequently returned.

4 Experiments

This section aims to evaluate the effectiveness of the
proposed TL approach in real-world scenarios of corrosion
prediction within 4 different gas pipeline infrastructures,
namely P1, P2, P3, and P4. The section is organized as
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Table 1 Geometrical variables

Geometrical variable Meaning

Odometry Odometry of a given bar

Barinit Odometric point where the bar begins

Barend Odometric point where the bar ends

Lat Latitude of the bar

Long Longitude of the bar

Elev Elevation of the bar

Bar length Length of the bar

follows: Section 4.1 describes the employed data sets,
whereas the experimental results are given in Section 4.2.

4.1 Data sets description

In order to integrate the geometrical and fluid dynamical
data, we rely on the approach proposed in [8]. Such an inte-
gration approach will return us a data set D = {xi, yi}ni=1 for
each pipeline. Here the vector xi’s components represent the
corrosion influencing factors (see Tables 1 and 2), whereas
yi is the scalar value representing the corrosion level (in
terms of bar thickness percentage being corroded). Such a
value is transformed into a categorical variable with four
possible classes according to the thresholds provided by
the domain experts and reported in Table 3. After the inte-
gration, a data transformation and enrichment is performed
as follows. The Lat , Long and Elev are transformed into
their equivalent Cartesian coordinates x, y and z. Then
their first and second-order derivatives are computed (and

Table 2 Fluid-dynamical variables

OLGA Var. Meaning Unit

IDf low flow regime -

PT pressure bara

GT total mass flow rate kg/s

QT total volumetric flow rate m3/s

GG gas mass flow rate kg/s

QG gas volumetric flow rate m3/s

UG gas velocity m/s

T AUWG gas wall shear stress Pa

GLWV T total water mass flow rate including vapor kg/s

QLT WT water volumetric flow rate m3/s

UWT CONT water continuous velocity m/s

T AUWWT water film wall shear stress Pa

HOLWT water hold-up -

INCL horizontal inclination degree

T M temperature Celsius

A section area m2

Table 3 Categories and Thresholds of the thickness percentage being
corroded for a bar

Threshold Category

y < 0.03 Absent

0.03 ≤ y < 0.08 Low

0.08 ≤ y < 0.3 Medium

y ≥ 0.3 High

added to the feature set), which represent the pipeline
profile’s rate of change along a fixed component. Addi-
tionally, some features have been removed from the data
sets because, according to the domain experts, they showed
unexpected behavior, whereas some others were removed
due to redundancy. More specifically, GLWV T , QT , GT ,
QG, Bar length and GG have been removed under domain
expert advice, together with Barinit because redundant.
Finally, under the domain experts’ suggestion, the samples
associated with the beginning or end of the pipeline were
removed because they have completely different behavior
in terms of corrosion. At the end of this enrichment step,
the features are normalized. Some summary information on
the different pipelines after the above-mentioned transfor-
mations is provided in Table 4, where we may notice a
severe imbalance among the various classes. It is worth not-
ing that the High class is very rare and the Absent class is
dominating the others.

4.2 Results

For each available target pipeline, we will evaluate the per-
formance of Algorithm 2 in three different configurations:
B = 1, B = 2 and B = 3. We used a Support Vector
Machine (SVM) [27] with Radial Basis Kernel as f (x, θ).
In Table 5, we report the results returned by Algorithm 1
when the F1-Score is chosen to perform the 10-IWCV (the
model hyper-parameters are not reported for the sake of
brevity). We will review each one of the aforementioned
configurations of Algorithm 2 one target pipeline at a time.
We will first look at the multi-class confusion matrices, then
at their binarized version (reported in Appendix A) to check
also the corrosion detection capabilities of each solution,
and, finally, at the performances in F1-Score and accuracy.

