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SAFETY IN FORCED MOTION GUIDANCE FOR PROXIMITY
OPERATIONS BASED ON RELATIVE ORBITAL ELEMENTS

Giacomo Borelli*, Gabriella Gaias†, and Camilla Colombo‡

Autonomous spacecraft proximity operations represent a key enabler for future
mission architectures such as in-orbit servicing, active debris removal, objects’
inspection, and in-orbit assembly. This work addresses safety concepts for the rel-
ative trajectory guidance design applicable to challenging proximity operations in
the close-range domain. The relative orbital elements framework is used to for-
mulate safety checks which improve the trajectory robustness in case of chaser’s
malfunctions or loss of control. Particularly, concepts of passive abort safety and
active collision safety are applied to the trajectory design to maintain the chaser
outside keep-out-zones. These definitions are included within a guidance algo-
rithm that exploits sequential convex programming to efficiently solve the fixed
final time safety constrained close-range rendezvous problem. Test cases of re-
configuration between stable relative orbits and synchronisation to a rotating hold
point are presented, highlighting the advantages in the use of these new safety
concepts, in terms of safety, trajectory insight and formulation efficiency.

INTRODUCTION

Proximity operations play an important role in future mission architectures in the On-Orbit Ser-
vicing, Assembly and Manufacturing (OSAM) domain. A paradigm shift between monolithic one-
use assets towards OSAM activities in space is recognised as both profitable and efficient for the
future space economy by the global space community. Despite a rich heritage of Rendezvous and
Proximity Operations (RPOs) to cooperative targets, advances in the design of operations to un-
cooperative and non-collaborative targets are instrumental for a systematic implementation of au-
tonomous RPOs within OSAM activities in the future. One of the key enablers for autonomous
proximity operations to uncooperative and non-collaborative targets is flight safety. In fact, any
anomaly with respect to the nominal profile or any contingency at spacecraft level will cause the
triggering of safety measures, ultimately leading to chaser s/c in safe mode, thus potentially en-
dangering the platforms and/or the completion of the mission. Such situations are not unknown
to past missions. In the JAXA robotic demonstration mission ETS-VII,1 anomalies during an ex-
periment caused the spacecraft to abort operations and position itself at 2.5 km distance from the
target while investigating the issue. In 2005 during DART mission, the chaser unexpectedly used
all the on-board propellant and during the retirement manoeuvres a collision with the target was
detected.2 More recently in early 2022 ELSA-d demonstration failures in the thrusters’ assembly
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caused the chaser to move away at a safe distance from the target and a consequent re-assessment
and re-planning of rendezvous and docking demonstration operations.3

In this work trajectory safety is studied and included in a novel guidance strategy for the proximity
operations scenarios. The objective of this work is twofold: (1) to improve the proximity safety
formulations through an understanding and description of the relative dynamics, (2) to develop a
computationally efficient safe guidance solution to enable autonomous operations. Autonomy and
flight safety are strongly correlated in proximity operations, since the inherent safe planning of
operations will allow a less strict requirement on ground-support.

The general approach to guarantee safety in relative trajectory guidance is to define a geometric
Keep Out Zone (KOZ) around the target object. The chaser trajectory is then defined ensuring the
avoidance of the KOZ along its path. The safety path conditions can then be readily included as
constraints to the guidance problem formulated as a Nonlinear Programming Problem (NLP).4 By
assuming the KOZ to be a concave surface, the resulting constraint formulation lead to non-convex
NLP. Reformulation of concave regions, and in general non-convex constraints, with simplification
or relaxations of them but formulated with in a convex formulation can lead to simpler optimisa-
tion problems, such as Linear Programming (LP)5, 6 or second order Cone Programming problems
(SOCP).7–9 Strategies such as Sliding Mode Control (SMC) and Artificial Potential Functions (APF)
are also explored in literature to impose the avoidance of regions through repulsive functions in a
feedback fashion.10–12 Another useful formulation of flight safety in proximity operations is Pas-
sive Abort Safety (PAS) thanks to its robustness against major system’s failures during the mission.
In fact, PAS guarantees collision avoidance with the target in the case of complete loss of con-
trollability of the chaser platform. Specifically, the concept of E/I separation to impose PAS was
demonstrated in flight during the GRACE formation flying mission13 and far-range rendezvous mis-
sions such as PRISMA14 and AVANTI.15, 16 This concept can be implemented in a straightforward
fashion by exploiting the Relative Orbital Elements (ROE) parametrization of the relative dynam-
ics.17, 18 E/I separation guarantees a minimum separation in a plane orthogonal to the target orbital
velocity in near-circular orbits which leads to collision avoidance even in the case of total loss
of control of the chaser. The method has been extensively employed in studies of uncooperative
far-range rendezvous19, 20 and inspection phases.21, 22

