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A B S T R A C T

Autonomous spacecraft relative navigation via monocular images became a hot topic in the past few years
and, recently, received a further push thanks to the constantly growing field of artificial neural networks
and the publication of several spaceborne image datasets. Despite the proliferation of spacecraft relative-state
initialization algorithms developed, most architectures adopt computationally expensive solutions relying on
convolutional neural networks (CNNs) that provide accurate output at the cost of a high computational burden
that seems unfeasible for current spaceborne hardware. The paper addresses this issue by proposing a novel
pose initialization algorithm based on lightweight CNNs. Inspired by previous state-of-the-art algorithms, the
developed architecture leverages a fast and accurate target detection CNN followed by a line segment detection
CNN capable of running with low inference time on mobile devices. The line segments and their junctions are
grouped into complex geometrical groups, reducing the solution search space, and subsequently, they are
adopted to extract the final pose estimate. As a main outcome, the analyses demonstrate that the lightweight
architecture developed scores high accuracy in the pose estimation task, with a mean estimation error of less
than 10 cm in translation and 2.5◦ in rotation. The baseline algorithm scores a mean SLAB error of 0.04552
with a standard deviation of 0.22972 in the test dataset. Detailed analyses demonstrate that the uncertainties on
the overall pose score are driven mainly by errors in the relative attitude, which gives the highest contribution
to the pose error metric adopted. The analyses on the error distributions point out that the uncertainties
on the estimated relative position are higher in the camera boresight axis direction. Concerning the relative
attitude, the algorithm proposed has higher uncertainties in estimating directions of the target x and y axes
due to ambiguities related to the target geometry. Notably, the target detection CNN trained in this work
outperforms the previous top scores in the benchmark dataset. The performances of the proposed algorithm
have been investigated further by analyzing the effects on the accuracy due to the relative distance and the
presence of background in the images. Lastly, the paper delves into the possibility of adopting a sub-portion
of the 2D-to-3D match matrix made by the most complex perceptual groups identified that positively affects
the overall run-time, pointing out the performances in terms of accuracy of the estimates and providing a
comparison of both the baseline and the reduced match matrix versions against state-of-the-art algorithms
concerning relative position and attitude errors and solution availability, highlighting the high accuracy and
solution availability of the proposed architectures.
1. Introduction

Autonomous spacecraft relative navigation is an enabling technol-
ogy for incoming space missions, aimed at performing time-critic tasks
in a wide range of scenarios with a high level of autonomy required [1].
Key applications where autonomous navigation can be adopted include
spacecraft rendezvous and docking [2], proximity operations (active
debris removal and on-orbit servicing included) [3–5], and landing [6,

∗ Corresponding author.
E-mail addresses: michele.bechini@polimi.it (M. Bechini), korgm403@gmail.com (G. Gu), paolo.lunghi@polimi.it (P. Lunghi), michelle.lavagna@polimi.it

(M. Lavagna).

7]. All these scenarios require precise relative navigation to accomplish
the mission. The same holds for formation flying where there is the
need to maintain the prescribed formation [8] or in case the spacecraft
operating in proximity of a space-resident object needs to perform
collision avoidance maneuvers ensuring safety [9]. The relative state
estimation process must be solved autonomously onboard in all these
vailable online 29 November 2023
094-5765/© 2023 The Author(s). Published by Elsevier Ltd on behalf
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.actaastro.2023.11.049
Received 22 June 2023; Received in revised form 23 October 2023; Accepted 27 N
of IAA. This is an open access article under the CC BY license

ovember 2023

https://www.elsevier.com/locate/actaastro
http://www.elsevier.com/locate/actaastro
mailto:michele.bechini@polimi.it
mailto:korgm403@gmail.com
mailto:paolo.lunghi@polimi.it
mailto:michelle.lavagna@polimi.it
https://doi.org/10.1016/j.actaastro.2023.11.049
https://doi.org/10.1016/j.actaastro.2023.11.049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2023.11.049&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Acta Astronautica 215 (2024) 20–43M. Bechini et al.
scenarios to ensure the reactivity and effectiveness required with ro-
bustness in nominal and off-nominal operations. The first step in the
relative navigation chain is the initialization of the relative position and
attitude (i.e., pose). Spacecraft relative pose initialization refers to the
determination of the position and orientation of a spacecraft relative to
another in space, typically without any a priori knowledge of the full
relative state. The accuracy in this task is needed since the reduction
of the error in the initial relative pose estimation brings a drop in the
navigation error and also in the entire guidance navigation and control
(GNC) chain as a consequence. The most attractive and challenging
scenario for relative pose estimation is for a target–chaser system
where the target is noncooperative, i.e., there is no communication link
between the two spacecraft and the target is not equipped with light-
emitting markers [10]. It should be pointed out that in principle, the
relative state can also be estimated by using tracking methods from the
ground but the success depends on the visibility of the spacecraft from
the ground stations and the resolution of their sensors, and the accuracy
is strongly affected by uncertainties in the state estimation even for
advanced techniques [11,12]. These limitations make the ground-based
approach not suited for all the scenarios mentioned before. Accord-
ingly, the relative state estimation process must be solved onboard by
relying on the sensors and onboard computers available on the chaser.

Monocular cameras are one of the most adopted imaging sensors
to acquire meaningful measurements fed to the GNC chain [10] that
processes the acquired images to reconstruct the relative pose between
the camera and the target. The widespread use of monocular cameras
is due to the low power consumption, cost, and mass requirements of
these sensors compared to more complex ones, such as light detection
and ranging (LiDAR) [13]. Among the available cameras, the most
studied and employed are those operating in the visible spectrum,
with applications to both cooperative [14] and uncooperative [15] mis-
sions. Despite that, it must be noticed that solutions involving cameras
operating also in the thermal infrared (TIR) region of the spectrum
are currently under development for applications in low-illumination
conditions [16,17].

During the last few years, several architectures have been proposed
to solve the relative pose estimation problem via monocular images.
This increasing interest is motivated primarily by the publication of the
Spacecraft Pose Estimation Dataset (SPEED), one of the first validated
spaceborne synthetic image datasets made publicly available, [18],
and also by the international Satellite Pose Estimation Competition
(SPEC2019) [19]. After that, other spaceborne image datasets were re-
leased and a new international competition (SPEC2021) was held [20].
Thanks to this, a wide range of approaches have been studied. Despite
that, most of the top-scoring algorithms have been designed disre-
garding the deployability while maximizing the accuracy in the pose
estimation task and resulting in architectures with a high number of
parameters (most of which are usually devoted to CNN for features
extraction), requiring abundant computational resources [21]. Due to
this, most of those algorithms are currently prohibitive for spacecraft
on-board computers with constrained resources [21,22].

In contrast, a novel lightweight and robust relative pose estimation
pipeline that can run with low inference time on CPUs is proposed
here. Our architecture is inspired by a state-of-the-art algorithm, the
Sharma–Ventura–D’Amico (SVD) [23]. The baseline SVD algorithm was
improved here by a feature detection step that uses a lightweight line
segment detection convolutional neural network (CNN), named M-LSD,
capable of running in real-time on mobile devices [24] instead of
the Hough transform [25] used in the original implementation. The
main steps of the proposed pipeline are the target detection, the line
segments extraction, and the solution of the Perspective-n-Point (PnP)
problem to retrieve the relative pose estimate. The performances of the
baseline architecture proposed have been tested on the SPEED dataset,
used as a benchmark, evaluating both the accuracy and the overall
running time. To get more insights into the behavior of the pose initial-
21

ization scheme developed, the effects of the relative distance and the
presence of backgrounds, have been evaluated. Moreover, the baseline
architecture is compared against a variant that, in the relative pose
estimation task from the detected 2D feature groups and the known
3D feature groups, leverages on 2D-to −3D feature groups correspon-
dences stored in a matrix (named match matrix in [23]) with reduced
dimensions relying only on most complex feature groups identified in
the image being processed. To conclude, the architectures proposed
here are compared against other pose initialization algorithms that
participated in SPEC2019 in terms of relative translation and attitude
errors and solution availability. As the main outcome, the proposed
architecture achieves performances comparable with top-scoring archi-
tectures in SPEC2019 despite employing lightweight CNNs. It surpasses
the SVD algorithm in solution accuracy and availability while reducing
computational time. The possibility of adopting the reduced form of
the match matrix is demonstrated via dedicated analyses, enabling
faster pose retrieval without compromising accuracy. Furthermore, the
adopted YOLO (You Only Look Once) target detectors exhibit superior
performance with respect to the previous state-of-the-art on SPEED
images.

In the remainder of the paper, related work is discussed in detail
in Section 2, providing an extensive review of algorithms and methods
related to the topics of relative pose initialization and spaceborne image
processing. The proposed architecture is outlined in Section 3, provid-
ing a comprehensive description of its main components, as well as
the training of the involved CNNs, while the results achieved with the
selected baseline architecture are provided and discussed in Section 4.
In detail, Section 4.1 reports the evaluation metrics adopted, while
the results from the participation in the postmortem SPEC2019 are
discussed in Section 4.2. The performances of the baseline architecture
are analyzed in Section 4.3, and Section 4.4 report the comparison
against other algorithms that participated in SPEC2019. Lastly, the
conclusions and the hints on possible future developments are given
in Section 5.

2. Related works

2.1. Relative pose initialization methods

A general architecture for relative pose estimation can be split
into two consecutive steps, i.e., the acquisition step (or initialization)
and the tracking phase. During the initialization, there is no a priori
knowledge of the target–chaser relative state, while during the tracking
phase, the relative state information retrieved at previous instants of
time is combined with the current measures extracted from new images
of the target. Several classifications of the pose estimation algorithms
have been proposed, depending on the approach followed in both
steps. From a high-level perspective, the estimation methods can be
categorized as non-model-based, model-based, and hybrid [13].

Non-model-based algorithms do not rely on the knowledge of a
3D model of the target. Among those algorithms, the appearance-
based ones leverage only the appearance or the textures of the tar-
get spacecraft in the acquired images compared with a pre-computed
database, without extracting features, as in [26,27]. The approach used
in appearance-based methods can also be adopted if the 3D model of
the target is available and features are extracted from the 3D model to
construct a database used to search for correlations with features from
the acquired images [28]. This approach is commonly named template
matching in computer vision [28].

Model-based algorithms rely on the knowledge of the 3D geome-
try model of the target, which is then partially known. The camera
mounted on the chaser acquires a 2D image that is processed via Image
Processing (IP) algorithms to extract features that subsequently are
matched with the corresponding elements of the 3D model available.
Once the 2D-to −3D correspondences are known, the relative pose is

retrieved by solving the PnP problem. Please notice that an additional
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step of pose refinement can be added to the pose estimation pipeline
to improve accuracy and computational efficiency [10].

Hybrid algorithms merge model-based and non-model-based ap-
proaches, exploiting both the features extracted from the image and
the appearance to generate the relative pose estimate, as in [29]. This
approach leverages the detected keypoints to generate a first subset of
possible correspondences between the known 3D model and the image.
A rough relative pose estimate is extracted from the subset and used to
verify and iteratively add new 2D-to −3D correspondences to the initial
subset up to a threshold value. Finally, the relative pose estimate fed to
the navigation filters is retrieved from the last set of correspondences
defined during the iterative process. IP algorithms designed to extract
features from images have been studied on a large scale over the years
and several methods are therefore documented in the literature. The
features extracted from 2D images can range from simple points to
complex geometrical structures. One of the first applications of visual-
based navigation for uncooperative spacecraft, during the Hubble Space
Telescope Servicing Mission 4, leveraged two IP algorithms developed
to detect both edges and predefined keypoints [30]. The edge detection
was performed using a Sobel filter, and the keypoints were extracted
from the digital correlation of images [30]. There are several algorithms
capable of extracting keypoints and corners from 2D images, ranging
from the Harris corner detector [31] to the more recent ORB [32],
i.e., Oriented FAST (Features from Accelerated Segment Test [33]) and
Rotated BRIEF (Binary Robust Independent Elementary Features [34]).
Notably, ORB was proven in [32] to be more computationally efficient
than both SURF (Speeded-Up Robust Features) [35] and SIFT (Scale
Invariant Feature Transform) [36]. A comprehensive literature review
concerning the comparison of keypoints detectors is available in [37–
39]. Strong variations of scale and perspective of the target in the
images are expected during a close-range approach between spacecraft.
Hence, relying on keypoints invariant with respect to these spatial
effects [35,36] is well suited for these scenarios. Despite this, keypoint
features are sensitive to severe changes in illumination conditions,
target partial occlusions, and background objects [13]. In these sce-
narios, the robustness offered by corners and edge detectors (as Canny
edge detector [40] and Hough Transform [25]) is higher [10]. The
capabilities of a pose estimation algorithm based on the Canny edge
detector and the Hough transform for line extraction were assessed
in [41] by testing the pose initialization scheme on actual spaceborne
images from the Prototype Research Instruments and Space Mission
technology Advancement (PRISMA) mission [42]. The results in [41]
show robustness issues in case of adverse illumination conditions and
presence of background in images. To overcome the limitations of
both keypoints and edge detectors, it was proposed in [43] to couple
the Robert Cross Method for edge detection with the Harris corner
detector, improving the computational efficiency of the IP chain ap-
plied to thermal images only. Concerning visible images, the same
concept of fusing edge and corner detector was applied by [44], where
a combination of three different detectors (i.e., one corner detector
and two line segment detectors) is applied to increase the robustness
of the IP presented in [23]. The last step involved in Model-based
algorithms is the PnP problem solution. This task is achieved by using
the Efficient PnP (EPnP) solver [45], that in [23] was proven to be the
less computationally demanding among other solvers, with the highest
success rate and accuracy. Hence, the EPnP is particularly suited for
applications in which a high number of 2D to 3D correspondences
need to be tested. Despite that, the EPnP can lead to sub-optimal
solutions of the PnP problem (i.e., local minima) hence, usually, it is
coupled with numerical solvers as Newton–Raphson [41] or Levenberg–
Marquardt [46] methods to optimize the relative pose estimate. For an
extensive review of possible pose estimation schemes, the readers are
referred to [10,13] while [47] offers a more comprehensive surveys on
PnP solvers and their comparison.