Table 4 Label (y) distribution across the different pipelines

Pipeline Data points Low Medium High

P1 861 36 186 53

P2 3321 144 609 19

P3 1215 206 213 3

P4 1681 276 568 33
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Table 5 Estimate of the performance (F1-Score) on the target pipeline
through Algorithm 1

Target 1st Source 2nd Source 3rd Source

P1 P3 0.56 P2 0.56 P4 0.45

P2 P1 0.71 P3 0.60 P4 0.45

P3 P1 0.71 P4 0.45 P2 0.30

P4 P1 0.71 P3 0.58 P2 0.56

4.2.1 P1

As we can see by comparing Fig. 2a and d, applying the
TL technique gives us an improvement on the class low and
the class absent recognition with a degradation effect on
the class high and medium. For what concern the solution
offered by using the first two sources (B = 2) according to
IWCV (compare Fig. 2b and e), we have an improvement
on both the absent and medium-class recognition with a
degradation on the class low (the class high reduction is very
slight). Using just the first ranked solution (B = 1) w.r.t.
IWCV, we obtain a model that nearly always predicts absent
(see Fig. 2f). If we take a look at the binarized version of the
confusion matrices (see Fig. 6 in Appendix A), then only the

solution proposed by leveraging the first two sources w.r.t.
IWCV is useful in terms of corrosion detection (compare
Fig. 6a, b, c with d, e, f respectively). Finally, by looking at
Tables 6 and 7, we may notice that applying transfer almost
always increases our performance w.r.t. these two figures of
merit.

4.2.2 P2

If we compare Fig. 3a and d (B = 3), we may notice an
improvement on the absent class recognition at the expense of a
degradation for the classes low and medium. For what concern
Fig. 3b and e (B = 2), we can see an improvement on the
recognition of the classes low and absent to which corresponds
a slight reduction on the medium and high classes. By
comparing Fig. 3c and f (B = 1), instead, we may see an
improvement in the medium class recognition accompanied
by a worsening on the absent class. Now, taking a look
at the binarized versions of the confusion matrices (please
compare Fig. 7a, b, c with d, e, f respectively in Appendix
A) only the confusion matrix associated to the usage of the
best source (B = 1) according to IWCV is meaningful.
Finally, by looking at Tables 6 and 7, we see that applying
transfer improves the accuracy and the F1-Score in all the

Fig. 2 Multi-Class Confusion Matrices for P1
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Table 6 Accuracy on target
Target Supervised Oracle First Two

Sources B = 2
All B = 3 1st Source B = 1

No TL TL No TL TL No TL TL

P1 0.69 0.54 0.59 0.41 0.41 0.33 0.57

P2 0.50 0.54 0.58 0.35 0.42 0.71 0.68

P3 0.52 0.26 0.43 0.44 0.45 0.40 0.47

P4 0.38 0.27 0.41 0.35 0.44 0.41 0.43

The Supervised Oracle column is obtained by training an SVM onto a portion of the data set representing
this target pipeline and then testing this model onto the held out part

Table 7 F1-Score on target
Target Supervised oracle First Two

Sources B = 2
All B = 3 1st Source B = 1

No TL TL No TL TL No TL TL

P1 0.68 0.53 0.56 0.45 0.42 0.35 0.51

P2 0.57 0.57 0.60 0.41 0.48 0.70 0.68

P3 0.54 0.28 0.45 0.48 0.44 0.43 0.47

P4 0.41 0.30 0.38 0.35 0.41 0.35 0.36

The Supervised Oracle column is obtained by training an SVM onto a portion of the data set representing
this target pipeline and then testing this model onto the held out part

Fig. 3 Multi-Class Confusion Matrices on P2
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cases except when we choose the best source (B = 1)
w.r.t. IWCV. Furthermore, notice that, in some cases, the
TL technique is able to get an improvement in F1-Score or
accuracy w.r.t. to what was obtained by training a model
onto a portion of the data set representing this target pipeline
and then testing this model onto the held out part (i.e., the
Supervised Oracle).

4.2.3 P3

Comparing Fig. 4a with d (B = 3) and b with e (B = 2),
we may see as the TL technique improves the absent and
medium classes recognition at the cost of increasing mis-
classifications within the low class. Differently, when com-
paring Fig. 4c with f (B = 1), we have the same behavior as
before with also an increment on the misclassification error
for the class high. In the context of the binarized versions
(please see Fig. 8a, b, c compared with d, e, f, respectively,
in Appendix A), we have that both the confusion matrices
represented in Fig. 8e and f are meaningful. Also in the case
of this target pipeline, we have that applying transfer almost
always improves accuracy and F1-Score (see Tables 6 and 7).