In this work the formulation of trajectory safety in proximity operations are introduced exploit-
ing the ROE framework. The contribution of this paper is the definition of trajectory safety con-
cepts similar to E/I vector separation applicable to the demanding scenarios of forced motion in
close-range, in the range of 10-100 meters of separation from the target. These formulations are
introduced to guarantee different levels of safety considered, such as passive abort safety or ac-
tive collision safety after a collision avoidance policy actuation. Possible applications comprehend
formation reconfiguration, approach, and forced motion synchronisation in presence of the unco-
operative and non-collaborative target. The novel definitions of passive abort safety and active
collision safety in function of ROEs are included in a guidance scheme solved through a Sequen-
tial Convex Programming (SCP) approach,23–25 particularly fit to autonomous on-board guidance
implementations. The guidance method is described and the results of two representative test cases
are analysed. The paper is organized in the following manner: after an introduction on the relative
dynamics models and ROE parametrisation employed, the definitions and novel formulations of
safety conditions for proximity operations in function of ROEs are described. Then, the transcrip-
tion and solution method of the guidance problem formulated as a constrained fixed time optimal
control is presented. Two test cases are then shown to demonstrate the efficiency of the guidance
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solution proposed and the improvement on the trajectory safety features. Lastly, some conclusions
are drawn.

RELATIVE MOTION MODEL

The relative dynamics of two objects flying in close proximity can be modelled with a linear
system. In this work the relative state is parametrized in quasi-nonsingular ROEs and the satellites
are assumed to be on near-circular orbits. Accordingly, the ROEs represent the integrals of the
relative motions in the Keplerian hypothesis. The dimensionless ROE state vector is expressed in
function of chaser’s and target’s Keplerian elements as follows:17

δα =



δa
δλ
δex
δey
δix
δiy

 =



(ac − at)/ac
uc − ut + (Ωc − Ωt) cos inc

ec cosωc − et cosωt
ec sinωc − et sinωt

inc − int
(Ωc − Ωt) sin inc

 (1)

The quantities (·)c and (·)t are the Keplerian elements of the chaser orbit and target orbit respec-
tively. Specifically, a is the semi-major axis, e the eccentricity, in the inclination, Ω the right
ascension of the ascending node, ω the argument of periapsis and u the mean argument of latitude.
By expressing the ROE vector time derivative in function of Keplerian elements rates and by ex-
panding through a first order Taylor series about the target orbit, the dynamics of the ROE state can
be expressed in linear form as follows:

˙δα = Aδα+ B(t)u (2)

where the plant matrix A considering only the Keplerian dynamics and the time-varying control
input matrix B(t) result in:

A =



0 0 0 0 0 0
−Ln 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 B =
1

na



0 2 0
−2 0 0

sinu 2 cosu 0
− cosu 2 sinu 0

0 0 cosu
0 0 sinu

 (3)

with Ln = −3

2
n u = nt+ u0

The quantity n represents the orbit mean motion which, under Keplerian assumption, correlates
linearly with the argument of latitude u, which is a function of time. The quantity u0 is the argument
of latitude at time t = 0. The resulting linear dynamics are obtained considering only the Keplerian
accelerations acting on the chaser and target orbits. Therefore the validity is retained only when
non-Keplerian perturbing effects are negligible. In particular, in the near-Earth environment, the
effects of Earth’s oblatness and atmosphere drag need to be considered when longer time intervals
are studied. The solution of the linear dynamics of Equation 2 can be expressed through the State
Transition Matrix (STM) as follows:18

δα(t) = Φ(t0, t)δα0 +

∫ t

t0

Φ(t0, τ)B(τ)u(τ)dτ (4)
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where Φ(ti, ti+1) represents the STM from time ti to ti+1, and is expressed as:

Φ(t0, t) =



1 0 0 0 0 0
−Ln(t− t0) 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5)

In the cases where the input acceleration vector u is constant over a time interval [t0, t], Equation 4
can be expressed as:

δα(t) = Φ(t0, t)δα+ Ψ(t0, t)u (6)

where the matrix Ψ(t0, t) is the solution of the definite integral of Equation 4 between t0 and t.
A Lyapunov transformation defined as mapping between dimensional ROEs aδα and Cartesian
coordinates in the Radial Tangential Normal (RTN) frame is reported as follows:18

aδα = Γ(t)δx (7)

Γ(t) =



1 0 − cos(nt) − sin(nt) 0 0
0 1 2 sin(nt) −2 cos(nt) 0 0
0 0 0 0 sin(nt) cos(nt)
0 0 n sin(nt) −n cos(nt) 0 0

−(3n)/2 0 2n cos(nt) 2n sin(nt) 0 0
0 0 0 0 n cos(nt) n sin(nt)

 (8)

This mapping is accurate for small separation between the spacecraft and under Keplerian dynamics.
The inclusion of non-Keplerian perturbation effects and higher order effects is required where a
large separation or highly perturbed environments are encountered.

TRAJECTORY SAFETY FORMULATIONS

To guarantee smooth and robust close proximity operations, trajectory safety is to be considered
a key feature for the proximity GNC strategies. Indeed, during operations around uncooperative and
non-collaborative targets the inclusion of safety within the trajectory design is of utmost importance.
In this section the novel safety concepts developed in this work are introduced and described. The
following different safety formulations will enforce the avoidance of a geometrical KOZ during the
nominal and non-nominal flight conditions around the non-collaborative and uncooperative target.
In the latter scenarios, the fulfilment of safety measures during the proximity operations solely
depends on the design of operations of chaser platform, being the target completely inactive.

The following definitions of trajectory safety at time ti will be used throughout this paper:

• Point-Wise Safety (PWS): Chaser’s trajectory at time ti is said to be PWS safe if it is outside
a geometrical KOZ defined around the target only at the time instant ti.