Machine Learning and mostly Convolutional Neural Networks
(CNNs) have been applied in the light of monocular-based pose ini-
22

tialization and tracking in the last few years mainly due to their f
capabilities in image classification [48]. The main advantages of CNNs
over more classic feature-based approaches are the increased robust-
ness in low illumination conditions and against low signal-to-noise ratio
in images, and the reduced computational complexity [49]. Despite
that, it is common knowledge that spaceborne images are affected
by higher contrast and lower resolution with respect to terrestrial
applications thus, the accuracy of state-of-the-art CNN is expected to
decrease if they are applied in a space scenario [13]. At the very
beginning, the CNNs were adopted in an end-to-end fashion, resulting
n a pose estimation pipeline fully demanded to the selected CNN
hat is trained to learn an implicit mapping function between the
D image taken as input and the labeled relative pose given as out-
ut [50,51]. Some variations of the direct pose regression have been
roposed, as in [52], where the CNN solves a classification problem
o estimate a coarse pose that is subsequently refined, or in [18]
here the relative pose is the output of a CNN that solves a hybrid

lassification–regression problem. Notably, the CNN proposed in [18]
nd its improved version reported in [53] were trained in a multi-
asking configuration (i.e. region of interest extraction, heatmaps, pose
egression, classification, and segmentation), improving the accuracy
chieved by direct end-to-end architectures. Nonetheless, most direct
egression CNNs perform worse than classic pose estimation algorithms,
specially for the relative attitude [52]. A different approach is to use
he CNNs to regress landmarks and keypoints [54], in which CNNs are
rained to detect and recognize selected features in images [55,56].
he features extracted from the image by the CNN are matched with
hose from the available 3D wireframe model and used to solve the
nP problem. It is remarked here that in most of the architectures
or CNN-based feature detection, the image is preprocessed with a
egion of interest (ROI) extraction CNN to improve the accuracy of the
eature extraction and, as a consequence, of the entire pose estimation
ipeline [57,58].

From the outcomes of both SPEC2019 [19] and SPEC2021 [20] it
s evident that the performances in terms of accuracy of the estimated
ose ensured by CNN feature detectors coupled with PnP solvers are
igher than those given by direct CNN-based pose regression. Notably,
e acknowledge here that despite the architectures that won both the

ompetitions [19,59] were based on target localization and landmark
egression by CNNs coupled with PnP solvers, the direct regression
ethod based on ResNet [60] proposed in [61] achieved the third best

core in SPEC2019.

.1.1. The Sharma–Ventura–D’Amico (SVD) algorithm
The Sharma–Ventura–D’Amico (SVD) algorithm [23] is the baseline

elected and improved with the architecture presented in this work.
VD belongs to the model-based pose initialization algorithms and
uilds on the scheme proposed in [41]. with improved robustness
gainst backgrounds and efficiency by the introduction of the Weak
radient Elimination (WGE). The first step of the SVD is to blur the im-
ge through a Gaussian filter. Then a two streams approach is followed.
n the former, the blurred image is convolved with a Prewitt filter
hen the WGE is applied to threshold the weak gradient intensities that
orrespond to the Earth in the background. Subsequently, the Hough
ransform is applied to the thresholded image to extract line segments
orresponding to the edges of the spacecraft. In the other parallel
tream, the image is convolved with a Sobel filter and then processed
ia Hough transform to extract line segments without applying the
GE. The two streams are collected into a single process, and the edge

eatures extracted are merged. The IP part of the SVD concludes with
rouping detected line edges into more complex geometrical groups
i.e., proximity and parallel pairs and triads, antennas, and closed
olygonal features). The same perceptual grouping applies to the 3D
ireframe model of Tango. The poses are then retrieved by building
match matrix for 2D to 3D perceptual groups correspondences and

hen solving the PnP problem through the Efficient PnP algorithm [45]

or all the matches identified. The output poses are ranked by the
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lowest reprojection error achieved, and the top-5 estimates are opti-
mized further via Newton–Raphson method. Among these final five
pose estimates, the final pose given as output by the SVD is the one
that minimizes the reprojection error between detected line segments
endpoints and 3D wireframe keypoint reprojected on the image plane.
Noticeably, one of the main advantages of the WGE is the automatic
extraction of the region of interest (ROI) used for the self-tuning of the
hyperparameters needed for the Hough transform and the perceptual
grouping of the detected features. Despite the improvements in pose
estimation accuracy and background rejection, the SVD still presents
significant drawbacks that limit its applications. Concerning the ROI
extraction, it has been proven that if the Earth horizon is inside the
images, the WGE performs poorly. That leads to a wrong estimation
of the ROI and detection of line segments that belong to the horizon
and not to the spacecraft [23,44]. Please notice that a correct detection
of the ROI is of paramount importance to adapt the hyperparameters
of both the Hough transform and perceptual grouping hence a wrong
ROI extraction can jeopardize the entire pose estimation pipeline. Other
drawbacks pointed out by the authors in [23] concern the presence of
duplicate or incomplete edges, and the detection of line segments that
do not belong to the 3D wireframe model available. Due to these issues,
the test performed on 25 images of Tango [23] shows that the SVD
is capable of returning an accurate relative pose estimation only for
the 20% of the images [52]. The SVD has been tested on the SPEED
dataset in [62] and on fused VIS-TIR images in [63], providing in both
cases an accurate solution for less than 10% of the images. Moreover,
the works in [62,63] point out that the tuning of the hyperparameters
in the Hough transform of the SVD is challenging for a wide dataset
of images with highly variable illumination conditions and positions
of the target in the images. A first improvement of the SVD features
extraction has been proposed in [44]. The pipeline in [44] implemented
a ROI extraction method similar to the WGE in [23], based on a Prewitt
operator combined with a gradient filter. Notably, the case of the Earth
horizon in images is tackled by tuning the gradient filter to more
selective values. Moreover, Capuano et al. proposed an improvement
of the feature extraction of the SVD by introducing a new IP scheme
based on three parallel streams that rely on the Shi–Tommasi corner
detector [64], the probabilistic Hough transform [65], and the line
segment detector algorithm [66] respectively. The features extracted
by the three streams are merged by retaining only those mutual to
the three streams, compensating for the different drawbacks of each
method. Subsequently, the merged keypoints are exploited to synthe-
size polylines corresponding to components of the target spacecraft.
Despite the demonstrated improvements in feature detection due to
the three-streams approach, the computational complexity of the IP
coupled with a PnP solver may result to be prohibitive for current
onboard computers. An overview of OBC performances is reported
in [67], where the tests conducted show that, for current CPU-based
OBC, a simple visual-odometry task can last in about 15 s, preventing
real-time applications and highlighting the needs of lightweight IP
algorithms.

2.2. Target detection and region of interest extraction

Target detection, or object detection, is a computer vision task
employed to detect objects of interest in specific locations in images
or videos via the definition of a bounding box [68]. The bounding
box is the minimum rectangular box defined in image coordinates
that completely encloses the target object identified in the image. The
region of the image delimited by the bounding box is defined as the
Region of Interest (ROI). Nowadays, this task is usually demanded to
CNNs due to their high accuracy in detection tasks. In most cases, the
CNNs for target detection also include a classification step where the
objective is to predict if the image given as input contains at least
an object of interest. If the target object is in the image, then the
23

CNNs perform a regression task to predict the pixel coordinates that
define the bounding box. The current state-of-the-art CNNs for target
detection can be classified into region proposal methods and one-stage
methods [58,68].

Region proposal methods rely on a two-stage process where the first
step, named region proposal, is responsible for generating ‘‘interesting’’
regions of the image that can contain the target object, while the second
step classifies the proposed regions and then performs bounding box
regression. One of the first implementations of a region proposal object
detector was the Regions with CNN features (R-CNN) [69], where the
region proposal task is performed by a selective search algorithm that
outputs about 2000 regions. Each region is then processed with a CNN
to perform classification and bounding box regression. R-CNN is slow
in inference since all the proposed regions must be processed by the
CNN one per time. This issue has been addressed with the Fast R-CNN
algorithm [70] by adopting a single ConvNet that convert the input
image in a single feature map processed by a region proposal algorithm,
lowering the inference time. Despite the strong improvements in com-
putational time [70], the Fast R-CNN still relies on an external region
proposal algorithm. This issue was addressed with the development of
the Faster R-CNN [71], where the region proposal algorithm of the
Fast R-CNN was substituted by a convolutional network, named region
proposal network, that takes as input the feature map and outputs the
proposed regions that are fed to the Fast R-CNN. A target detector based
on Faster R-CNN was used in the pose initialization pipeline in [59].

Single-stage object detection CNNs perform the bounding boxes
prediction and classification in a single pass through the CNN. One of
the most common architectures in this category is the You Only Look
Once (YOLO) [72]. The YOLO architecture, inspired by GoogLeNet,
consists of stacked convolutional layers interspersed with reduction
layers and followed by fully connected layers for prediction. It uses a
sliding window approach to split the input image into a fixed-resolution
grid. Each grid cell generates bounding boxes and confidence scores, in-
dicating the presence and accuracy of detected items, while conditional
class probabilities are computed for each grid cell. The final prediction
is made using a fully connected layer and a single-level feature map
from the pre-trained convolutional layers. Subsequent versions have
undergone significant modifications to improve accuracy and reduce
inference time. Comparisons between different YOLO releases are avail-
able in [73] and a specific comparison of YOLOv3 (from the initial
YOLO series) and YOLOv5 can be found in [74]. A different architecture
for single-stage detection is the Single-Shot Detector (SSD) [75]. The
SSD is based on a feed-forward CNN that generates a collection of
bounding boxes of fixed size. The bounding boxes are auto-scored for
the presence of object classes then the non-maximal suppression step
generates the final detections. The performances of later versions of
YOLO are currently better than the ones scored by SSD both in terms
of accuracy and inference time [68].

In this paper it has been decided to adopt YOLOv51 as the baseline
rchitecture for target detection since it offers a good trade-off between
nference time on CPU and mobile devices, number of parameters,
loating Point Operations (FLOPs), and also the complexity of the
raining process [73,74]. The YOLOv5s (small version) has been used
s a target detector in [58] achieving state-of-the-art performances and
utperforming the Intersection-over-Union (IoU) score registered by the
aster R-CNN used in [59].

.3. Line segments detection algorithms

The topic of line segment detection has been widely studied in
omputer vision. The available line segment detection algorithms can
e classified in three groups [76]: global methods, local methods,
nd deep learning-based methods. Global methods leverage on edge
etection algorithms and then apply voting schemes, as in the Hough

1 https://github.com/ultralytics/yolov5

https://github.com/ultralytics/yolov5
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Transform, to detect class of shapes, including line segments [77].
These methods entail well-known drawbacks as the fail in detecting
edges due to weak gradients or the presence of false positives in regions
of the image with a high density of edges. Moreover, the accurate
detection of the endpoints of line segments using the Hough transform
remains a challenge for complex scenarios like spaceborne images [63],
due to the high sensitivity of the line segment detected to the input
hyperparameters and the difficulties of tuning such algorithms for
highly varying illumination conditions.

Local methods overcome some limitations of the global methods
by relying on low-level image cues as strong gradient to detect inter-
esting pixels and then progressively adding neighboring pixels based
on gradient information to ‘‘build’’ line segments. Namely, the region
growing process proposed by the LSD method [78] allows a better de-
tection in highly populated image regions with an improved efficiency.
Other methods improved the scheme proposed in [78] by leveraging
on accurate detection of anchor pixel and improved edge drawing
schemes [79–81] reaching impressive performances also in case of
devices with low computational capacity [76]. Despite that, these hand-
crafted methods are sensitive to noise and require careful parameter
tuning.

In recent years, deep learning has emerged as a promising approach
for edge detection. One notable method is the Holistically-Nested Edge
Detection (HED) algorithm [82], which frames the edge detection as
a pixel-wise binary classification problem, with proved superior per-
formances compared to traditional methods. Subsequently, a number
of edge detection methods have been proposed [83,84]. However,
while these methods generate edge maps, they lack explicit geometric
information necessary for compact environment representation and
accurate localization of line segments. As a result, a post-processing
step is required, which can be computationally expensive. Recently,
Huang et al. [85] introduced a learning-based approach to line segment
detection by proposing a large-scale Wireframe dataset. Their method,
called DWP, employs two parallel branches to predict junction maps
and line heatmaps, which are then merged to generate line segments.
Other methods, such as PPGNet [86] and L-CNN [87], use a point-
pair graph representation for line segments, but require an additional
classifier to determine if the predicted point pairs correspond to the
endpoints of a line segment. Similarly, AFM and HAWP [88,89] utilize
attraction field maps from raw images to localize line segments, but
still rely on an extra classifier. Although learning-based methods offer
advantages over hand-crafted methods, their two-step strategy can
limit real-time performance and require heuristic post-processing. To
address these limitations, TP-LSD [90] proposed a tri-point-based line
representation. However, its use is limited on edge devices due to its
large model size based on a stacked hourglass architecture requiring
significant computational resources. To overcome the limitations of
a high computational burden, the M-LSD [24] has been proposed
as a real-time deep learning-based line segment detector specifically
designed for edge devices, making it a lightweight and efficient op-
tion for resource-constrained environments. Unlike other methods, the
network architecture in M-LSD is highly efficient and does not require
additional post-processing steps to generate line segment predictions.
These characteristics makes the M-LSD a good candidate for spacecraft
relative navigation applications, hence it has been adopted as baseline
line segments detector in the work here presented.

