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1. Introduction

X-ray computed tomography (XCT) is widely employed
across industries including aerospace, automotive, and
medical equipment, due to its capacity for high-resolution
non-destructive testing and imaging of intricately manufactured
components [1].

According to the ISO 15708-2:2019 standard, industrial
CT processes typically involve four main steps: preparation,
acquisition, reconstruction, and visualization and analysis, as
illustrated in Fig.1. Previous studies have emphasized the
uncertainties present in each stage of XCT measurements
[2], which could significantly influence the final measurement
results. Some scholars have also explored various sources of
uncertainty through experiments, such as workpiece placement
[3], beam hardening [4], and X-ray exposure [5]. Still, many
of these uncertainties are established during the preparation
and acquisition stages, with evaluation often conducted
after reconstruction, leading to error propagation. Moreover,
conducting geometric measurements via XCT experiments is
both time-consuming and labor-intensive. Hence, employing

Fig. 1. Process of geometric metrology with XCT

simulation methods to directly assess the quality of CT
projection images has emerged as an economically efficient
alternative.

When discussing XCT simulation methods, commercial
software and open-source toolkits are the main approaches.
In recent years, considerable attention has been given to
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Table 1. Summary of Some XCT commercial software
Name Institution/Organization Country Year
aRTist BAM Germany 2007
Scorpius XLab® Fraunhofer IIS EZRT Germany 2011
CIVA CT EXTENDE France 2008
Novi-Sim Novitom France 2017

SimCT
University of Applied
Sciences Upper Austria

Austria 2007

commercial software, as listed above in Table 1, such as
the Analytical RT Inspection Simulation Tool (aRTist) [6]
and Scorpius XLab [7], developed by Berlin Federal Institute
for Materials Research and Testing (BAM) and Fraunhofer
Institute for Integrated Circuits IIS (EZRT), respectively.
Researchers have utilized these tools to explore uncertainties
in XCT measurements, including multi-material scenarios [8],
penetration length variations [9], surface roughness [10], and
detector misalignment [11]. Other notable software includes
CIVA [12] and Novi-Sim [13] from France, as well as SimCT
[14] from Austria.

Table 2. Summary of Some Mainstream XCT Toolkits

Name
Toolkit Environment

Date
OS Compiling Language

ASTRA [15] Win/Linux C++/MATLAB/Python 01/2022
TIGRE [16] Win/Linux C++/MATLAB/Python 05/2023

gVirtualXray [17] Win/Linux/macOS
Python/R/Ruby/Tcl/
C#/Java/GNU/Octave

08/2023

Geant4 [18] Win/Linux/macOS C++ 05/2023
Syris [19] Windows Python 05/2022

”OS” is an abbreviation for Operating System;
Date: The time of the latest version of each toolkit. (MM/YYYY)

Table 2 provides an overview of notable XCT toolkits.
The application of open-source XCT simulation toolkits in
the industrial domain is steadily expanding. For instance,
ASTRA has been utilized to investigate the mitigation of
instrument misalignment effects on measurement outcomes
[20], as well as to explore automated segmentation methods
[21]. Similarly, TIGRE has been employed to study the impact
of projection numbers [22, 23] and X-ray exposure times
[24] on dimensional metrology. Additionally, the gVirtualXray
simulation toolkit accurately reproduces artifact features
observed in experimental XCT images [25].

This paper primarily focuses on the exploration of
open-source toolkits. Specifically, we analyze and compare the
features of three toolkits (ASTRA, TIGRE, and gVirtualXray).
Additionally, we delve into reference-based and no-reference
image quality assessment metrics for XCT projection images.
Metrics calculation is shown on a simple aluminum workpiece.

2. Comprehensive assessment of toolkits functionalities

The X-ray Computed Tomography (XCT) simulation system
includes crucial components: the X-ray source, workpiece,
sample manipulation stages, and detector, as shown in
Fig. 2. These components are essential for imaging. Hence,

Fig. 2. Schematic diagram of X-ray CT imaging

the following discussion will comprehensively review and
compare the three simulation toolkits—ASTRA, TIGRE, and
gVirtualXray—focusing on the simulation parameter settings
for these components.