• Passive Abort Safety (PAS): Chaser’s trajectory at ti is said to be PAS safe for a time interval
∆T if it is outside a geometrical KOZ around the target at time ti, and it will remain outside
such KOZ also after a ∆T time interval of uncontrolled flight starting at ti.
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• Active Collision Safety (ACS) : Chaser’s trajectory at ti is said to be ACS safe if at time ti
is outside a geometrical KOZ around the target, and it will remain outside such KOZ even
for a ∆TACS + ∆T time interval after ti. The intervals ∆TACS and ∆T are respectively the
controlled collision avoidance portion and the uncontrolled portion of the trajectory after ti.

The definition of PAS is used to extend the safety condition in the future in the case where any
contingency or failure causes the complete loss of controllability of the chaser platform. While, the
definition of ACS guarantees safety in situations where the chaser detects some anomalies/failures
that endanger the completion of the approach operations but retains the capability of the platform to
perform collision avoidance manoeuvres.

𝒓

target

N

chaser
KOZ

𝒖𝐴𝐶𝑆(𝑡)

Δ𝑇

Δ𝑇

R

T

nominal trajectory

Figure 1: Schematic representation of the safety concepts in the RTN frame centred on the target.
The chaser is on the nominal trajectory depicted in black. At time ti, PAS is evaluated on the un-
controlled trajectory branch in blue. If required, ACS is enforced on the (partly) actively controlled
branch in red.

In proximity trajectory design PWS is often treated considering a KOZ around the regions to be
avoided and it is expressed with a quadratic form as in Equation 9.

δxT(ti)Qδx(ti) ≥ RKOZ (9)

The vectors δx are the cartesian position vector in RTN, and the matrix Q and scalar RKOZ denote
constants that govern the geometry of the KOZ. This formulation is extensively used in trajectory
design problems thanks its simplicity and its immediate interpretation. Often the concave avoidance
region is formulated through a convex relaxation to simplify the inclusion within the guidance prob-
lems and aid the solution efficiency.5–9 Nonetheless, Equation 9 can only guarantee safety at the
enforced times ti along the nominal trajectory. On the contrary, PAS strengthens the PWS condi-
tions by extending the safety in the future evolution of an uncontrolled trajectory stemming from the
nominal trajectory at the considered times, see Figure 1. In this framework, a straightforward im-
plementation of PAS would be to include an additional set of instants for the uncontrolled trajectory,
such that the safety checks of Equation 9 are imposed on both nominal and augmented time instants.
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Despite the apparent simplicity of this approach, the size of the problem can quickly become pro-
hibitive whenever the PAS is required for long time intervals and/or for many instants of a trajectory.
An alternative concept of PAS has been implemented in proximity flight at larger separations based
on relative eccentricity and relative inclination vectors separation.13, 15, 16 The great advantage of
these strategy is that PAS can be expressed and guaranteed as a single condition on the ROE state at
time ti without the need of enforcing additional safety conditions in future states of the uncontrolled
trajectory evolution. Accordingly, this PAS formulation provides a simple and computationally light
solution to support guidance and Fault Detection Isolation and Recovery (FDIR) algorithms for au-
tonomous operations, once selected a specific phasing of the relative eccentricity and inclination
vectors. Briefly, E/I separation considers the minimum inter-satellite distance on the Radial Normal
(RN) plane of relative trajectory characterised by parallel or anti-parallel relative eccentricity and
inclination vectors. Such minimum distance is expressed by the following Equation.

min
u∈[0,2π]

√
δx2R(t) + δx2N (t) = min{‖δi‖, ‖δe‖ − |δa|} (10)

An extension of this concept is developed in this work to employ a similar approach in close
proximity scenarios, including forced motion phases. In the close-range, in fact, the relative trajec-
tory generally is subject to more complex boundary constraints, not compatible with a simple (anti-)
parallel phasing of the relative eccentricity/inclination vectors. Examples are forced fly-around or
reconfigurations to different relative orbits, where maintaining a E/I vector separation along the
whole trajectory is not possible. The relaxation of the parallel or anti-parallel conditions for the
relative eccentricity δe and relative inclination δi is required. The subsequent treatment of PAS
safety extend the concept of minimum separations between the chaser and the target by studying the
natural motion evolution in RTN described by a ROE state. The subsequent definition of minimum
separations in function of the ROE state are done recalling the final aim of including such safety
checks as constraint in a guidance algorithm.