4.2.4 P4

As we can see from Fig. 5a compared with 5d (B = 3)
and Fig. 5b compared with 5e (B = 2), applying the TL
technique allows us to improve the recognition performance
both on the absent and medium classes with a degradation
effect on the low class (in Fig. 5d a slight degradation on
the high class is perceivable w.r.t. Figure 5a). In the context
of Fig. 5c and f (B = 1), we have the same behavior
described for Fig. 5a and d. Here, the only difference is
that the absent class true positive rate remains the same.
For what concern the binarized version (see Figure 9 in
Appendix A), in the context of this target pipeline, choosing
the best source (B = 1) w.r.t. IWCV does not produce
a meaningful confusion matrix, whereas the other two
approaches do (please compare Fig. 9a, b, c with d, e, f,
respectively). Finally, as we may see from Tables 6 and 7,
the TL technique always improves the two figures of
merit surpassing or matching the performances obtained by
training a model onto a portion of the target pipeline and
then testing it onto the held out test set (i.e., the Supervised
Oracle).

Fig. 4 Multi-Class Confusion Matrices on P3
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Fig. 5 Multi-Class Confusion Matrices on P4

5 Discussion

In the previous section, we have seen how the three con-
figurations (B = 1, 2, 3) of the proposed solution behaved
in terms of corrosion classification onto a target pipeline
for which the labels are not available. The lack of labels
was bridged with the aid of a TL technique described in
Section 3.1. We have shown models’ performance along
four distinct components: the multi-class confusion matri-
ces, their binarized version (to assess the detection capa-
bilities of the developed models), the accuracy, and the
F1-Score. Among the three different configurations, the one
built using the first two best sources (B = 2) according to
IWCV seemed to be the most stable, especially concerning
the binarized version of the confusion matrices. This is a
reasonable solution to trade off the intrinsic uncertainty in
identifying the best source pipeline with the need to limit
the number of sources to be used.

In the context of corrosion classification for oil and gas
pipelines (the tackled application scenario), it would be
also useful to get access to the confidence with which the
model is predicting a certain label. To achieve this, for

what concerns SVMs, we can capture the probabilities for
each class given a fixed sample. More precisely, multiclass
probability estimates are computed by combining all pair-
wise probability estimates ri,j for class i and j. So, given
all the ri,j , the estimate of p(y = i|x) is obtained by solv-
ing a linear system, see [28] for further details. The pairwise
probability estimates are obtained by logistic regression on
the score of the SVM [29]. It is noteworthy to point out that
this technique to produce probabilities can be seamlessly
integrated into the proposed TL approach.

6 Conclusion

In this paper, we tackled the problem of building a pre-
dictive model for the corrosion phenomenon in the context
of a pipeline infrastructure for which the supervised infor-
mation is not available. To achieve this goal we used a
KMM-based TL technique to leverage labeled data coming
from a source pipeline infrastructure. Moreover, in a context
where different labeled source pipelines are available, we
combined KMM, IWCV, and multi-task learning to produce
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a model for the target infrastructure by selecting the appro-
priate sources.

As possible future directions, we would like to mention
the need to acquire time-varying data for a set of fixed
pipelines to develop models accounting for time variations
of the corrosion phenomenon both in the TL context and
in the supervised learning one. Furthermore, taking into
account the pipelines’ material and chemical composition
of the blend flowing within the pipelines is another
important future direction. As of right now, the material is
homogeneous among our pipelines and we do not possess
data describing the chemical composition of the blend
flowing through them. However, it would be relevant to
extend our methodology in this direction, maybe giving

more importance to those source pipelines having similar
material and chemical composition of the blend w.r.t.
the target pipeline. Finally, we hope that this work may
stimulate a renewed interest in this complex application,
maybe attracting more investments in research from the oil
and gas companies.

Appendix A: Corrosion detection
experimental results

In this section are reported all the binarized versions of the
confusion matrices presented in Section 4. This is done to
check the detection capabilities of the various models.

Fig. 6 Binarized Confusion-Matrices on P1
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Fig. 7 Binarized Confusion Matrices on P2
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Fig. 8 Binarized Confusion Matrices on P3
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Fig. 9 Binarized Confusion Matrices on P4
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