2.4. Spaceborne image datasets and labels

To improve the accuracy of pose initialization algorithms through
CNN-aided methods, labeled image datasets are needed for a proper
training phase. The first publicly available dataset was the SPEED
dataset [91]. This dataset was adopted for SPEC2019 and includes
15000 synthetic images of Tango rendered with an OpenGL-based tool
and 300 mock-up images acquired from the Testbed for Rendezvous
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and Optical Navigation (TRON) [92]. The images are grayscale with a
resolution of 1920 × 1200 pixels and labeled with relative pose only
for a subset of 12000 images. The synthetic images have been vali-
dated against actual Tango images from the mission PRISMA through
histogram comparison [19]. During the SPEC2019 competition also
the URSO (Unreal Rendered Spacecraft On-Orbit) dataset [93] was
released. The 15000 images in URSO are split in 10000 images of Soyuz
and 5000 images of Crew Dragon spacecraft, all rendered by using
Unreal Engine 4. The images are RGB with a resolution of 1280 × 960
pixels, with the relative pose labeled for each frame. The URSO dataset
has been validated qualitatively only by visually comparing rendered
images with actual Soyuz and Crew Dragon pictures [61]. In the
context of SPEC2021, an improved version of SPEED was released and
named SPEED+ [94]. SPEED+ is made of 59960 synthetic images of
Tango rendered with OpenGL, 6740 mock-up images acquired with
HIL simulating the Earth albedo (named lightbox), and 2791 mock-
up images acquired with HIL simulating the direct sun illumination
(named sunlamp). The images are grayscale with the same resolution
as SPEED, while the relative pose labels are available only for the
synthetic images [20]. More recently, one of the widest validated,
multi-labeled, publicly available image datasets has been released [95].
The dataset comprises 33000 synthetic grayscale images of a simplified
Tango model with a resolution of 1024 × 1024 pixels rendered using
POV-Ray as the ray-tracing engine. The images are all labeled with
relative pose [96], RGB segmentation masks and bounding boxes [97],
and reprojected visible line segments from the 3D wireframe model of
the target [98]. The images have been successfully validated against
SPEED images both qualitatively and quantitatively [95].

During the last years, other image datasets have been published
using several rendering software and providing various annotations,
but without providing any validation between synthetic images and
actual spaceborne images. The dataset in [99] is made of 3771 RGB
images (both rendered and real images) with a resolution of 1280 × 720
pixels, representing various spacecraft models labeled with segmen-
tation masks and bounding boxes. Hu et al. [100] rendered 50000
synthetic RGB images of SwissCube CubeSat by using Mitsuba 2, a
physically-based ray-tracer, with a resolution of 1024 × 1024 pixels,
and labeled with relative pose and segmentation masks annotations.
Price et al. [101] rendered 20300 synthetic grayscale images of the
rover Minerva-II2 seen from Hayabusa2 by using SolidWorks Pho-
toview 360, with a resolution of 1024 × 1024 pixels, and providing
labels for both relative pose and interesting keypoints. Remarkably, the
widest dataset available is SPARK (SPAcecraft Recognition leveraging
Knowledge of Space Environment) [102]. Despite the drawback of not
being validated, it is composed of 150000 RGB images rendered by
using Unity3D. It includes 11 different spacecraft models, and all the
images are labeled with the relative pose, bounding boxes, segmenta-
tion masks, and image depth. Other authors also created image datasets
for their works [17,103,104] without making them publicly available.
Notably, despite being not public, the dataset in [105] composed of
both synthetic and mock-up images of Envisat acquired with HIL in
the ARGOS facility at Politecnico di Milano has been validated both
qualitatively and quantitatively.

The research presented here employs both SPEED and SPEED+ la-
beled images within the training phase for the needed CNNs. Moreover,
the images from the datasets in [95] have been also included, due to
the already available reprojected line segments annotations, increasing
the number of the available images for the work here presented to a
total of 105 000 labeled images.

3. Pose initialization algorithm

This section describes the architecture developed for M-LSD-based
pose initialization. In particular, in Section 3.1 is provided a full
overview of the general architecture, focusing on the proposed ap-
proach. Section 3.2 thoroughly describes the labeling procedure

adopted for SPEED and SPEED+ images, providing information on
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Fig. 1. M-LSD-based pose initialization pipeline high-level overview.
the overall dataset adopted for the work presented here. Sections 3.3
and 3.4 deal with the description of the target detection and line
segments detector CNNs respectively, focusing on the modifications
introduced with respect to the baselines, the training processes and
the performances scored by both the CNNs needed. After detailing the
image processing and feature extraction steps, Section 3.5 discusses the
matching of 2D to 3D features and the final relative pose estimation
step.

3.1. Architecture overview

The general high-level architecture proposed is schematized in
Fig. 1. The proposed pipeline involves two tasks fully entrusted to
CNNs, i.e. target detection and line segments extraction. Target detec-
tion is needed to locate the target in the image, a non-trivial task if
the background is present in the image processed. The target detection
CNN outputs a bounding box that, if correctly estimated, completely
encloses the portion of the image in which the target is present (i.e., the
ROI). The full-scale image is cropped to the ROI by using the bounding
box estimate provided by the target detector CNN to reduce the size
of the image to be processed, reducing the effect of the background
and enhancing the accuracy of the feature extraction and of the overall
pose estimation pipeline, as already demonstrated in [18,58,59]. The
line segment extraction CNN takes as input the cropped image and
outputs both the line segments detected and the junctions, i.e., the
keypoints. Notice that the junctions come from the junction map given
as additional output from the line segment extraction CNN adopted
here. This CNN extracts the line segments and the junction maps in
separate heads [24], hence, the junctions (i.e., keypoints) extracted do
not necessarily coincide with the line segments endpoint. Consequently,
a refined ROI can be defined from the keypoints and employed to filter
out possible line outliers (e.g., lines not belonging to the target and
spurious long lines exiting the refined ROI). Leveraging the refined ROI
defined above, the hyperparameters of the line merging and perceptual
grouping processes can be scaled based on the ROI diagonal length,
adapting them to the different relative distances between camera and
target, as in [23,41]. The line segments merging is needed to collect
and join possible duplicates and close fragments into a single line
segment. The perceptual grouping allows to decrease the search space
for the 2D to 3D correspondence problem, lowering the amount of
PnP problems to solve and the computational time as a consequence.
The perceptual grouping process is applied also to the 3D wireframe
model available. Such process is applied only once, on ground before
the mission start, and the output 3D perceptual groups are stored and
used in the proposed pipeline to build the match matrix i.e., the matrix
representing the correspondences between 2D and 3D groups. The
match matrix is build here adopting the approach given in [63]. Each
entry of the match matrix associates 2D keypoints from 2D perceptual
groups to the respective 3D counterpart. All the correspondences in
the match matrix are processed with the EPnP algorithm to retrieve
the relative pose for each pair. The relative pose estimates are sorted
by ranking the computed reprojection error. Only the top-10 poses
with the lowest reprojection error are further optimized through a
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non-linear Levenberg–Marquardt minimization scheme as in [58]. The
optimized pose estimates are employed to reproject only the visible 3D
wireframe keypoints onto the image plane. The visibility of each 3D
keypoint from the estimated camera position and orientation is eval-
uated using a simplified mesh of the target spacecraft and exploiting
the Möller–Trumbore ray-triangle intersection algorithm [106]. The
same approach was adopted in [95] to compute visible reprojected
lines in images to provide annotations for line segments in view per
each image of the synthesized dataset, revealing to be fast and accurate
enough. The visible reprojected keypoints are paired via a nearest-
neighbor search with the closest feature point from the set of 2D
keypoints obtained by combining the endpoints of the merged line
segments with the detected keypoints from M-LSD. The final best pose
estimated by the proposed pipeline is given by the optimized relative
pose that scores the minimum mean reprojection error. The overall
architecture is inspired by the SVD algorithm [23]. Nonetheless, the
proposed approach introduces substantial updates and modifications
to the original SVD that increase the accuracy and the availability
of an accurate pose estimate, lowering the overall complexity and
computational time also with respect to [44].

3.2. Datasets and labels

From SPEC2019 the SPEED dataset [91] has been used as the
benchmark for pose initialization algorithms. For comparison purposes,
it is considered the baseline dataset also in this work. The SPEED
dataset size has been incremented with images from both SPEED+ [94]
and the multilabelled simplified Tango image dataset [95], here named
MINIMA (Multilabelled sImplified taNgo IMage dAtaset), to improve
the performances of the M-LSD in extracting lines from spaceborne
images. For the pipeline presented here, each image needs three dif-
ferent annotations, i.e., the relative pose, the target bounding box, and
the reprojected visible line segments from the 3D wireframe model.
The images in MINIMA are already labeled with the aforementioned
annotations [96–98], while for SPEED and SPEED+ only the relative
pose is available and only for a subset of the images (12000 synthetic
images in SPEED and 60000 synthetic images in SPEED+) hence the
additional required labels have been computed. For sake of complete-
ness, Table 1 shows the intrinsic parameters of the cameras adopted to
generate SPEED/SPEED+ and MINIMA datasets.

To retrieve the needed labels the 3D wireframe model of Tango
is estimated since it is not publicly available. Reconstructing the 3D
wireframe model translates into retrieving the keypoints of the model.

Table 1
Camera parameters of SPEED/SPEED+ and MINIMA datasets.

Parameter SPEED/SPEED+ MINIMA

Resolution (𝑁𝑢 ×𝑁𝑣) 1920 × 1200 px 1024 × 1024 px
Pixel size (𝑑𝑢 ≡ 𝑑𝑣) 5.86 μm/pixel 4.8 μm/pixel
Focal length f 17.6 mm 6.0 mm
Horizontal FOV 35.45 deg 44.54 deg
Vertical FOV 22.59 deg 44.54 deg
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Fig. 2. Reconstructed 3D wireframe model and keypoints for SPEED/SPEED+ images.

This issue is handled by hand-picking the keypoints in 25 images
from SPEED and then performing an iterative minimization problem as
described in [57], where the objective function to minimize is the sum
of the reprojection errors between the 3D keypoints and the associated
2D image features by tuning the 3D coordinates of the keypoints,
knowing the relative pose associated with each image. Fig. 2 shows
the estimated 3D keypoints and the reconstructed 3D wireframe model.
Once the 3D keypoints and a simplified mesh representative of the
Tango model used in SPEED and SPEED+ are available, the bounding
box and the visible reprojected line segments can be annotated for each
image as detailed in [95].

The bounding boxes retrieved by reprojecting the keypoints in the
image frame have been enlarged before being annotated as in [58]
to avoid any unintentional cut-off of portions of Tango from the ROI.
Specifically, the sides of the ROI are widened by the maximum value
between the 10% of the half-height and the 10% of the half-width of the
originally detected ROI. Notice that by providing enlarged annotated
ROI values as ground truth for the target detector CNN during the
training phase, the CNN is implicitly forced to learn to predict a relaxed
bounding box, limiting the possibilities of cutting out portions of Tango
during inference. Fig. 3 shows as a dotted line the minimum ROI
computed while, with a solid line, the relaxed ROI used for training
the target detector CNN. The bounding box annotations also include
the center of the ROI, represented in Fig. 3 as a dot.

Even the annotations of the visible line segments needed to train
the M-LSD can be obtained by reprojecting 3D keypoints into the
image plane. In detail, the reconstructed 3D wireframe model is divided
into lines with associated endpoints (i.e., start and end keypoints). To
properly handle possible partial occlusion of the line segments, each
defined line is split into sub-segments by adding 100 equally spaced in-
termediate keypoints along the line segment, starting from the left-most
original 3D keypoints. Then, the visibility of each keypoint is evaluated
through the Möller–Trumbore ray-triangle intersection algorithm as
in [95], given the already labeled relative pose and the reconstructed
simplified mesh. The binary visibility score of each keypoint that is
inside the FOV of the camera is saved in a vector before reprojecting
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only the visible keypoints in the image plane. The binary visibility
vector is then employed to retrieve which portions of the original line
segment are in view and that have to be annotated. If there are more
than one visible portions interspersed by non-visible ones, they are
annotated as independent line segments. Otherwise, the line segment
is annotated as a single line if it is totally in view. The procedure
parses each line segment of the 3D wireframe model for each image
available, annotating the line segments in view in each image in the
standard format of the Wireframe Dataset introduced in [85]. So far, the
largest publicly available dataset with wireframe annotation is the one
in [98], up to the authors’ knowledge. Fig. 4 shows two example images
from the SPEED dataset where the annotated reprojected line segments
in view computed with the scheme presented above are in red. The
algorithm can retrieve both complete and fragmented line segments
with a high level of accuracy also for those cases in which only a
minor sub-portion of the whole line is visible (e.g., in the back corner
of the solar array of Tango highlighted in Fig. 5) or multiple visible
lines are close each other (e.g., the lines belonging to the solar panel
and the base of the main body of Tango in the right picture), without
introducing any unintended gap in correspondence of line junctions.

Table 2 offers a general overview of datasets and labels used in this
work.
Table 2
Overview of datasets adopted.

Name Images Relative distances Annotations

MINIMA 33000 5 m–30 m
Relative Pose Available
ROI Available
Line Segments Available

SPEED 12000 3 m–40.5 m
Relative Pose Available
ROI Computed
Line Segments Computed

SPEED+ 59960 2.25 m–10 m
Relative Pose Available
ROI Computed
Line Segments Computed

The images in the MINIMA dataset are noiseless thus the same
noise levels of SPEED/SPEED+ images are added before processing
the images. Specifically, a Gaussian Blurring kernel with standard
deviation 𝜎 = 1 is applied to the noiseless images, then an Additive
White Gaussian Noise with variance 𝜎2 = 0.0022 and zero mean is
superimposed to the blurred image. The intensity value of each pixel
in the noised image is clipped to the range [0, 255]. This procedure
to add noise to MINIMA images has been already validated in [95].
Although the SPEED/SPEED+ images are already abundant, those from
MINIMA have been included because the target model is a simplified
version of the Tango adopted for SPEED/SPEED+, with fewer details
and slightly different textures for the solar panel. Moreover, both the
Earth and the camera models adopted in MINIMA differ from those
of SPEED/SPEED+. It has been already proven that introducing some
augmentations also in the target texture during training is beneficial
to improve performances and slightly fill the domain gap that can
be present between the training set and the actual test environment,
improving the robustness of the entire pose estimation algorithm [53].
Hence, we introduced the MINIMA to increase the generalization capa-
bilities and the accuracy of the M-LSD and the entire pipeline proposed.
Fig. 3. Examples of computed ROI (dotted lines), enlarged ROI labeled (full lines), and ROI center labeled (dot) for SPEED images.
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Fig. 4. Examples of computed line segments in view (red lines) for SPEED images.
Fig. 5. Examples of correctly interrupted line segment due to visibility.