2.1. X-Ray Source

The X-ray source generates beams passing through
workpieces, essential for acquiring projection images in XCT
systems. We analyze its characteristics, including position,
shape, and spectrum, as outlined in Table. 3. Additionally, we
consider filter features in the simulation toolkit, such as density,
thickness, and emission angle, affecting the X-ray beam passing
through the workpiece.

Accurate positioning of the X-ray source is essential for
achieving precise imaging results. ASTRA and TIGRE allow
adjustable positioning relative to workpieces and detectors,
gVirtualXray provides precise coordinates (X, Y, Z) for optimal
source placement.

For industrial applications, all three simulation toolkits
offer options to choose between parallel or cone beam
X-ray source shapes. However, ASTRA and TIGRE lack
additional customization features. In contrast, gVirtualXray
grants additional customization features, such as specifying the
cone beam as an infinitesimal point source or a focal spot.
Considering the actual focal spot size of an X-ray tube is
crucial for an accurate simulation, as X-ray projections are
inherently blurred due to temporal inaccuracies (geometric
blurring). gVirtualXray allows defining parameters such as size,
position, and the number of point sources (N) for the focal
spot, simulating geometric blurring by replicating multiple
point sources within it. These customization enables accurate
simulation of X-ray sources in complex systems, resulting in
realistic simulated projection images.

Table 3. Comparison of X-Ray Source Characteristics

Name
X-Ray Source
Position Shape Spectrum Filter

ASTRA Relative Parallel/Cone Ideal Mono ×
TIGRE Relative Parallel/Cone Ideal Mono ×
gVirtualXray Absolute Parallel/Cone Mono/Poly

√

Note: In the table, “
√

” indicates that the toolkit possesses a
particular feature, while “×” denotes the absence of that feature.
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After selecting the shape of the X-ray source, the next step
is to determine the type of beam spectrum: monochromatic
or polychromatic. ASTRA and TIGRE simulations use default
settings, approximating an ideal monochromatic X-ray source
spectrum, gVirtualXray allows users to select and customize
monochromatic or polychromatic spectra. In industrial settings,
varying photon energies affect material absorption. Low-energy
photons may be absorbed, while high-energy ones are
more likely to reach the detector. In gVirtualXray, creating
a monochromatic or polychromatic beam both requires
specifying both the energy and quantity of incident photons.

The source spectrum of industrial XCT machines is typically
polychromatic. In front of such tubes, suitable filters are
commonly employed to adjust the energy distribution of
the beam. Among the toolkits, gVirtualXray empowers users
to manually define pertinent parameters using convenient
functions such as loadxxxSpectrum(kV, f ilters, angle). Users
can specify tube voltage (kV), filter composition and thickness,
and emission angle. Additionally, it supports the importation of
spectra from text documents, simplifying spectrum generation
calculation.

Moreover, TIGRE distinguishes itself by its capacity to
introduce realistic photon scattering noise, adhering to a
Poisson distribution and correlating with the maximum photon
count in the detector. This functionality allows users to simulate
noise levels.

2.2. Workpiece

When defining workpieces in different simulation software,
features as summarized below in Table. 4.

In the exploration process of the ASTRA and TIGRE
toolkit, it was found that they require voxel models as input,
while gVirtualXRay necessitates mesh models. Mesh models
offer higher flexibility in geometric representation, enabling
more precise simulation of complex workpieces with intricate
internal and external features in industrial applications.