Firstly a treatment of PAS by guaranteeing a minimum separation in the RN plane is presented.
From the Lyapunov transformation between ROE and cartesian RTN states of Equation 8, the radial
and normal relative position vector components can be expressed in function of ROEs as follows:{

δxR/a = δa− δe sin(u− ϕ)

δxN/a = δi cos(u− θ)
(11)

where the angular variables ϕ (argument of perigee of the relative orbit) and θ (ascending node of
the relative orbit) represent the phasing of the relative eccentricity and inclination vectors and can
be written in function of the ROE state as:

tanϕ =
δey
δex

tan θ =
δiy
δix

(12)

Geometrically, the RN trajectory related to a ROE state for different argument of latitudes, i.e. times,
is a rotated and translated ellipse ERN . The geometrical quantities of the rotated ellipse, shown in
Figure 2a, can be expressed analytically in function of the ROE state as follows:

aRN =
[
1
2

(
δe2 + δi2 +

√
δe4 + δi4 − 2δe2δi2 cos (2(π + θ − ϕ))

)]0.5
bRN =

[
1
2

(
δe2 + δi2 −

√
δe4 + δi4 − 2δe2δi2 cos (2(π + θ − ϕ))

)]0.5
cos2 γ = 1

2 +
1
2
(δe2−δi2)√

δe4+δi4−2δe2δi2 cos(2(π+θ−ϕ))

(13)
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where aRN is the ellipse’s semi-major axis, bRN the semi-minor axis γ and the inclination of the
former with respect to the R axis. A relative semi-major axis difference δa is a translation of the
projected ellipse ERN on the R axis. Introducing the E/I condition translates in ϕ = θ + kπ and for
the situation where the RN ellipse has no rotation with respect the radial direction R. Moreover, in
this case the distance with respect to the origin of the RN plane is trivially obtained. On the other
hand, the solution of Equation 10 to find the minimum distance between the ellipse ERN and the
origin of the RN plane without introducing the E/I assumption reduces to solving a quartic equation
to find the argument of latitude u of minimum separation.16 In this work a simplification of the
minimum distance is introduced by defining a closed polytope included within the ellipse shape
resulting from the projection of the trajectory of ROE state onto the RN plane.

γ

a
b

ℰ𝑅𝑁

𝒫𝑅𝑁

N

R

𝛿𝑎

(a)

T

R

2𝛿𝑒

ℰ𝑅𝑇𝛿𝑒

𝛿𝑎

𝛿𝜆

(b)

Figure 2: Geometrical projection of the relative trajectory correspondent to a ROE state δα for
varying argument of latitude u. Projection in the RN plane (a) and RT plane (b) are shown.

The minimum distance between a KOZ around the origin of the RN frame from a polytope PRN
enclosed in the translated and rotated ellipse can be expressed explicitly using inequality conditions.
In this work it is considered a polytope generated with two lines per ellipse’s quadrant as in Figure
2a. Accordingly, the two conditions to be enforced are:{

(|δa| sin γ −m1|δa| cos γ − q1)
(
1 +m2

1

)−0.5
+RKOZ,RN ≤ 0

(|δa| sin γ −m2|δa| cos γ − q2)
(
1 +m2

2

)−0.5
+RKOZ,RN ≤ 0

(14)

with 

m1 =
(√

1−k2−1
k

)(
δe2+δi2−

√
δe4+δi4−2δe2δi2 cos(2ϕ−2θ)

δe2+δi2+
√
δe4+δi4−2δe2δi2 cos(2ϕ−2θ)

)0.5

m2 =
(√

1−k2
k−1

)(
δe2+δi2−

√
δe4+δi4−2δe2δi2 cos(2ϕ−2θ)

δe2+δi2+
√
δe4+δi4−2δe2δi2 cos(2ϕ−2θ)

)0.5

q1 =

(
δe2

2 + δi2

2 −
√
δe4+δi4−2δe2δi2 cos(2ϕ−2θ)

2

)0.5

q2 = −
(√

1−k2
k−1

)(
δe2

2 + δi2

2 −
√
δe4+δi4−2δe2δi2 cos(2ϕ−2θ)

2

)0.5

(15)
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where RKOZ,RN is the radius of the spherical KOZ around the origin of the RTN frame. The
parameter k in this specific case governs the point on which polytope’s lines connects within the
ellipse. This definition can be extended to polytopes with more sides, hence more lines per quadrant
in a straightforward fashion. In these cases, the safety conditions expressed in Equation 14 will be
the of same number as the polytope lines. It is worth remarking that the geometrical conditions of
minimum distance formulated are valid if the origin of the RN plane, hence the target, is within the
ellipse ERN . The cases where the target is outside of ERN correspond to cases where there is a large
translation of the ellipse on the radial direction induced by δa with respect to the fundamental sizes
of the ellipse. In other words the introduced condition limits the possible δa drift of the ROE state
in function of the magnitudes of the relative eccentricity and inclination vectors, which determine
the fundamental ellipse size as detailed in Equation 13.

The second definition of ROE-based minimum separation convenient for safety formulation con-
siders the projection of the relative trajectory on the Radial Transversal (RT) plane. Following
the Lyapunov transformation of Equation 8, the radial and transversal components of the cartesian
relative position vector in function of ROEs are:{

δxR/a = δa− δe sin(u− ϕ)

δxT /a = δλ− 3
2δau+ 2δe sin(u− ϕ)

(16)