For training and validations purposes, the SPEED+ and the MINIMA
datasets have been split into training and validation sets with a 9:1
ratio, while the 12000 images in the SPEED dataset have been shuffled
and randomly split into 7680 training images (64% of SPEED), 1920
validation images (16% of SPEED), and 2400 test images (20% of
SPEED). As detailed in the next Sections, the Target Detection CNN
has been trained by using only images from SPEED dataset with the
aforementioned split, while the M-LSD has been trained by using the
training splits from SPEED, SPEED+ and MINIMA and validated with
the corresponding validation splits. The images in the test split of
SPEED defined above are adopted as labeled test set throughout this
paper, and they are never used during the training phases. The images
in the labeled test set belong only to the SPEED dataset to provide a
labeled testing scenario coherent with the SPEC2019 test set, which, on
the contrary, is not labeled, to get more insights on the performances
of the pose initialization algorithm developed.

3.3. Target detection CNN

As previously mentioned, the baseline target detector CNN adopted
is the YOLOv5 due to its good trade-off between inference time and
FLOPs, and since it has already been successfully adopted in its ‘‘small’’
version (YOLOv5s) for spaceborne images in [58]. Specifically, in the
selection phase of the baseline target detector CNN, both YOLOv5n
and YOLOv5s have been considered. The former is the smallest version
of the YOLOv5 series, being composed of 213 layers with a total of
1.76 M parameters and requiring 4.1 GFLOPs during inference. The
latter is slightly bigger than the former, and is made of 213 layers
with a total of 7.0 M parameters and requires 15.8 GFLOPs during
inference. The values reported above hold for an input image having
size 512 × 512 pixels. The input size has been selected from a trade-
off between accuracy and inference time. The application scenario
is a single-class/single-object, thus a simplified version of the more
generic multiple-class/multiple-object framework for which the YOLO
CNNs are meant. Hence, the original architecture of YOLOv5n and
YOLOv5s has been further simplified by skipping the final non-maximal
suppression step and ensuring that the output is a single bounding box
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with a confidence threshold higher than 0.6 as in [58]. The two-stage
methods have been discarded for the implementation proposed here
due to the proven high inference time and computational cost [68].

3.3.1. YOLO training and comparison criteria
The training phase of the two YOLO versions is performed on an

NVIDIA RTX™ A6000 GPU. Training images are augmented with a
probability of 10% during the training phase using the default augmen-
tations of YOLO training (e.g., random brightness variations, blurring,
Contrast Limited Adaptive Histogram Equalization (CLAHE), geomet-
rical transformations, etc.) with the addition of random Gaussian and
ISO noises. Both the considered variants are trained using the stochastic
gradient descent method with a learning rate of 0.01 linearly decaying
to 0.0001, a momentum of 0.937, weight decay of 5 × 10−4, and a
minibatch size of 64 images. Binary cross entropy is adopted as loss
function. YOLOv5n is trained for 500 epochs, while YOLOv5s training
lasts for 800 epochs. The training parameters were maintained as
default since the monitored metrics discussed hereafter do not improve
by changing the default values. The mini-batch size was selected by
maximizing the number of images in each mini-batch without surpass-
ing the available computational resources for the training phase. The
number of epochs was defined by noticing during experiments that
training longer gives no meaningful improvements, resulting in most
of the cases in the early stopping after a few more steps due to no
improvements on the monitored metrics discussed hereafter.

The criteria adopted to evaluate the performances of the selected
YOLOs on the test set are the Intersection-over-Union (IoU) index and
the average precision (AP). The IoU gives the percentage of the overlap
between the predicted and ground truth bounding box. The higher the
IoU, the more accurate the predicted bounding box. The AP is the area
under the precision–recall curve. Namely, the precision is the ratio of
the number of correct bounding boxes predicted (i.e., true positives)
over the total amount of predicted bounding boxes (i.e., true positives
plus false positives), while the recall is the ratio of correct bounding
boxes predicted (i.e., true positives) over the total number of ground
truth bounding boxes (i.e., true positives plus false negatives). The IoU
is thresholded to generate several precision–recall curves for different
levels of IoU. The mean average precision is computed by averaging the
AP evaluated for each level of IoU. Namely, the AP95

50 is computed by
averaging the AP values evaluated for precision–recall curves obtained
by thresholding the IoU to 50% and 95%. The evaluation of the AP
is usually performed by computing precision–recall curves for IoU
thresholds from 50% to 95% with steps of 5%, leading to ten different
curves. Please notice that the higher the IoU threshold, the lower the
area under the precision–recall curve hence, in terms of accuracy, the
higher the AP95

50, the more accurate the ROI detection.

3.3.2. YOLO results and baseline selection
Fig. 6 shows the Precision–Recall curves for different IoU thresholds

obtained on the test set for YOLOv5n (left) and YOLOv5s (right)
after the training, demonstrating that the YOLOv5s achieves better
precision–recall performances than YOLOv5n. Computing the mean
IoU in the test set and the average precision in the IoU range from
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Fig. 6. Precision–Recall curves on test set for YOLOv5n (left) and YOLOv5s (right).
Table 3
Performances of target detection CNNs on SPEED images.
Method Mean IoU Mean AP95

50

SLAB Baseline [18] 91.9% N.A.
UniAdelaide [59] 95.34% N.A.
SLN (YOLOv5s) [58] 95.38% 98.51%

YOLOv5n (our) 95.42% 95.7%
YOLOv5s (our) 96.46% 97.6%

0.50 to 0.95 for both architectures confirms the insights achieved from
the plots comparison. The mean IoU values are reported in Table 3
and compared with the top-scoring architecture of SPEC2019 [59],
the SLAB baseline [18], and the results achieved by the Spacecraft
Localization Network (SLN) in [58] (that scored the most accurate
performances in terms of IoU on SPEED using YOLOv5s).

The proposed YOLOv5s outperforms all the previous architectures
with an increment in the mean IoU of ∼1.1%, despite the AP95

50 is
slightly lower than the SLN, setting a new highest mean IoU value
on SPEED images. Notably, also the proposed YOLOv5n is capable of
outperforming all the other architectures listed in Table 3 in terms of
IoU, even if the gap in AP95

50 with respect to the SLN is more severe.
Please notice that the AP95

50 scores for the SLAB Baseline and for the ar-
chitecture proposed by UniAdelaide are not available in the literature.
It is acknowledged that the gap in both IoU and AP95

50 scores between
the SLN and the YOLOv5 model adopted here are due to differences in
the training parameters and likely in the YOLOv5 parameters, due to
their continuous updated from the developers.

Due to the higher accuracy offered by the YOLOv5s, such archi-
tecture has been selected as the baseline to investigate the capa-
bilities of the proposed pose initialization architecture, even with a
slightly longer inference time and computational burden with respect to
YOLOv5n. The histograms representing the IoU scores of both YOLOv5s
and YOLOv5n are reported in Fig. 7 to have a more comprehensive
overview of the performances on the SPEED images included in the test
set, while examples of YOLOv5s ROI detections against ground truth
bounding boxes on test images are shown in Fig. 8 for different levels
of IoU.

3.4. Line segment detection CNN

The line segment detector is based on the U-shaped MobileNet
architecture from M-LSD [24], which offers the advantage of high
detection accuracy with low computational cost, being able of running
in real-time on mobile devices. The dataset employed differs from the
Wireframe dataset [85] (which is the state-of-the-art benchmark for line
segment detection tasks) as spaceborne images result in fewer complex
patterns and overlapping situations among various objects. This simpli-
fication of the application scenario allows reducing the input resolution
from 512 × 512 to 256 × 256 without significant performance degrada-
tion, enabling faster computation. The model adopted here comprises
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1.5M parameters and requires 6.44 GFLOP for processing each input
image.

The M-LSD model is trained using the public datasets and their
splits discussed in Section 3.2. Before training, the datasets underwent
several preprocessing steps, including resizing to the input size (random
cropping was not adopted), affine transformation with shearing ranging
from −30◦ to 30◦, rotation ranging from −90◦ to 90◦, and the addition
of Gaussian noise. The dataset was further augmented with horizontal
or vertical flips, color space distortion including adjustments to bright-
ness, contrast, saturation, and hue, and a specialized augmentation
method specifically designed for the training of M-LSD named Segments
of Line segment (SoL) [24]. SoL augmentation was designed to enrich
the training dataset with a wider range of line segment lengths by divid-
ing the original line segments into multiple overlapping sub-segments,
ensuring both continuity between the segments and a broader variety
of segment lengths for training, that are used during the training phase.

3.4.1. M-LSD training and evaluation criteria
The training procedure adopted closely follows the one developed

for the reference M-LSD model, with minor parameter modifications
to account for the differences between the employed datasets and the
Wireframe dataset originally adopted in [24]. Namely, the datasets
employed predominantly contain long line segments, which require a
large receptive field for accurate prediction, concentrated in a small
portion of the total image, i.e., the ROI. In contrast, the Wireframe
dataset consists of a mixture of short and long line segments, neces-
sitating the detection of both. The input image size has been modified
here from 512 to 256 pixels to address this disparity, forecasting to
process only the extracted ROI and optimizing the inference time of the
model. The number of warm-up epochs has been increased from 5 to 10
for training stability and the matching threshold for the matching loss
proposed in [24] was adjusted from 5.0 to 2.5 to follow the reduced
input image size. All other parameters remained the same as in the
original M-LSD model. The training process was carried out for a total
of 300 epochs and reported the performance of the final model adopted.
The training employed a mini-batch size of 64 images across 8 NVIDIA
V100 GPUs, with each GPU processing a local batch of 8 images.
The Adam optimizer was used with default parameters, except for the
learning rate, which started at 0.001 and decreased to 0.00001 using
cosine decay. These values have been defined starting from the training
parameters in [24] and scaling them employing log-scale tuning. The
reported values ensure both stability in the training process and optimal
performances in the application scenario. The loss function remained
identical to the one used in the original M-LSD paper [24].

The primary evaluation metric adopted here is the structural aver-
age precision (sAP) proposed in [87]. 𝑠𝐴𝑃 𝜀 measures the performance
of line segment detection algorithms on vectorized wireframes, as op-
posed to a heatmap, providing a comprehensive measure of algorithm
performance over various thresholds 𝜀. Inspired by the mean average
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Fig. 7. IoU score on test images for YOLOv5n (left) and YOLOv5s (right).
Fig. 8. Ground truth and predicted ROI using YOLOv5s on test images with IoU score.
precision commonly used in object detection and discussed in Sec-
tion 3.3, sAP is computed as the area under the precision–recall curve,
where a line segment is marked as a true positive if the sum of the
squared error between predicted end-points and their ground truth is
less than 𝜀. The use of sAP in this work reflects the need for a robust and
comprehensive measure of line segment detection performance, with
the 𝜀 parameter taken from [87] to ensure a standardized evaluation.

3.4.2. M-LSD training results and baseline selection
As shown in Table 4, the experimental results for two types of

M-LSD models (namely, baseline and tiny version) are compared by
considering both 512 × 512 pixels and 256 × 256 pixels as resolutions
for input images. The outcomes in Table 4 point out that there is not
Table 4
Impact of resolution and model structure on M-LSD performance and computational
cost.

Setup 𝑠𝐴𝑃 5 𝑠𝐴𝑃 10 Params (M) GFLOP FPS

512 × 512 M-LSD 63.10 68.92 1.5 25.79 115.4
256 × 256 M-LSD 62.73 68.31 1.5 6.44 151.1
512 × 512 M-LSD tiny 59.31 62.14 0.6 4.22 164.1
256 × 256 M-LSD tiny 58.89 61.88 0.6 1.05 208.3

a significant difference in terms of model performance when reducing
the resolution from 512 to 256 in the same model architecture for
the dataset here considered. However, there is a drop of more than
four times in terms of computational cost (GFLOP) and a significant
increase in terms of frame per second (FPS) measured on an NVIDIA
V100 GPU. Similar behavior, in terms of GFLOP and FPS, can be
obtained by changing the architecture from the baseline to the tiny
version and maintaining the same resolution but, in that case, it also
leads to a substantial degradation of performances. This aspect holds
great importance as it can significantly affect the overall performance
of the relative pose estimation task. Consequently, the 256 × 256
M-LSD baseline architecture is adopted as the line detection model
in this study, considering the trade-off between performances and
computational complexity of the analyzed architectures.
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While training M-LSD, the learning rate was kept fixed at 0.001
during the 10 warm-up epochs, lowered from 0.01 initially proposed
in [24] since the originally proposed 5 warm-up epochs at 0.01 did not
lead to convergence.

Table 5 presents the results of the ablation study of M-LSD for
line segment detection for pose initialization using the aforementioned
datasets, while Fig. 9 shows the qualitative results. Baseline (M1 from
Table 5) refers to the experimental results using only MINIMA training
dataset and all training receipts except for the warm-up and learning
rate mentioned before. The performances of the model improved from
M1 to M3 since more images from different datasets are included in the
training. According to Fig. 9, M1 shows inaccurate results, but with the
addition of the SPEED and SPEED+ images, it became possible to obtain
results suitable for the relative pose initialization scheme proposed.