When determining the spatial position of workpieces, it’s
crucial to define their coordinates (X, Y, Z) and tilt angles.
However, ASTRA and TIGRE only offer options to adjust
the relative positions of the source and detector, making it
challenging to set absolute positions. Moreover, configuring
the tilt angle of the workpiece in ASTRA and TIGRE requires
users to pre-define it in 3D modeling software before converting
it into a voxel model, highlighting a limitation due to the
lack of adjustable features within these simulation toolkits.
In contrast, gVirtualXRay provides users with the flexibility
to specify object coordinates (X, Y, Z) within the simulation
coordinate system and set tilt angles along the X, Y, and Z

Table 4. Comparison of workpiece characteristics

Name
Workpieces
Input Position Angle Density Matter

ASTRA Voxel Relative × × ×
TIGRE Voxel Relative × × ×
gVirtualXray Mesh Absolute

√ √ √

Note: In the table, “
√

” indicates that the toolkit possesses a
particular feature, while “×” denotes the absence of that feature.

axes after importing the model. This capability enhances the
versatility and ease of positioning workpieces in the simulation
environment.

After importing the workpiece and establishing its spatial
position, the next step is to define its material properties,
such as density and composition (element/compound/mixture).
ASTRA and TIGRE lack the capability to set material
properties, assuming homogeneity during simulation,
gVirtualXRay allows for the setting of material, density,
and individual components. Moreover, it facilitates the creation
of multi-material objects, enabling the assignment of different
materials, densities, and chemical compositions to various
components, particularly useful for assemblies.

2.3. Sample Manipulation Stages

After configuring the simulation parameters for the X-ray
source, object, and detector, determining scanning parameters
is essential. These parameters, such as scanning angle, rotation
axis, and rotation direction, control the acquisition of projection
images, as indicated below in Table. 5.

In ASTRA and TIGRE, users have the flexibility to
specify the desired scanning angles to generate corresponding
projection images. This flexibility also allows users to
customize angle vectors according to specific requirements,
including standard linear, sparse, or dense angles. However,
currently, parameters for adjusting the rotation axis orientation
and direction of the scan have not been found in ASTRA and
TIGRE. Nevertheless, it is worth noting that TIGRE allows
users to define y-direction displacement for rotation center
correction, which can be valuable for studying the uncertainty
of rotation axis deviation and its impact on imaging results.
While gVirtualXRay requires specifying parameters such as
angle step size, total scanning angle or number of projections,
rotation axis (e.g., X-axis, Y-axis, or Z-axis), and rotation
direction (clockwise-CW or counterclockwise-CCW) to define
scanning parameters, providing different methods for angle
configuration.

2.4. Detector

The detector serves as a critical component in X-ray CT
scanning systems, responsible for receiving X-rays emitted
from the source and converting them into signals. In industrial
CT simulation, the parameters that need to be defined for the
detector mainly fall into two categories: geometric parameters
and physical parameters, as shown above in Table. 6.

Geometric parameters like spatial position, detector
orientation (upward vector), and geometric calibration (detector

Table 5. Comparison of sample manipulation stages characteristics

Name
Sample Manipulation Stages
Angle Rotation Axis Rotation Direction

ASTRA Arbitrary × ×
TIGRE Arbitrary × ×
gVirtualXray Angular step

√ √

Note: In the table, “
√

” indicates that the toolkit possesses a
particular feature, while “×” denotes the absence of that feature.
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Table 6. Comparison of detector characteristics

Name

Detector
Geometric Parameters Physical Parameters

Position Ori.
Geo.
Cal.

Resolution/
Pixel Size

Flatfield
Correction

ASTRA Relative
√ × √ ×

TIGRE Relative+offset
√ √ √ ×

gVirtualXray Absolute
√ × √ √

Note: In the table, ”Ori.” stands for orientation, ”Geo. Cal.” stands for
geometric calibration. “

√
” indicates that the toolkit possesses a particular

feature, while “×” denotes the absence of that feature.

rotation angle) play a crucial role in CT imaging accuracy.
ASTRA and TIGRE provide flexibility in configuring detector
positions relative to the workpiece. Particularly, TIGRE
stands out with an additional feature allowing the offsetting
of the detector. This functionality permits adjustments to
accommodate the position of the scanned workpiece within
the image. In comparison, gVirtualXRay allows for a precise
definition of the detector’s spatial position, enhancing control
over simulation settings. All three software packages include
settings for determining the detector orientation (upward
vector), ensuring alignment with the desired viewing angle.
Regarding geometric calibration, particularly the detector
rotation angles (roll-pitch-yaw rotation), TIGRE offers
comprehensive adjustments, enabling users to optimize the
detector’s orientation relative to the scanned workpiece.