Within the hypotheses of the problem, the projection of the relative trajectory on the RN plane
is constant: a specific ROE state identifies the ERN ellipse. On the contrary, the curve obtained
projecting the relative trajectory on the RT plane varies over time, due to the along-track drift caused
by a non-vanishing relative semi-major axis. The representation depicted in Figure 2b is therefore
only an instantaneous projection in RT of the relative trajectory. The ellipse shown will drift in the
along-track direction T according to the value of δa. In the RT plane the dimensions of the ellipse
can be easily computed, since the ellipse presents no rotation with respect to the RT axes. The
semi-major and semi-minor axes of the RT projection ellipse depend only from the magnitude of
the relative eccentricity vector, measuring 2δe and δe respectively. The use of minimum separations
in the RT plane as a passive safety concept is therefore closely related to the sign and magnitude of
the relative semi-major axis δa. In fact, the non-null energy difference between target and chaser
orbit causes the RT projection of the trajectory to drift either away or in the direction of the target, at
a speed proportional to the magnitude of δa. In this work, minimum separation on RT plan is used
to impose ACS conditions, as for the final ROE state to be reached with a collision avoidance policy
in the cases of off-nominal behaviour of the chaser during the approach. Therefore, a minimum
separation in the RT plane is expressed by imposing a zero orbital energy difference between chaser
and target. With this assumption, in order to keep the target within the ellipse of Figure 2b, the
following relations must hold: 

δa = 0

δλ ≤ 2δe−RKOZ,RT
−δλ ≤ 2δe−RKOZ,RT
δe ≥ 2RKOZ,RT

(17)

In the presence of a non-vanishing relative semi-major axis, Equations 17 can be employed by
considering the ellipses translated in time along the T direction. Note that Equations 17 focus on
the case when the target is kept within the projected ellipse. On the other hand, an extension of
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the concept can be achieved by considering a separation, coupled with a drift direction, in order
to ensure that the target remains outside the RT projected ellipse. This latter case has not been
considered in this preliminary application of the ROE safety concept to forced motion to establish
a post collision avoidance state, where the chaser remains in the vicinity of the target. As for the
preliminary study addressed in this work, the two latter extensions of the safety policies in the RT
plane are not investigated further.

ROE BASED GUIDANCE PROBLEM

The safety formulations introduced in the previous section are included in the problem of trajec-
tory guidance in close-proximity of an uncooperative and non-collaborative target. Specifically, the
forced motion to manoeuvre the chaser around a target within few tens of meters of separation is
considered as a relevant application of the concept.

The close-range guidance problem treated in this work is cast as a constrained continuous time
optimal control problem with fixed final time:

min
u(t),uACS(t)

∫ tf

t0

L(t, δα(t),u(t),uACS(t))dt (18a)

s.t. ˙δα = Aδα+ B(t)u(t) (18b)

δα(t0) = δα0 (18c)

δα(tf ) = δαf (18d)

G(t, δα(t),u(t),uACS(t)) ≤ 0 (18e)

H(t, δα(t),u(t),uACS(t)) = 0 (18f)

where Equation 18b convey the relative dynamics constraint, Equations 18c and 18d the initial and
final boundary constraints, and Equations 18e and 18e the nonlinear inequality and equality path
constraints used to impose the PAS and ACS conditions along the nominal trajectory. The cost
function is represented by a Lagrangian contribution, dependent on the nominal states and controls
along the nominal trajectory between initial and final time. An additional contribution of this work
is to include in the Lagrangian cost function for the design of the nominal trajectory the cost of the
collision avoidance policy uACS(t) together with the nominal states and nominal cost. This enables
to design, within the guidance solution of the nominal trajectory, collision avoidance policies that
do not result excessive use of control. The general formulation of Equation 18 is tailored to the
proposed problem in this paper considering the following cost functions and constraints:

• Cost function: L1 norm cost considering both the nominal and the collision avoidance policy
accelerations, which is strongly related to the fuel optimal cost for the trajectory:

L(t, δα(t),u(t),uACS(t)) := ‖u(t)‖1 + λACS‖uACS(t)‖1

• Path constraints: PAS path constraints enforcing safety conditions expressed in function
of ROE in Equation 14. ACS conditions by imposing RT minimum separation constraints
of Equation 17 to the final state after the application of the collision avoidance policy and
minimum 3D separation expressed by Equation 9 for the δαACS(t) non-nominal states of
collision policy application.
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• Control constraints: Maximum acceleration Umax imposed for each direction in RTN with
an L∞ norm constraint on accelerations.

Discretizing in time the problem of Equation 18 and considering the accelerations constant in
each interval, the nominal and non-nominal ROE dynamics can be expressed through Equation 6.
Figure 3 depicts the dynamics discretization performed in the optimal control problem.

𝛿𝜶0 𝛿𝜶𝑓𝛿𝜶𝑖

𝐮1 𝐮i+1 𝐮N

𝐮𝑖,1
𝐴𝐶𝑆 𝐮𝑖,𝐽

𝐴𝐶𝑆

≈≈

𝛿𝜶𝑖+1

𝛿𝜶𝑖,𝐽
𝐴𝐶𝑆

𝛿𝜶𝑖,1
𝐴𝐶𝑆

≈

𝛿𝜶1

𝐮2

𝛿𝜶2

≈≈

𝛿𝜶𝑖

Figure 3: Discretisation of the controlled nominal ROE trajectory (black) and non-nominal collision
policy application trajectory (red).