Due to the significant emphasis on the performance boost of M-
LSD due to the matching loss [24], the model has been tuned by
adjusting a matching threshold, which is a hyperparameter used in the
matching loss. The matching loss is proposed to make the predicted
line segments and the ground truth line segments closer by minimizing
the distances between the endpoints of both. If the Euclidean distance
between the endpoints is lower than the matching threshold, it is
selected for loss computation, and the matching loss is calculated based
on the L1 distance between the two endpoints. As the input images are
downscaled from 512 × 512 to 256 × 256, using the same threshold
value of 5.0 as a default value proposed in M-LSD [24] would result
in improperly predicted line segments being excessively included in
the matching loss computation, preventing the training of an optimal
model. Therefore, the threshold value was reduced from 5.0 to 2.5
in proportion to the decreased resolution. The tuning of the matching
threshold brings a huge performance improvement. as pointed out in
Table 5 where M4 achieved an 𝑠𝐴𝑃 5 of 62.73 on MINIMA, SPEED, and
SPEED+ validation datasets combined. As shown in Fig. 9, M4 predicts
the junction points and line segments more accurately if compared to
other models (M1, M2, and M3), as a consequence M4 was adopted as
baseline. Furthermore, Fig. 9 shows that the keypoints returned do not
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Table 5
Ablation study for M-LSD. SPEEDs represents the combination of the SPEED and SPEED+ validation sets.
M Scheme 𝑠𝐴𝑃 5

MINIMA
𝑠𝐴𝑃 5

SPEEDs
𝑠𝐴𝑃 5

all

1 Baseline 56.21 36.28 48.45
2 + SPEED [91] 55.81 52.89 53.57
3 + SPEED+ [94] 55.62 54.32 54.81
4 + make the matching threshold [24] 2.5 from 5.0 60.92 63.77 62.73
Fig. 9. Qualitative comparison of M-LSD detected line segments and junctions for different models in ablation study.
necessarily coincide with the line segments endpoints since they are
independent outputs of the M-LSD, making them suitable to identify
a refined ROI to filter possible line segments outliers as outlined in
Section 3.1.

3.5. Match matrix and final relative pose estimation

The last part of the proposed pipeline concerns the processing of
the detected line segments to retrieve the final pose estimate. The
algorithms needed for this task are retrieved from the original SVD im-
plementation in [23]. As already noticed in [23,63,107], the presence
of repeated edges and even fragments belonging to the same line seg-
ment entirely visible erroneously detected as independent line segments
can jeopardize the entire pose estimation algorithm, leading to high
estimation errors. The M-LSD was proven during preliminary tests to
be robust against these drawbacks that characterize the behavior of the
Hough Transform but, to increase the accuracy of the estimated pose
and reduce the computation time, a line merging step is also included
in the proposed architecture. The (𝜌, 𝜃) parametrization, also named
polar representation, is adopted to check the similarity of line segments
and perform the perceptual grouping. Two line segments (𝜌1, 𝜃1) and
(𝜌2, 𝜃2) are similar if |𝜃1 − 𝜃2| < 𝜃𝑡ℎ𝑟𝑒𝑠ℎ and |𝜌1 − 𝜌2| < 𝜌𝑡ℎ𝑟𝑒𝑠ℎ. Moreover,
the Euclidean distance between the farthest endpoints of the two
line segments must be lower than a threshold 𝑑𝑡ℎ𝑟𝑒𝑠ℎ. Unlike Sharma
et al. [23] that set constant threshold values for 𝜃𝑡ℎ𝑟𝑒𝑠ℎ and 𝜌𝑡ℎ𝑟𝑒𝑠ℎ, the
work presented here scales 𝜌𝑡ℎ𝑟𝑒𝑠ℎ with the diagonal dimension of the
detected ROI 𝑑𝑅𝑂𝐼 as in Eq. (1), improving the correct identification
of spacecraft true edges [62], while the 𝜃𝑡ℎ𝑟𝑒𝑠ℎ is maintained constant.
𝑑𝑡ℎ𝑟𝑒𝑠ℎ is computed for each image as half the mean length of the
detected line segments.

𝜌𝑡ℎ𝑟𝑒𝑠ℎ = 𝜈𝑑𝑅𝑂𝐼 (1)

The interested reader is referred to [23,62,107] for more details on
the line segments and parallel streams merging processes. Please no-
tice that the parallel streams merging, discussed in [23] and needed
in SVD to properly combine the line segments detected by the two
parallel streams, is not included in the architecture here presented
since only one stream is present, reducing the overall complexity and
computational time required to process a single image.
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The perceptual grouping, or feature synthesis, is one of the main
innovations introduced with SVD. As already mentioned, it consists in
organizing the detected line segments into more complex geometrical
groups named "perceptual groups" to reduce the search space for the
final relative pose estimation. In a general framework, by assuming that
the EPnP is adopted as PnP solver, a minimum of 6 correspondences
between the n 2D features and the m 3D points of the available 3D CAD
model are needed to uniquely determine the relative pose. Hence, the
total amount of correspondences to be tested can be computed as [23]:

(

𝑚
6

)(

𝑛
6

)

6! (2)

The perceptual grouping reduces the number of correspondences to be
tested by introducing the geometrical constraints that characterize each
group of lines considered, i.e. the feature detected are not considered
as independent, but linked to the other features as in the case of two
keypoints belonging to the same line segment [23,41]. The perceptual
groups adopted also in the work presented here are the parallel pairs,
proximity pairs, parallel triads, proximity triads (or open tetrads), and
closed tetrads, while the antennas are treated as a separate group and
used to break the symmetry and disambiguate the relative pose. Notice
that for Tango the antennas are visible from all the observing condi-
tions, hence they represent a good candidate group to disambiguate
images but, due to this role in the implemented algorithm, their correct
identification is of the utmost importance. Please notice that the algo-
rithm here presented is tailored to the relative pose estimation using
Tango as target, but it can be generalized to other spacecraft provided
the presence of identifiable features to break possible symmetries and
disambiguate the estimated poses. The simple geometrical constraints
defined for SVD, modified by introducing a scaling with respect to 𝑑𝑅𝑂𝐼
discussed in [62,107] to properly define the aforementioned perceptual
groups, have been adopted also in this work. The details of these
constraints are not reported here for the sake of brevity but the readers
are encouraged to retrieve the needed information in [23,62,107]. The
only modification with respect to [62,107] consists in the introduction
of more checks to be passed by a line segment before being categorized
as an antenna. The original check was only on the length of the line
segment, which is classified as ‘‘antenna’’ only if it length is 𝑙 ≤ 𝜏𝑑𝑅𝑂𝐼 ,
where 𝜏 is a scaling factor. During some preliminary analysis it has been
noticed that for some poses the length of actual antennas in SPEED
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Fig. 10. Schematic of the constrained ordering of the perceptual groups from [63].
images is higher than the length of the side edges that connects the
base of Tango with the upper solar panel hence also these edges where
classified as antennas. This erroneous classification is first prevented by
introducing a check on the radial disposition of the segments that are
initially classified as antennas. For the case of Tango all the antennas
are directed approximately in radial direction with respect to the center
of the ROI. As noticed in [63], retrieving the tip and the root keypoints
for a 2D antenna is an easy task provided the accuracy of the ROI
detection. Once that this information is available, the angle 𝛽 between
the 2D vectors that represent the position of the root and the tip with
respect to the ROI center is evaluated. If 𝛽 > 𝛽𝑡ℎ𝑟𝑒𝑠ℎ the segment is not
an antenna. If 𝛽 ≤ 𝛽𝑡ℎ𝑟𝑒𝑠ℎ, then it is verified that the distance between
the tip of the segment classified as an antenna and the endpoints of
all the other segments is not lower than a threshold value set equal to
20% of the length of the antenna. This second check comes from the
fact that all the appendages are directed outside from the envelope of
the main body for Tango, hence the tip of all these appendages must
be far from all the other line segments detected. If these two additional
conditions are not verified, the line segment is not classified as an
antenna. Notice that these two additional checks can be implemented
with simple operations that must be repeated for few lines since they
are applied in cascade, hence their impact on the computational cost
is low. The perceptual grouping described here is performed for each
image processed to detect 2D perceptual groups. The 3D perceptual
groups from the wireframe model are pre-computed only once and
stored in memory for subsequent matching with the 2D perceptual
groups detected during the runtime. The 3D perceptual groups detected
for the Tango wireframe model are 18 parallel pairs, 16 proximity pairs,
12 parallel triads, 12 proximity triads, 2 closed tetrads, and 5 antennas.

Keypoints in 2D groups are assigned to features in 3D groups during
the definition of the match matrix. Notice that to achieve a minimum
of 6 correspondences, the groups must be combined with at least
one antennas. The only exception is the group of parallel triads, that
already gives six keypoints per parallel triad detected. The formulation
adopted in this work is taken from [63], where it is explained how
introducing a constrained ordering in the format used to store all the
perceptual groups makes possible to obtain a mathematical formulation
to forecast the dimensions of the match matrix, hence the number
of correspondences to be tested with the EPnP. A scheme visually
representing the constrained ordering from [63] is given in Fig. 10. By
defining as 𝜙𝑎,2𝐷 the number of 2D antennas detected in the image, and
as 𝜙𝑎,3𝐷 the number of 3D antennas in the 3D CAD model, it is possible
to evaluate the number of combinations 𝑁𝑐𝑜𝑚𝑏,𝑎𝑛𝑡 needed to build the
match matrix as a function of 𝑘, the number of antennas needed to
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obtain a complete set of 6 features per each perceptual group, as [63]:

𝑁𝑐𝑜𝑚𝑏,𝑎𝑛𝑡 =
1
𝑘!

𝜙𝑎,2𝐷!
(𝜙𝑎,2𝐷 − 𝑘)!

𝜙𝑎,3𝐷!
(𝜙𝑎,3𝐷 − 𝑘)!

= 1
𝑘!

𝐷𝑎2𝐷 ,𝑘𝐷𝑎3𝐷 ,𝑘 (3)

Where 𝐷𝑛,𝑘 represents the k-permutations of n elements without repeti-
tion. From Eq. (3), by adopting the constrained ordering of the feature
groups, it is possible to compute the number of rows of the match
matrix as reported in Table 6, where the groups are listed from top
to bottom in descending order of complexity.

Notice that only the tip of the detected antennas is adopted to build
the match matrix since it is the only portion of the antennas that is
always in view, while the root, on the contrary, can be obstructed by
other components of Tango. Unlike the work in [63], the number of
antennas used in the match matrix is selected here as a function of the
detected antennas. This tuning of the number of antennas combined
with other feature groups leverages the higher accuracy in classifying
line segments as antennas, obtained from the combination of the M-
LSD detections and the geometrical check outlined above, to provide
more keypoints correspondences to the EPnP. Indeed, using the EPnP
solver provided by the OpenCV Python package, a relative pose can be
retrieved even for a set of correspondences in input equal to or higher
than 4, but the success rate and the accuracy of EPnP increases with the
number of input correspondences, as demonstrated in [23]. Building
on that, if 𝜙𝑎,2𝐷 > 4, then 𝑘 = 3 for the entries in Table 6. This leads
to a more accurate pose estimation in the case of the camera 𝑧-axis
almost aligned with the 𝑧-axis in the target reference frame (i.e., Tango
seen from the bottom or above). If 2 < 𝜙𝑎,2𝐷 ≤ 4, then 𝑘 = 2 but
only non-collinear antennas are combined. If 𝜙𝑎,2𝐷 = 2 then 𝑘 = 2
without considering the collinearity of the antennas, while 𝑘 = 1 if
𝜙𝑎,2𝐷 = 1. Notice that this last case is underdefined for all the groups,
thereby the accuracy of the pose estimate given by EPnP may be poor.
The combinations of parallel triads and proximity pairs are handled
separately from the other groups. The former are always computed
if detected, disregarding the number of 2D antennas available, while
the latter are evaluated with 𝑘 = 3 if 𝜙𝑎,2𝐷 ≥ 3 and 𝑘 = 2 if
𝜙𝑎,2𝐷 = 2, to limit the presence of underdefined solutions of the EPnP. A
more detailed description of the constrained ordering of the perceptual
groups and the computation of the match matrix can be found in [63].

After the definition of the match matrix as reported above, the
retrieval of the final pose estimates follows the steps outlined in Sec-
tion 3.1. Hence, all the 2D to 3D correspondences embedded in the
rows of the match matrix are fed to the EPnP solver to define a pose for
each of them. The top-10 pose estimates with the lowest reprojection
error are refined further through a non-linear Levenberg–Marquardt
minimization scheme. These refined pose estimates are employed to
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Table 6
Rows for each perceptual group in the match matrix.
Feature group Points per

feature group
Number of 2D
feature groups

Number of 3D
feature groups

Number of rows
in match matrix

Antenna 1 𝜙𝑎 𝜙′
𝑎 –

Closed Tetrad 4 𝜙𝑏 𝜙′
𝑏 8𝜙𝑏𝜙′

𝑏 ⋅
1
𝑘!
𝐷𝑎2𝐷 ,𝑘𝐷𝑎3𝐷 ,𝑘

Proximity Triad 4 𝜙𝑐 𝜙′
𝑐 2𝜙𝑐𝜙′

𝑐 ⋅
1
𝑘!
𝐷𝑎2𝐷 ,𝑘𝐷𝑎3𝐷 ,𝑘

Parallel Triad 6 𝜙𝑑 𝜙′
𝑑 12𝜙𝑑𝜙′

𝑑
Parallel Pair 4 𝜙𝑒 𝜙′

𝑒 4𝜙𝑒𝜙′
𝑒 ⋅

1
𝑘!
𝐷𝑎2𝐷 ,𝑘𝐷𝑎3𝐷 ,𝑘

Proximity Pair 3 𝜙𝑓 𝜙′
𝑓 2𝜙𝑓𝜙′

𝑓 ⋅ 1
𝑘!
𝐷𝑎2𝐷 ,𝑘𝐷𝑎3𝐷 ,𝑘
reproject only the 3D keypoints visible from the estimated relative pose
on the image plane. Subsequently, a nearest-neighbor search matches
the reprojected keypoints with the closest feature point from a com-
bination of line segments endpoints and junctions keypoints detected
by the M-LSD. The final pose estimate is given by the optimized pose
with the lowest reprojection error evaluated between matched pairs of
detected and reprojected features. Regarding the Levenberg–Marquardt
refinement, the built-in implementation offered by the OpenCV Python
package is adopted here by setting as termination criteria a maximum
number of iterations equal to 2000 and a minimum tolerance between
consecutive solutions of 1 × 10−14. These values have been selected by
noticing during the test phase that no further improvements in the
output relative pose are achieved by decreasing the tolerance, while
the maximum number of iterations is set to avoid high computational
times in case the tolerance termination criterion was never triggered.

Processing all the 2D-to −3D correspondences in the match matrix
with the EPnP solver is the most time-consuming step in the entire
pipeline outlined since it involves processing each line of the match
matrix. Notice that the most complex groups in Table 6 are given by
combinations of the most basics ones, thus it could be considered to
rely only on a subset of these groups to build a reduced match matrix,
lowering the overall computational time. In particular, the reduced
match matrix adopted here includes only the two most complex groups
available detected in each image coupled with the parallel triads (if
detected) to have measures independent from the detection of the an-
tennas. The results in Section 4 provide an evaluation of the effects on
both the accuracy and computational time with both full and reduced
match matrix.

It is acknowledged that, despite the approach outlined above being
general from the formulation point of view, the pipeline has been
optimized to work with Tango as a target through checks that account
for the specific geometry of this target (e.g., controls on antennas
and perceptual groups considered) represents a limitation of the ap-
plicability of the proposed approach towards other targets. Hence, the
geometry of other spacecraft should be analyzed carefully and included
in the pipeline before applying it.

4. Results

The main outcomes related to the proposed pose initialization ar-
chitecture are detailed and commented in the following subsections.
Namely, Section 4.1 describes the general relative pose initialization
framework and the metrics adopted to characterize the estimation
error. Section 4.2 discusses the outcomes of the participation in the
SPEC2019 with the baseline YOLOv5s/M-LSD pose initialization ar-
chitecture and the verification of the representativeness of a labeled
test set extracted from the SPEED images with available labels. The
representative test set is then employed to have more insights on the
proposed architecture in Section 4.3, including the effect several com-
mon sources of errors in the estimation accuracy, and considerations
about algorithm latency and possible speedup. Section 4.4 shows a
comparison of the proposed algorithm against other approaches to the
relative pose initialization problem, highlighting both the benefits and
weaknesses.
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Fig. 11. Reference frames and PnP problem scheme.

4.1. Evaluation metrics

The relative pose estimation problem consists in evaluating the
position of the target center of mass in camera reference frame 𝐭𝐶 and
the relative attitude expressed as the rotation matrix 𝐑𝐵→𝐶 , i.e., the
rotation matrix from target to camera reference frame. Taking Fig. 11
as reference, it is possible to map the 3D position of a target feature
point expressed in body frame 𝐪𝐵 to its 2D position in the image plane
𝐩 by using the projective geometry equations as:

𝐫𝐶 =
(

𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶
)𝑇 = 𝐑𝐵→𝐶𝐪𝐵 + 𝐭𝐶 (4)

𝐩 = (𝑢, 𝑣) =
(

𝑥𝐶
𝑧𝐶

𝑓𝑥 + 𝐶𝑥,
𝑦𝐶
𝑧𝐶

𝑓𝑦 + 𝐶𝑦

)

(5)

Where 𝑓𝑥 and 𝑓𝑦 are the focal lengths of the camera expressed in pixels,
while (𝐶𝑥, 𝐶𝑦) are the principal point coordinates of the image in pixels.
The relative pose estimation task concerns the estimation of 𝐭𝐶 and
𝐑𝐵→𝐶 given the known location of pre-selected features 𝐪𝐵 and the
coordinates in pixel of their reprojection 𝐩 in the image plane. Eqs. (4)
and (5) are the PnP equations solved by PnP solvers that output the
relative pose provided the 2D to 3D matching. Notice that from Eqs. (4)
and (5) it is clear that a good relative pose estimate can be performed
only if the 2D features are correctly detected and matched with 3D
keypoints by IP algorithms.

To evaluate the performances of pose estimation algorithms,
SPEC2019 and SPEC2021 adopted a single scalar error metric intro-
duced in [19], defined here as ‘‘SLAB error’’ 𝑒𝑠𝑙𝑎𝑏. The SLAB error is
evaluated for each 𝑖th image as the sum of the normalized translational
error and the rotational error. In detail, the translational error is
computed as the norm of the difference between the ground truth
relative position 𝐭𝐶 and the estimated one �̂�𝐶 (see Eq. (6)), normalized
with respect to the norm of the ground truth relative position, as in
Eq. (7).

𝐸 = ‖𝐄 ‖ = ‖𝐭 − �̂� ‖ (6)
𝑡 𝑡 𝐶 𝐶
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𝑒𝑡 =
𝐸𝑡
‖𝐭𝐶‖

=
‖𝐭𝐶 − �̂�𝐶‖

‖𝐭𝐶‖
(7)

he rotation error is evaluated by using the quaternion representation
of the relative attitude of the camera with respect to the target
𝐵→𝐶 . Specifically, the rotation error is computed by evaluating the
uaternion error between the ground truth relative attitude 𝐪 and the
orresponding estimate �̂� as in Eq. (8).

𝑞 = 2 ⋅ arccos |𝐪 ⋅ �̂�| (8)

ence, the SLAB error can be computed per each 𝑖th image as:

(𝑖)
𝑠𝑙𝑎𝑏 = 𝑒(𝑖)𝑡 + 𝑒(𝑖)𝑞 =

‖𝐭(𝑖)𝐶 − �̂�(𝑖)𝐶 ‖

‖𝐭(𝑖)𝐶 ‖

+ 2 ⋅ arccos |𝐪(𝑖) ⋅ �̂�(𝑖)| (9)

or a dataset of 𝑁 images, the final overall SLAB score is the mean
alue of the SLAB error computed for each image:

𝑠𝑙𝑎𝑏 =
1
𝑁

𝑁
∑

𝑖=1
𝑒(𝑖)𝑠𝑙𝑎𝑏 (10)

he SLAB error is adopted as the main metric also in this work, but
o get more insights into the performances of the proposed algorithms
e.g. the error distributions, the effect of the background, etc.), the
irect access to the ground truth relative pose of each processed image
s needed. Unfortunately, only the images from the official benchmark
est set for pose estimation algorithms proposed for SPEC2019 are
ublicly available, without annotations for the ground truth relative
ose associated with each frame. The test set of 2400 images extracted
rom the actual SPEED dataset discussed in Section 3.2 and not involved
n the training phases of the CNNs has been adopted to overcome
his limitation and make it possible to have more insights into the
erformances of the proposed algorithm. The official SLAB score, ob-
ained by participating in the postmortem SPEC2019 competition, was
ompared against the SLAB score achieved by processing the labeled
est set defined for this work, as done in [58], to check the consistency
f the labeled test set with the official SPEC2019 benchmark. Please
otice that the pipelines adopted to process the labeled test set and
o obtain the official score from SPEC2019 are the same with all the
yperparameters frozen, to avoid invalidating the consistency check.

.2. SPEC2019 score and validation of the test set

The baseline architecture is composed of YOLOv5s as the target
etector and M-LSD as line segments and keypoints detector. The
yperparameters of the image processing and line segment grouping
teps have been tuned on the test set, while the CNNs have been
pplied ‘‘as they are’’ after the training phase on the dedicated dataset
o avoid overfitting on the test set. The tuning of the hyperparam-
ters (i.e., the threshold values for the line merging and grouping
teps) followed a trial-and-error approach aimed at reducing the mean
LAB score computed for the labeled test set extracted from SPEED
please refer to Section 3.2) starting from the values reported in [63]
or a re-implementation of the SVD algorithm. The baseline architec-
ure was applied to the SPEC2019 test images to obtain an ‘‘official’’
coring. Then the achieved SPEC2019 score in terms of SLAB error
as compared with the score on the labeled test set to check the

epresentativeness of the latter, allowing us to proceed with a more
n-depth analysis of the errors registered. The baseline YOLOv5s/M-
SD architecture is depicted in detail in Fig. 12. The proposed baseline
rchitecture in Fig. 12 (with the complete match matrix evaluation)
cored a SLAB error on the test set equal to 0.04552. In the post-
ortem SPEC2019 competition, a SLAB score of 0.04622 in synthetic

mages and 0.12546 on real mock-up images were achieved. These
esults can be retrieved from the official website of SPEC2019 from
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S

he postmortem competition leaderboard,2. A print of the website page
ith the official scoring as of 29 November 2022 (i.e., the date of

he last submission) is reported in Fig. 13 where the top-10 scoring
eams are sorted based on the SLAB score on synthetic images test set
last column in Fig. 13). At the time of the last best submission the
OLOv5s/M-LSD proposed classified 9th in SPEC2019 on the synthetic
est set. Together with the synthetic images, the proposed architecture
as tested also on 300 images taken from a representative mock-up
f Tango, achieving a score of 0.12546 ("Real Image Score" column in
ig. 13). Notably, the achieved result on real images is the 2nd best
core among the top-10 architectures, outperforming also the score of
niAdelaide (winner of the official competition). This outcome demon-

trates the generalization capabilities of the proposed architecture if
pplied to a dataset of unseen images with a wide domain gap [20]
ith respect to the training images. Comparing the score of the pro-
osed architecture with the outcomes of the teams that participated to
he official SPEC2019 competition3 it arises that the YOLOv5s/M-LSD
ould have been ranked 3rd based on the results on synthetic images,
fter UniAdelaide [59] and EPFL_cvlab [108], and 2nd on real images,
fter EPFL_cvlab. Overall, the proposed architecture outperforms on
oth real and synthetic images most of the architectures, including
he SLAB baseline architecture [57] and the fully-CNN-driven method
n [61], proposing an implementation with lightweight CNNs for mo-
ile devices. The lightness of adopted CNNs is not a shared feature with
he top-performing architectures that rely on heavy architectures that
un on GPUs only. Notably, the scores demonstrate that lightweight
NNs can be adopted for relative pose estimation tasks with a level
f accuracy comparable with more complex architectures. Examples of
OI and line segments extracted with the YOLOv5s/M-LSD pipeline on
ynthetic images from the official SPEC2019 test set are reported in
ig. 14 for scenarios spanning from the case of a black background
ith Tango well-illuminated to almost totally shadowed target with
arth horizon in the image. The YOLOv5s is capable of detecting the
pacecraft in all conditions with a highly accurate ROI extraction, also
n challenging images with Tango almost non-visible and background
ntirely filled by the Earth. The same holds for the line segments and
eypoints detection. The M-LSD can extract lines and keypoints from
ll the challenging scenarios, also in case of a high amount of details
n the image processed.

Furthermore, the generalization capabilities of lightweight CNNs
o real image datasets are impressive, outperforming the scores of
ost of the other proposed architectures. Fig. 15 shows examples of
OI extraction performed on real mock-up images from SPEC2019,
long with the line segments and keypoints regressed by the M-LSD.
he performances are slightly degraded with respect to the case of
ynthetic images, presenting more relaxed bounding boxes and line
egment outliers. Nevertheless, the fundamental elements needed to
etrieve a correct pose estimate, like the edges of the top solar panel
nd most of the appendages (e.g., antennas), are correctly detected.
lease notice that the line merging and grouping processes, along with
he retrieval of the pose through the testing of the correspondences in
he match matrix, make the algorithm robust against the presence of
utliers in the detected line segments. Despite the lack of ground truth
abels for the mock-up images, by reprojecting the 3D wireframe on the
mage through the estimated pose and performing a visual inspection
f the obtained images, it is possible to have some hints on the pose
stimation performances. Namely, the worst performances in terms of
ccuracy of the estimated relative pose are achieved for images where
he target is partially out of the image, as shown in Fig. 16, with
stimation errors higher than the cases in which there are outliers

2 Data available in the postmortemleaderboardpage of SPEC2019 [retrieved
9 November 2022].

3 The official leaderboard can be retrieved from the dedicatedsection in
PEC2019 website

https://kelvins.esa.int/satellite-pose-estimation-challenge/leaderboard/post-mortem-leaderboard
https://kelvins.esa.int/satellite-pose-estimation-challenge/leaderboard/leaderboard
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Fig. 12. Detailed scheme of YOLO/M-LSD architecture.
Fig. 13. Print of the SPEC2019 postmortem leaderboard.
Fig. 14. Examples of extracted ROI, line segments, and keypoints from SPEC2019 test set.
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Fig. 15. Examples of extracted ROI, line segments, and keypoints from SPEC2019 real test set.
Fig. 16. Examples of low-accuracy reprojected 3D wireframe using estimated relative pose on SPEC2019 real test set.
Fig. 17. Examples of high-accuracy reprojected 3D wireframe using estimated relative pose on SPEC2019 real test set.
in the line segments detected. This can be confirmed by comparing
the reprojected wireframes in Fig. 16 with those in Fig. 17, obtained
from the line segments detected shown in the second row of Fig. 15
(i.e., where the outliers in the line segments detected are evident).

This drawback in the proposed architecture is expected since the
pipeline relies on complete line correspondences, as in the SVD, hence
if the target is partially outside the FOV of the camera and partial or
incomplete lines are detected, they are matched with complete lines
from the 3D wireframe models, leading to wrong estimates. Please
notice that among the real mock-up images included in the SPEC2019
test set there is a high percentage of pictures in which Tango is partially
outside the FOV of the camera, justifying the higher official SLAB error
scored by the proposed architecture on mock-up pictures (𝑒𝑆𝐿𝐴𝐵 =
0.12546) with respect to the official score achieved on synthetic images
(𝑒𝑆𝐿𝐴𝐵 = 0.04622).

The insights retrieved without the knowledge of the ground truth
relative pose of SPEC2019 images offer an overview of the perfor-
mances of the proposed pipeline. Despite this, more in-depth analyses
are required to pursue the inclusion of the proposed initialization
step in a relative navigation chain, which is the final objective of
this study. The SLAB error scored on SPEC2019 synthetic test images
is comparable with the score on the labeled test set extracted from
35
SPEC2019 training images. As a result, the labeled test set can be
considered representative of the SPEC2019 synthetic test set, hence
other analyses can be carried out on that labeled set.