In this framework, the nominal state δαi at time ti can be expressed linearly in function of the
piecewise constant accelerations applied previously and initial conditions as follows:

δαi = δα(ti) = Φ(t0, ti)δα0 +
[
Φ1,iΨ1,2 . . . Φ1,iΨi−1,i

]u1
...
ui

 (19)

Equation 19 can be conveniently reorganised by defining the following matrices and vectors:

Gi =
[
Φ1,iΨ1,2 . . . Φ1,iΨi−1,i

]
, Ci =

[
I(3i×3i), 0(3i×3(N−i))

]
, U =

u1
...

uN

 (20)

where the Ci matrix composed by concatenation of the identity matrix I(i×i) of dimension (3i× 3i)
and a zeros matrix 0(3i×3(N−i)) of dimension (3i× 3(N − i)) serves to the purpose of selecting the
accelerations up to the node i from the full vector of acceleration U . This enables to enforce the
dynamics and final boundary constraints to be enforced with the following linear equality relation:

δαf = Φ(t0, ti)δα0 + HfU with Hf = GfCf (21)

The cost function of Equation 18a is then expressed as:

Jm :=

N∑
i=1

‖ui‖1 + λACS

M∑
m

J∑
j=1

‖uACSm,j ‖1 (22)

where also for the discretisation in J nodes of each segment of non-nominal trajectory stemming
from each of theM nominal ACS constraints nodes is included, see Figure 3. The cumulated cost of
the collision avoidance policies is weighted with λACS with respect to the nominal trajectory cost.
The path constraints can then be formulated imposing the PAS and ACS nonlinear safety conditions
to the nominal states δαi and δαACSm,j at each constrained node, expressed by Equation 19.
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Sequential convex programming

Referring to the optimal control guidance problem of Equation 18, the constraints conveying both
the relative dynamics and of the boundary conditions are linear equations in the problem’s variables.
Nonetheless, as an whole, it is still a Nonlinear Programming Problem (NLP) due to the structure
of the safety path constraints. Indeed, the safety constraints introduced in the previous section
contained in the F(·) and G(·) functions represent a non-convex constraints to be enforced. In
this work the NLP is solved exploiting a sequential convex programming method, which iteratively
solves a convex sub-problem built to approximate the original NLP until the cost minimisation
reaches convergence.23–25 In the formulation of the convex (specifically linear) subproblem, firstly
the infinity norm maximum accelerations are simplified as follows:

‖ui‖∞ ≤ Umax (23)

u =

(
u+

u−

)
, u = u+ − u−, u ≤ Umax (24)

where the accelerations are augmented considering auxiliary variables u− and u+ to render the
control constraints linear by imposing the components of u strictly positive and bounded by Umax.
The cost function of Equation 22 is written in a linear form:

Jm = fTU + fTACSU
ACS (25)

where f and fACS are vectors of ones of dimension respectively (3N × 1) and (3MJ × 1). Con-
cerning the handling of the PAS and ACS non-linear constraints, within the SCP technique they are
linearised locally around a reference solution. More in details, the reference solution is taken at
each iteration of the SCP as the previous iteration solution δαk−1.

The convex sub-problem is then written as:

min
U

k
i ,U

ACS,k
,νkp ,ν

k
q

fTU + fTACSU
ACS

+ λslack

(
Q∑
q

νkq +
P∑
p

νkp

)
(26a)

s.t. δαf = Φ(t0, ti)δα0 + HfU
k (26b)

δα(t0) = δα0 (26c)

G(δαk−1,uk−1) +∇TGk−1
(
δαk − δαk−1

)
≤ νkp (26d)

H(δαk−1,uk−1) +∇THk−1
(
δαk − δαk−1

)
= νkq (26e)

|δαk − δαk−1| ≤ ρk (26f)

νp ≥ 0 (26g)

νq ≥ 0 (26h)

where the matrices ∇TGk−1 and ∇THk−1 represent the gradient of the constraint functions evalu-
ated at the previous iteration solution δαk−1. The variables νp and νq are included as slack variables
to relax the constraints’ enforcement during the iterations. Moreover, a hard-trust region method
conveyed by Equation 26f is added to maintain the solution at each iteration within region of the
state space where the linearisation of the non-convex functions is considered reliable.24 The trust
region radius ρk is adapted during iterations according to the method of relative decrease described
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in the work of Reynolds et al.,24 and omitted here for the sake of brevity. The sub-problem of Equa-
tion 26 is reduced to a Linear Program (LP), which can be efficiently solved with robust numerical
techniques such as simplex or interior point based algorithms.

RESULTS AND DISCUSSION

In this section the results of two test cases for the safe guidance algorithm developed are pre-
sented. Test case A describes a reconfiguration between two relative orbits with null semi-major axis
difference and characterized by E/I vector separation. While, test case B is defined as a synchro-
nisation of the chaser trajectory to a rotating hold point motion around the target with a predefined
angular rate ωhp and constant separation dhp. The latter scenario is defined to mimic a full/partial
synchronisation to the target tumbling motion and to evaluate the safety concepts defined in this
work during this challenging scenario. The algorithms are implemented in Matlab® and the linear
sub-problems of the SCP iterations are solved with the dual-simplex algorithm.