4.3. YOLOv5s/M-LSD performances

The YOLOv5s/M-LSD architecture achieved a SLAB score on the
2400 labeled test images from SPEED equal to 0.04552, with a standard
deviation of 0.22972. The SLAB score reported has been computed
as in Eq. (10). Hence, 𝑒𝑆𝐿𝐴𝐵 is the mean value of the SLAB error
achieved in all the images. Despite the SLAB error being a good scalar
metric to compare easily different architectures, it is difficult to get
the real performances in terms of errors of estimation in translation
and rotations from 𝑒𝑆𝐿𝐴𝐵 only. Consequently, the estimation errors
distributions on the test set have been evaluated to ease the evaluation
of the capabilities of the proposed architecture. The estimation errors
are expressed as mean value and standard deviation of the quantities
employed in the computation of the SLAB error. In addition to the
quantities reported in Eq. (6), Eq. (7), and Eq. (8), the angular error 𝐄𝜃
in terms of axis misalignment between reference and estimated relative
attitude is also considered. These angles are computed as:

𝜃 = arccos
(

𝐫 ⋅ 𝐫
)

with i = 1, 2, 3 (11)
𝑖 𝑒𝑠𝑡,𝑖 𝐺𝑇 ,𝑖
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Table 7
YOLOv5s/M-LSD error metrics scores.
Metric Mean value Standard deviation

𝐸𝑡 [cm] 8.61 39.77
𝐄𝑡 [cm] [−0.26, −0.19, 0.98] [2.09, 1.77, 40.59]
𝐞𝑡 [–] [−0.305, −0.246, 0.680]×10−3 [0.178, 0.154, 2.827]×10−2
𝑒𝑞 [deg] 2.19 12.59
𝐄𝜃 [deg] [1.86, 1.76, 1.20] [11.98, 11.07, 6.11]

𝑒𝑆𝐿𝐴𝐵 [–] 0.04552 0.22972
Fig. 18. Errors distributions in 3𝜎 range.
where 𝐫𝑒𝑠𝑡,𝑖 and 𝐫𝐺𝑇 ,𝑖 are the 𝑖th columns of the estimated relative
attitude 𝐑𝑒𝑠𝑡 = 𝐑𝑒𝑠𝑡

𝑇𝑅𝐺→𝐶𝐴𝑀 and the ground truth 𝐑𝐺𝑇 = 𝐑𝐺𝑇
𝑇𝑅𝐺→𝐶𝐴𝑀

respectively. The resulting angles 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 give the angular estimation
error of each axis of the target body reference frame with respect to
the camera reference frame.

Table 7 reports the metrics values achieved by the proposed baseline
architecture on the labeled test set, while Fig. 18 shows the histograms
of the error distributions in the 3𝜎 range.

Concerning the translational error, the proposed architecture can
estimate the relative distance with an average error in the order of
a few centimeters, albeit the 𝑧-axis error is about one order of mag-
nitude higher than these of the 𝑥 and 𝑦 axes concerning both the
mean value and the standard deviation. This behavior is frequent in
literature [18,58,59]. For the case of the architecture proposed here,
it can arise from a wrong line segments detection (like in the case
of Tango partially out of the FOV or when the target is far from the
camera in poor visibility conditions) that causes a drift mostly along
the camera boresight (i.e., positive along the camera z-axis) when the
relative pose is retrieved from the 2D to 3D correspondences. The drift
along the other axes is less pronounced due to the target detection step
that bounds the lines extracted by the M-LSD to be inside the ROI.
Please notice that drift along the x and 𝑦 axes in the camera frame
mean that the extracted line segments would be shifted from the actual
position in the image, resulting to be out of the ROI. The same behavior
is pointed out also by the standard deviations computed for each axis
that indeed show a 𝜎 value for the z component of the translation that
is one order of magnitude higher than the other two components.

The analysis of the scores about the rotational errors shows that the
mean value is bounded to be in the order of a few degrees. From the
evaluation of the angles defined in Eq. (11), it can be noticed that the
average error is almost equal for the three axes, with a mean value in
the order of about 1.5 degrees. Despite that, the errors about the 𝑥 and
𝑦 axes show an uncertainty level higher than the error about the 𝑧-axis.
This behavior is addressed by looking at the outcomes of the proposed
architecture. The geometry of Tango shows almost symmetric features
if the spacecraft is observed from positive and negative 𝑦 direction
in the target reference frame (please refer to Fig. 11). Therefore, this
can cause ambiguity in the relative pose when the camera boresight
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axis (i.e., z-axis) is almost aligned with the target 𝑦-axis. Intuitively, if
the actual relative attitude is such that the camera 𝑧-axis is pointing
straight towards the -y direction of the target reference frame, but the
estimated attitude is such that the camera is pointing in the opposite
direction, the angular errors 𝜃𝑖 will be 𝐄𝜃 = [𝜃𝑥, 𝜃𝑦, 𝜃𝑧] = [180, 180, 0]
degrees. This ambiguity is handled here by considering all the five
principal appendages of Tango (instead of the more classical choice
of using only the three larger antennas) and, implicitly, by selecting
the best pose estimate among a pool of candidate poses that arise from
all the possible combinations of feature groups. Despite that, due to
the symmetry previously mentioned and to the fact that some other
ambiguities may arise if Tango is observed with the camera pointing
axis almost parallel to the 𝑥-axis of the target when the front and
the back antennas have comparable length and direction in the image
frame, some outliers in the attitude estimation are present, driving
the dispersion of 𝜃𝑥 and 𝜃𝑦 towards higher values than 𝜃𝑧, that is
not strongly affected by those symmetries. It is acknowledged that the
robustness against pose ambiguities can be further improved by relying
on some surface features to break the symmetries and disambiguate
the estimated pose. For instance, the highly reflective panel on the
+y side of the Tango can be employed to improve the robustness
against the first symmetry discussed above. Notably, the fact that the
distributions of the rotational errors are in the same order of magnitude
demonstrates that the features selected and the proposed architecture
are adequate to retrieve a relative pose with a small rotational error in
most of the cases.

4.3.1. Effect of relative distance
The inter-spacecraft relative distance plays a fundamental role in

the goodness of the estimated relative pose since the feature extraction
step for a target far away from the camera may be affected by outliers
due to the reduced size of the target in the image and, as a consequence,
of a lower signal-to-noise ratio in the ROI-cropped image. The relative
distance effects on the pose estimations error have been investigated
for the YOLOv5s/M-LSD architecture by evaluating both 𝐸𝑡 and 𝑒𝑞 as
a function of the ground truth relative distance. The outcomes of the
proposed pose estimation pipeline have been sorted in ascending order
of ground truth relative distance and grouped in 30 batches of 80
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Fig. 19. Effects of relative distance on 𝐸𝑡 (left) and 𝑒𝑞 (right), 𝑦-axis in logarithmic scale.
images as in [58]. The mean of all the values of 𝐸𝑡 and 𝑒𝑞 are evaluated
for each batch and reported in Fig. 19 (y-axis is in logarithmic scale) in
correspondence of the mean ground truth distance of the related batch.
The blue-shaded regions in Fig. 19 indicate the inter-quartile range of
the errors in each batch corresponding to a 1𝜎 range, i.e., the area
spanning from the 15.87 to the 84.13 percentiles, being representative
of the central trend of the error distribution within which most of
the samples fall. The gray-shaded regions in Fig. 19 indicate the full
error range, i.e., the region comprised between the maximum and
minimum estimation error in each batch of images. The average values
of 𝐸𝑡 and 𝑒𝑞 grow as the ground truth distance increases. The error
increment is more pronounced in 𝐸𝑡, while for 𝑒𝑞 the increment is
slower. Notably, the increment in the uncertainty of the estimates as
a function of the ground truth distance, represented by the increase
(in the logarithmic-scale plot in Fig. 19) of the blue-shaded region,
is higher for 𝐸𝑡 and, conversely, it is almost constant for the relative
attitude error. Despite this, note that an average translational error
of 40 cm compared to a ground truth relative distance of about 27 m
corresponds to an estimation error of about 1.48%. The spikes in the
error that exit the blue-shaded regions (more evident in the relative
attitude error plot) are due to outliers in the pose estimations, also
highlighted by an abrupt widening of the gray-shaded region. Namely,
when the mean error shows a peak outside the blue-shaded area it
means that there is a very small number of largely wrong estimates
such that the 16–84 percentile region remains almost constant (i.e., the
wrong estimates are actually outliers), but the error associated to
these outliers is high enough to strongly affect the mean value in the
related batch. The presence of more spikes in the relative attitude plot
compared with the single one detected in the relative distance error plot
is due to the previously noticed ambiguities in the geometry of Tango
that lead, in a few cases, the relative attitude estimates to huge angular
errors. It is remarked that the number of unsolved ambiguities is low in
number since the uncertainties on the relative attitude estimates are not
strongly affected, as demonstrated by the blue shaded region in Fig. 19.
To evaluate the contributions of the translational and rotational errors
to the SLAB score and to assess the effect of the relative distance on
𝑒𝑆𝐿𝐴𝐵 , the same procedure adopted to generate Fig. 19 was applied
to the SLAB error and its components 𝑒𝑡 (normalized relative distance
error) and 𝑒𝑞 to generate Fig. 20. The blue-shaded region in Fig. 20 (y-
axis is in logarithmic scale) spans again from 15.87 to 84.13 percentiles
of the SLAB score, while the gray ones show the full error range.
The normalized translational error is always below 1.5% except for
a peak of close 2.4% to ∼14 m of relative distance. From Fig. 20 it
is evident that the SLAB score is biased towards attitude errors, as
in [58]. This unbalance in the contribution to the final SLAB score is
due to the quaternion error 𝑒𝑞 that is not normalized thus, 𝑒𝑞 is one
order of magnitude higher than 𝑒𝑡. The uncertainty of the SLAB score
represented by the shaded regions of Fig. 20 starts slightly increasing
at about 15 m, where the uncertainty of the translational error begins
to grow (see also Fig. 19) but, overall, the trend is dominated by the
uncertainties in the attitude error. Please notice that there is a peak
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Fig. 20. Effects of relative distance on the SLAB score, 𝑦-axis in logarithmic scale.

in the spread of the blue-shaded region in correspondence of the first
batch (mean ground truth relative distance of ∼3 m). This increment in
the uncertainty of the estimate with respect to the neighboring batches
is driven again by the uncertainties on the attitude estimation, and it
is due to the presence of images with the target partially outside of the
FOV that lead to wrong attitude estimations, as outlined in Section 4.2.

4.3.2. Effect of image background
The training set of all the CNNs adopted includes images with

black background (representing the deep space without visible celestial
bodies) and with the Earth in several illumination conditions. Despite
that, the presence of the Earth acts as a strong disturbance, especially
for feature extraction. To assess the effects of image background on the
SLAB score, Fig. 21 shows the SLAB scores achieved by the proposed
architecture in the test images sorted in ascending order and differen-
tiated in color depending on the background of the image. Examples
of test images with the associated SLAB score are additionally plotted
in Fig. 21 to ease the reading of the plot. The plot shows that most
images with an associated low SLAB score are with a black background
while, as the SLAB score increases, the presence of images with Earth
in the background increases. The worst estimates (𝑒𝑆𝐿𝐴𝐵 ≈ 3) were
obtained for images with a challenging scenario given by a combination
of Earth in the background, particularly challenging illumination and
visibility conditions, and high relative distances. For the last portion
comprised between 90% and 100% (i.e., 10%) of the dataset where
Fig. 21 shows a steep increment of the SLAB score, most of the images
show at least one of the characteristics mentioned above that degrades
the pose estimation performances. A more in-depth analysis of the
failure conditions in the images with the highest SLAB score pointed out
that the YOLOv5s is capable of detecting the target with high accuracy,
while the M-LSD struggles in detecting accurate line segments and
keypoints, leading to high errors in the pose estimate, driven mainly
by the estimated relative attitude. Namely, in the worst case overall,
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Fig. 21. Effects of image background on the SLAB score.
the YOLOv5s can correctly detect the target, contrarily the M-LSD fails
to extract most of the line segments associated with the antennas due
to an almost null contrast with respect to the Earth in the background
in low illumination conditions. Notably, the fraction of images of the
test set with a SLAB error higher than 0.05 is about 10%, while a SLAB
error higher than 0.15 is obtained on about 1.5% of the test set.

4.3.3. Effect of reduced match matrix
The results discussed above on the performances of the YOLOv5s/M-

LSD architecture derive from the adoption of the complete match
matrix for 2D to 3D feature groups correspondences but, as outlined
in Section 3.5, it is possible also to use a reduced form of the match
matrix. The reduced match matrix can be adopted since the most
complex feature groups are given by combinations of the simpler ones.
Intuitively, the closed polygonal tetrads derive from combinations of
proximity triads defined by merging proximity pairs. Hence, by increas-
ing the ‘‘trust level’’ on the correctness of the line segments detected
by the M-LSD and on the feature grouping process, it is possible to
discard the simpler groups before the definition of the match matrix,
retaining only the most complex ones available for the current image
being processed after the definition of all the possible feature groups.
The reduced form of the match matrix adopted here uses only the
two most complex feature groups available for each image processed
selecting them, depending on the current availability, among closed
tetrads, proximity triads, parallel pairs, and proximity pairs, with the
addition of parallel triads when available. Including the parallel triads
reduces the dependencies on the detected antennas and their accuracy,
increasing the robustness against line segments wrongly classified as
antennas. Notably, this process will lower the computational time
required since the EPnP must test fewer correspondences. As mentioned
in [23], the most complex feature groups show fewer occurrences than
the simpler ones. Moreover, complex feature groups are less prone
to erroneous classifications hence the adoption of a reduced match
matrix is a viable solution. The performances of the YOLOv5s/M-LSD
architecture using the reduced match matrix on the labeled test set of
2400 images are given in Table 8.

Comparing the scores in Table 8 with those achieved by the
YOLOv5s/M-LSD with full match matrix (reported in Table 7), it arises
that, despite the version with the reduced match matrix performs

Table 8
YOLOv5s/M-LSD (reduced match matrix) error metrics scores.

Metric Mean value Standard deviation

𝐸𝑡 [cm] 8.42 40.61
𝐄𝑡 [cm] [−0.32, −0.19, 0.73] [3.41, 1.82, 41.28]
𝐞𝑡 [–] [−0.478, −0.251, 0.825]×10−3 [0.862, 0.207, 4.270]×10−2
𝑒𝑞 [deg] 2.18 12.60
𝐄𝜃 [deg] [1.78, 1.74, 1.36] [11.36, 10.81, 7.71]

𝑒𝑆𝐿𝐴𝐵 [–] 0.04565 0.23984
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slightly worse than the baseline, the errors are in the same order of
magnitude and all the scores are comparable. The reduction of the
match matrix causes an increment of the mean SLAB score of ∼0.3%
while the mean values of 𝐸𝑡 and 𝑒𝑞 slightly decrease. Notably, the
small increment in the SLAB error is supposed to be related to the
presence of more outliers compared to their number in the case of
the baseline architecture. This hypothesis is confirmed by the fact
that the uncertainties represented by the computed standard deviations
increase while, on the contrary, the mean values of almost all the
metrics slightly decrease. The increment is more pronounced in the z-
component of the translational error and of the attitude error expressed
by 𝐄𝜃 . Hence, the comparison of the performances between the baseline
architecture and the YOLOv5s/M-LSD pipeline with the reduced match
matrix shows that using a reduced match matrix is feasible despite the
relative pose estimates being affected by a slightly higher uncertainty
level if compared to those obtained by using the full match matrix.
Furthermore, the main advantage of reducing the match matrix size is
the expected lowering of the overall computational time since testing
the correspondences in the match matrix with the EPnP is the most
time-consuming step of the entire pipeline. This aspect is detailed in
Section 4.3.4.

4.3.4. Runtime evaluation
The running time of the proposed architecture has been tested

on an ARM-based processor, the Apple® Silicon™ M1 Pro, using the
CPU only. The running time has been evaluated for all the images
in the test set by evaluating the time needed for the target detector
CNN, the time required by the M-LSD, and the time elapsed from
the instant of time when the output of the M-LSD is available to
the retrieval of the final pose estimate. Forecasting future tests on
representative or actual spaceborne hardware, the CNN models have
been exported in TFLite format4 before conducting all the tests reported
through the paper. Notice that the TFLite format is optimized for
ARM processors hence it is compatible with the Apple® Silicon™ M1
Pro used here. Fig. 22 shows the execution time registered for the
baseline architecture for each image in the test set. The plot is on a
logarithmic scale and the processing times of each sub-component of
the entire pipeline are stacked vertically to give an overview of the
total computational time. On average, the time needed for each step
of the proposed pipeline is 𝑡𝑌 𝑂𝐿𝑂 = 0.085 s, 𝑡𝑀𝐿𝑆𝐷 = 0.088 s, and
𝑡𝑃𝑜𝑠𝑒 = 6.41 s, giving a total mean running time of ∼ 6.58 s. The baseline
architecture lowers the overall running time of about 20% with respect
to the original SVD algorithms, which on average required 8.22 s to
generate a pose solution, as reported in [23]. In agreement with [23],
from Fig. 22 it is evident that the most time-consuming phase is the
testing of all the correspondences in the match matrix with the EPnP.
Notably, the running times of both YOLOv5s and M-LSD are almost

4 https://www.tensorflow.org/lite

https://www.tensorflow.org/lite
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Fig. 22. Runtime of YOLOv5s/M-LSD architecture with full match matrix on the test
set.

Fig. 23. Runtime of YOLOv5s/M-LSD architecture with reduced match matrix on the
test set.

constant across the dataset (proving that the non-maximal suppression
of YOLOv5s has been correctly removed), while the time needed for
the last phase shows a higher variability. These oscillations in 𝑡𝑃𝑜𝑠𝑒 are
due to the fact that the time required scales linearly with the number
of correspondences in the match matrix.

Despite the proposed architecture being meant to be used only for
relative pose initialization, while the pose-tracking phase can theoreti-
cally employ only the outputs of the M-LSD, and although a remarkable
improvement with respect to the SVD in terms of computational time
has already been achieved, the mean total running time scored by
the baseline architecture may be prohibitive for practical applications.
Relying on the performances of the YOLOv5s/M-LSD architecture with
reduced match matrix in Table 8, which shows comparable perfor-
mances on the test set if compared to the full match matrix version, and
since the most time demanding step is related to the match matrix itself,
using the reduced match matrix can bring substantial advantages in
terms of computational time without strong drawbacks on the accuracy
performances. The runtime breakdown of the reduced match matrix
is shown in Fig. 23. The average time needed to retrieve the relative
pose from the output of the M-LSD drastically drops by using the
reduced match matrix to 𝑡𝑃𝑜𝑠𝑒 = 1.25 s with a decrease of about 80.5%
with respect to the case with a full match matrix. The total average
runtime drops to ∼ 1.42 s, with a decrement of about 82.7% with
respect to SVD. A better comparison of the advantages in terms of
total computational time offered by the introduction of the reduced
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Fig. 24. Histogram comparison of total runtime of YOLOv5s/M-LSD architecture across
the test set using reduced and full match matrix.

match matrix with respect to the baseline full match matrix is given
in the histogram plot in Fig. 24. The histograms are truncated to
a total runtime of 40 s for readability and each bin covers a region
of 0.25 s. From Fig. 24 it is evident that for about the 75% of the
images the total running time using the reduced match matrix is less
or equal to 1.25 s, while using the full match matrix leads to a spread
of the total time in the range from 0.25 s to 10 s for most of the
images, with some cases in which the running time is higher than 30 s.
From the results in terms of accuracy in Section 4.3.3 and from the
improvements in terms of total runtime showed in Fig. 24, it can be
concluded that the YOLOv5s/M-LSD architecture with reduced match
matrix is a good candidate for actual application for autonomous pose
initialization, offering a good compromise between accuracy and com-
putational complexity. It is acknowledged that the pipeline is currently
coded in Python 3.8. Hence, the total running time can benefit from an
optimized implementation in suitable languages with specific handling
of the CNN models using export formats for embedded computation
(e.g., OpenVINO™) or dedicated accelerated inference through field
programmable gate arrays (FPGAs). The assessment of accuracy and
total runtime on flight-representative hardware is foreseen as future
development.

4.4. Comparison with other methods

The results of the tests performed pointed out that the proposed
YOLOv5s/M-LSD architecture for pose initialization achieves compet-
itive SLAB error scores compared with other architectures that partici-
pated in the SPEC2019.

Table 9 compares the scores of the proposed approach against
some top-performing architectures. Moreover, the SVD algorithm is
included in the comparison (summarized in Table 9), since it inspired
the proposed architecture.

The proposed architecture outperforms the SVD (both standard
and high confidence) in all the metrics with a significant increase
in accuracy. The most significant improvement has been achieved in
terms of the availability of solutions since the proposed architecture
is capable of giving an output pose for all the images in the test
set, while the SVD produced an output only for a small subset of
images. Furthermore, the proposed approach outperforms the SVD also
in terms of computational time, as discussed in Section 4.3.4, with
a decrement of 20% in the full match matrix version and 82.7% in
the reduced match matrix architecture. Notably, the results for the
SVD are achieved on real images from the mission PRISMA. Those
images are not available for testing, but the scores of the proposed
method on mock-up images included in the SPEC2019 test set pointed
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Table 9
Performance comparison of YOLOv5s/M-LSD architecture against other methods on SPEED images.
Architecture Mean 𝐸𝑡 [cm] Mean 𝑒𝑞 [deg] Solution availability

SVD [23] 146 38.99 50%
SVD (high confidence) [23] 51 2.76 20%

UniAdelaide [59] 3.2 0.41 100%
EPFL_cvlab [108] 7.3 0.91 100%
massimo.piazza (RPEP) [58] 10.36 2.24 100%
pedro_fairspace [61] 14.5 2.46 100%
SLAB Baseline [57] 20.9 2.62 100%

Ours (full match matrix) 8.61 2.19 100%
Ours (reduced match matrix) 8.42 2.18 100%
out that the YOLOv5s/M-LSD architecture well generalize to unseen
real images, ranking 2nd place among the teams that participated in
the actual SPEC2019 and 2nd among the top-10 teams participating
in the postmortem SPEC2019. Comparing the proposed architecture
with the scores of other participants in SPEC2019 that adopted a
CNN-based approach, it arises that only UniAdelaide and EPFL_cvlab
achieved higher mean accuracy. Instead, only EPFL_cvlab and the RPEP
achieved higher scores on real images. Both our approaches (full and
reduced match matrix versions) outperformed the SLAB baseline and
the pedro_fairspace methods, showing high-level performances. Con-
cerning the results against the RPEP, the YOLOv5s/M-LSD architectures
achieved better accuracy in mean rotational and translational estima-
tion. However, the RPEP achieved a slightly lower SLAB score due to a
lower uncertainty on the estimated poses. UniAdelaide and EPFL_cvlab
achieved better performances with respect to the pose initialization
scheme discussed here, even if the results on mock-up and synthetic
images of UniAdelaide may point out that the algorithm adopted by
this team is overfitting on synthetic data due to the poor performances
on real images. Notably, the CNNs adopted here are lightweight and
proven to be suitable for inference in mobile devices, hence they offer
a reduced computational complexity that makes them applicable for
testing with spaceborne hardware, even if dedicated tests still need
to be performed. On the contrary, both UniAdelaide and EPFL_cvlab
adopted large and computationally expensive CNN models that may be
unsuited for standard spaceborne onboard computers.

5. Conclusions and future works

The research in the field of autonomous spacecraft navigation faced
a boost in the last few years with the introduction of CNN-based
algorithms, the publication of image datasets, and the organization of
international competitions. Most of the effort has been put into the
pose initialization from monocular images, i.e., the very first step of
autonomous GNC chains. The necessity of developing lightweight CNN-
based architecture and proving their accuracy arises by analyzing the
outcomes of the competitions and several architectures available in
the literature. Most of the algorithms developed for pose initialization
with uncooperative targets were designed to achieve top scores in
the competitions used as benchmarks, disregarding the computational
effort required if compared with available flight hardware, resulting
in extremely accurate algorithms but with limited applicability. In this
work, the issue is addressed by proposing a relative pose initialization
scheme that relies only on lightweight CNNs capable of running with
low inference time on mobile devices to retrieve the chaser-to-target
relative state provided a single monocular image and the knowledge of
the target’s 3D wireframe model. The Sharma-Ventura-D’Amico (SVD)
algorithm inspired the proposed scheme that leverages three steps:
target detection, line segments and keypoint extraction, and the pose
solver. The target detection step adopts the YOLOv5s object detection
model. The trained architecture scored an average precision of 𝐴𝑃 95

50 =
97.6% and a mean IoU of 96.46%, which is the highest value scored
on SPEED images if compared to other publicly available architectures
developed for the target detection task. Instead of adopting a two-
stream architecture as in the SVD, the proposed approach leverages a
40
single-stream features detection step based on the M-LSD, resulting in
a lighter algorithm. The original M-LSD architecture has been modified
to output line segments and line junctions (i.e., keypoints), scoring a
mean structural average precision on the SPEED/SPEED+ validation
set of 𝑠𝐴𝑃 = 63.77. The last step is based on the definition of 2D-to
−3D correspondences of line segment endpoints subsequently solved
with the EPnP to retrieve the final relative pose estimate. The baseline
architecture with the full match matrix achieved a SLAB score in the
postmortem SPEC2019 competition of 0.04622 in synthetic images and
0.12546 on mock-up images, entering the top-10 performing architec-
tures but being the only one based on lightweight CNNs, sufficiently
fast to be actually considered as a potential candidate to run on flight
hardware. From the more in-depth analysis, the baseline architecture
scores an absolute mean translation error of about 8.6 cm and a
quaternion error of 2.2 degrees, pointing out the high level of accuracy
that the YOLOv5s/M-LSD architecture proposed can reach. Regarding
the uncertainties in the pose estimated, the analyses revealed that the
highest error is achieved in the translation component aligned with the
camera boresight axis, with uncertainty levels one order of magnitude
higher than the other components, while the uncertainties on the
relative attitude are more pronounced on the 𝑥 and 𝑦-axis of the target
due to ambiguities on the target geometry, even if the mean values
of the angular errors are almost equal for the three axes. Test results
showed how achievable accuracy correlates with the inter-spacecraft
relative distance and the presence of the Earth in the background
combined with the low visibility of the target. Concerning the relative
distance, it has been noticed a progressive drop in the accuracy (mainly
in the relative translation) related to the higher uncertainties in the
line segments detected when the relative distance increase. Also, the
presence of the Earth in the background, combined with poor visibility
of the target, entails an increment in the estimation error in a few cases.
Again, this is related to the accuracy of the line segment detection
that deteriorates in the presence of weak contrast between the target
and the background. The reduction of the match matrix, leveraging
only on the most complex geometrical groups, entails a strong reduc-
tion in the computational time, bringing only minor deteriorations in
the overall accuracy. The YOLOv5s/M-LSD architecture with reduced
match matrix achieved comparable accuracy scores with respect to the
full match matrix version, while the computational time drops by a
factor 5 on CPU. It is remarked that the proposed scheme is meant
only for pose initialization tasks, while the possibility of leveraging key-
points detected by M-LSD to perform pose tracking should be explored
in future developments. Additionally, an assessment of the lighting
conditions that may limit the applicability of the proposed approach
with both synthetic images and frames acquired with hardware-in-the-
loop to simulate real camera noises is pointed out as future work. As
mentioned, despite the approach adopted being general, the pipeline
presented has been tailored to work with Tango as the target. Hence,
the geometry of possible new targets should be evaluated carefully,
and the proposed pipeline should be adapted accordingly before being
applied.

Overall, as the main outcome, the proposed architecture demon-

strated performances in the range of top-scoring algorithms in



Acta Astronautica 215 (2024) 20–43M. Bechini et al.
SPEC2019 leveraging only on lightweight CNNs, with low mean er-
rors both in translation and rotation, strongly improving the results
achieved by the original SVD in terms of solution availability, accuracy
and, remarkably, computational time (with a reduction of about 82.7%
with the reduced match matrix), proving that more computationally
efficient CNNs can still achieve high-level performances in relative nav-
igation critical tasks. The achieved performances make this algorithm
a promising candidate for testing on flight representative hardware.
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