Passive relative orbit reconfiguration

Initial and final conditions for test case A are defined considering a change of geometry of two
passively safe relative orbits around the target. In particular, a zero relative semi-major axis and E/I
separation are set for the initial and final boundary conditions. The PAS constraints are enforced
along the whole reconfiguration controlled trajectory and a fixed reconfiguration time is set equal to
one orbital period. The solution of the guidance problem using the SCP method is obtained consid-
ering two formulations PAS for comparison. The novel formulations in terms of ROEs introduced
in this work is compared with PAS constraints enforcing Equation 9 to a future discretization of
the uncontrolled trajectory stemming from the nominal nodes. The two problems are referred as
PAS-ROE and PAS-CAR respectively and they are both solved with the SCP method. In the PAS-
CAR the uncontrolled trajectory after the PAS nodes is propagated for a ∆T time interval and the
constraint of Equation 9 enforced at M nodes along this time interval, as performed in previous
work for example in Breger et al.6 The aforementioned time interval ∆T is considered equal to one
orbital period throughout this work. The ROE based PAS constraints of Equation 14 are capable of
ensuring PAS imposing solely two conditions on the nominal nodes, hence resulting in a number
of constraints on the trajectory of 2N . On the other hand, in the PAS-CAR case, considering a
discretisation of M nodes for each uncontrolled interval stemming from the nominal N nodes, the
total number of constraints will be N ×M . The parameters and boundary conditions for test case
A are shown in Table 1.

Table 1: Boundary conditions and parameters of test case A.

Initial condition aδα0 [0, 0, 0, 100, 0, 100]T m Final time Tf 1 Period
Final condition aδαf [0, 0, 15.36,−4.47, 15.36, 4.47]T m Orbit period T 5801 s

Nodes N 150 PAS nodes NPAS 150
ACS nodes NACS none KOZ radius RKOZ 12 m

Max accel. Umax 1e-4 m/s2

The trajectory solutions of the SCP based algorithms developed in this work for test case A are
shown in Figure 4, where the PAS-CAR trajectory is computed considering M = 20 nodes of PAS
checks in the uncontrolled trajectory propagation from the target. The control acceleration histories
shown in Figure 5 show the expected bang-bang control structure consequence of a L1 norm based
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cost function. Additionally as shown in the plots, the PAS-CAR trajectory only slightly differs
from the fuel optimal unconstrained case, while the PAS-ROE shows more discrepancy due to the
stronger PAS condition embodied in the ROE based approach. In fact, in the PAS-CAR problem
the constraints guarantee the avoidance of the KOZ only for the enforced ∆T time of one period. It
is however possible that due to δa-induced drift the condition is violated after the ∆T time under
natural Keplerian relative dynamics.
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Figure 4: Forced motion trajectories for test case A obtained considering the SCP guidance algo-
rithms developed.
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Figure 5: Control accelerations for test case 1 for the fuel optimal solution (black) and PAS-ROE
solution constrained trajectory (blue). The solution referred as PAS-CAR is not plotted, being
basically coincident with the fuel optimal case.

Figure 6 shows the projection of the ROE state ellipse onto the RN plane using the ROE state
at each PAS node for the fuel optimal and PAS-ROE cases, demonstrating the capability of the de-
veloped safe guidance algorithm to satisfy the predefined minimum safety distance from the KOZ
around the target. Figure 7 shows instead the future uncontrolled evolution of the guidance trajec-
tory in the PAS-CAR solution for each of the enforced PAS node. As it can be noted more clearly
from Figure 6, the PAS-CAR (as for the fuel optimal case) do not guarantee the passive safety as
minimum separation in the RN plane.
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Figure 6: Projection of the relative trajectory related to the ROE states of PAS nodes for test case 1.
The solution of fuel optimal algorithm (left) and PAS-ROE algorithm (right) are displayed.
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Figure 7: Uncontrolled relative trajectories propagated from each of the PAS nodes for 1 orbital
period for the PAS-CAR case with M = 20. The nominal trajectory is shown in green.

Table 2: Performances of the safe guidance SCP algorithms for test case A.

Solution δvtot [m/s] CPU time [s] Iterations
Fuel optimal 0.1798 0.04 N/A
PAS-ROE 0.18281 0.4788 4
PAS-CAR (M=10) 0.17978 0.8903 3
PAS-CAR (M=20) 0.17979 1.4742 3
PAS-CAR (M=50) 0.17980 3.7939 3
PAS-CAR (M=100) 0.17980 8.5201 3

The more robust safety provided by the G-PAS-ROE solution comes at the cost of a slightly
larger delta-v expense as compared against the fuel-optimal and G-PAS-CAR solutions (see δvtot
cost in Table 2). Additionally, Table 2 highlights the computational expense of increasing the
number of nodes in the transcription of the passive abort condition for the PAS-CAR case. Note
that the CPU time reported refers only to the time taken to solve each convex sub-problem for
the different cases. The results demonstrate that introducing PAS condition in terms of ROE both
improves the safety robustness and the efficiency of the transcription by reducing the number of
constraints required. The latter feature is particularly useful since removes the scalability of the

14



problem size and constraints to be enforced with respect to the future ∆T time and to the number of
PAS checks. It is worth remarking that generally in the PAS-ROE case the number of iterations of
the trust-region-like SCP algorithm are greater than the PAS-CAR due to the slightly more severe
non-convexity introduced by the ROE based constraints.

Hold point synchronisation

Test case B is a scenario of synchronisation of the chaser to a rotating hold point around the tar-
get. The hold point motion is defined considering a circular motion around the target at a constant
distance dhp and on a fixed plane in RTN. The definition of the present test case aims at evaluating
how safety constraints based on ROE behave in a more demanding scenario in terms of energy of
the forced motion trajectory. In fact, the final boundary condition of the scenario that fixes both po-
sition and velocity of the final state, strongly reduces the feasible space to enforce the PAS condition
based on ROE in the last section of the trajectory. For this type of demanding scenarios the defini-
tion introduced in this paper of active collision avoidance safety becomes extremely useful. In fact,
in the last part of the trajectory the safety considerations are enforced as ACS constraints imposing
a minimum separation on the RT plane based on ROE conditions according to Equation 17 after a
time ∆TACS of application of the collision avoidance policy. As explained in the previous section,
the ACS policy is included in the cost function of the guidance problem with a penalty factor to
avoid the use of excessive control authority in the collision avoidance manoeuvres. By enforcing
the separation on RT of the final ACS node, the ACS accelerations present only the in-plane com-
ponents thus reducing the dimensionality of the UACS vector in the design of the SCP algorithm.
Additionally, during the application of the collision avoidance manoeuvres over ∆TACS time inter-
val the minimum separation in Cartesian coordinates according to Equation 9 is also imposed. Here
the three-dimensional definition of minimum separation is used instead of RN or RT separations to
allow more freedom in the motion of the chaser to reach the final target collision avoidance state. A
stricter conditions in the RT and RN plane may render the final collision avoidance state not reach-
able starting from the initial ACS node on the nominal trajectory. The test case B scenario and
parameters are reported in Table 3.

Table 3: Parameters and conditions for test case B.

Boundary Conditions
Initial ROE aδα0 [0,0,0,100,0,100] m
Final ROE aδαf [-233.6,-108.1,-221.5,49.6,6.6,-0.6] m
Final time Tf 1 period

Orbit period T 5801 s
Hold point angular rate ωhp 0.5 deg/s

Hold point distance dhp 15 m

Parameters
Max acceleration Umax 2e-4 m/s2 Nodes N 150

KOZ radius RKOZ 12 m PAS nodes NPAS 112
ACS policy max acceleration UACS

max 4e-4 m/s2 ACS nodes NACS 38
ACS policy nodes J 3 ACS penalty λACS 1e-3

ACS policy duration ∆TACS 600 s
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In Figure 8a and Figure 8b the trajectories in RTN and the control accelerations are shown for
the fuel optimal and the safety constrained solutions. As expected, the safety constraints strongly
affect the trajectory of the chaser, which is required to avoid ROE states that do not guarantee PAS
in the first section. As a result, also the ACS section of the trajectory displayed in red in Figure 8a
is different than the fuel optimal case.
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Figure 8: (a) Trajectories in RTN of the fuel optimal and safety constrained case of test case B.
In blue and red are respectively the PAS and ACS section of the safety constrained solution, while
the fuel optimal solution is displayed in black.(b) Control acceleration for fuel optimal (black) and
safety constrained solution (blue).

In Figure 9 the RN projection of the future uncontrolled trajectories related to the ROE state of
PAS constrained nodes are shown for the fuel optimal and safety constraints solution. It can be
seen how the SCP algorithm is capable of imposing the minimum RN separation by the ROE based
constraints, otherwise violated in the fuel optimal solution in the first section of trajectory. It is
worth remarking here how the trajectory with passive safety uses the regions of the ROE space with
non-null semi-major axis and non-parallel relative eccentricity and inclination vectors. Indeed, this
proves the generalization to the classical E/I based passive safety. The RN projection of the relative
trajectory is an ellipse with both rotation and translation with respect to the RN axes. Table 4 shows
that the implemented safe guidance algorithms is capable to provide a solution with both compu-
tational efficiency and delta-v cost comparable to the fuel-optimal solution, even in the extremely
demanding operational scenario of test case B. At the same time, the actual close-range trajectory in
RTN of the safe solution is drastically different than the fuel optimal one: it provides a higher level
of safety. In Figure 10 the RT projections related to the uncontrolled trajectory of the last node of
ACS time intervals are shown. The algorithm is capable of maintaining the required RT separation
after the designed collision avoidance policy for non-nominal operation for every ACS node. The
in-plane accelerations related to the collision avoidance policy uACS in each of the M × J node of
the non-nominal controlled trajectory are also shown.

Table 4: Performances of the safe guidance SCP algorithm for test case B.

Solution δvtot [m/s] CPU time [s] Iterations
Fuel optimal 0.448 0.001 N/A

PAS-ROE 0.466 1.08 8
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Figure 10: Projection in the RT plane of the trajectories obtained by the guidance algorithms after
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Figure 11: In-plane acceleration of the collision avoidance policy non-nominal segment for all the
M ACS nodes.
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CONCLUSIONS

This work proposes new formulations of safety concepts applicable to demanding proximity op-
erations scenarios. The forced motion trajectory design within separation of few tens of meters are
considered to apply such safety concepts aimed to extend passive abort and active collision avoid-
ance safety formulations in the relative orbital element framework. The proximity guidance solution
for two test cases is solved efficiently with a sequential convex programming scheme that allows the
computation of a feasible optimal solution with limited computational expenses. The work demon-
strated that for the scenarios studied the novel relative orbital elements based safety formulations
improve the classical Cartesian keep out constraints check both in terms of number of constraints
enforced and robustness of safety guaranteed.
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