Physical parameters include resolution and pixel size. These
parameters directly affect the image quality and resolution of
CT imaging. All three software packages support customization
of these parameters, allowing users to tailor imaging settings
according to their specific requirements.

In terms of setting other parameters for projection images,
ASTRA currently lacks user-adjustable parameters. TIGRE
offers a simplified option to set values for each voxel,
improving the accuracy of pixel values on each projection
image. Additionally, it approximates detector electronic noise
as a Gaussian distribution, allowing users to simulate possible
levels of electronic noise and adjust them according to specific
simulation requirements. gVirtualXRay stands out for its flat
field correction feature. This functionality enables users to
calibrate and correct the detector using known scan object
materials and input power, mitigating performance degradation
caused by fixed pattern noise and ensuring accurate imaging
results.

3. Image quality assessment criteria

Given the complexity of CT measurement simulations
and the necessity for reliable simulated projection images,
subjective visual evaluation alone may not suffice for assessing
image quality. Thus, an objective approach using digital image
metrics is crucial. These metrics can be categorized into two
types: reference-based and no-reference. Here, we summarize
evaluation methods suitable for assessing the quality of
simulated XCT projection images.

3.1. Reference-based image quality assessment (R-IQA)

Reference-based image quality assessment method
compares simulated projection images with actual XCT
experimental projection images. This comparison is based
on the structures, content, or features of the images, such as
intensity values, brightness, contrast, and structural similarity
[26]. This section will introduce and analyze some commonly
used metrics and their basic calculation principles [27].

Root Mean Square Error (RMSE) is the square root of the
mean of the squared differences of pixel intensities between two
images.

RMSE =

√√√
1
N

N∑
i=1

[Ii − Ji]2 (1)

where N is the number of pixels, Ii and Ji respectively represent
the pixel values at position i in two images.

Pearson Correlation Coefficient (CC) quantifies the
linear association between two images by evaluating the
correlation coefficient of their intensity values. Its mathematical
representation is as follows:

CC(I, J) =
cov (I, J)
σI ·σJ

(2)

where cov(I, J) is the covariance between the intensity values
of the two images I and J, and σI and σJ are their respective
standard deviations. The coefficient ranges from -1 to 1. In
practice, CC values closer to 1 indicate a stronger positive
correlation.

Mean Structural Similarity Index (MSSIM) evaluates the
similarity between two images concerning luminance l(I, J),
contrast c(I, J), and structure s(I, J), aiming to offer a
perceptual approximation of image quality [28].

MSSIM(I, J) =
1
N

N∑
i=1

SSIM(I, J) (3)

SSIM(I, J) = [l(I, J)]α [c(I, J)]β [s(I, J)]γ (4)

where α, β, and γ control the relative importance of three
components. N represents the number of localized regions
within the image used to evaluate similarity. The formulas for
calculating luminance, contrast, and structure similarity are as
follows, respectively.:

l(I, J) =
2µI · µJ + (K1G)2

µI
2 + µJ

2 + (K1G)2 (5)

c(I, J) =
2σI · σJ + (K2G)2

σI
2 + σJ

2 + (K2G)2 (6)

s(I, J) =
2σIJ + (K2G)2

2σI · σJ + (K2G)2 (7)

where µI and µJ are the mean pixel intensities of image I and
J, σI and σJ are the standard deviations of pixel intensities
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of image I and J, K1 and K2 is a small constant to avoid
instability when the denominator approaches zero, G is the
dynamic range of the pixel gray values, for 8-bit grayscale
images, pixel values range from 0 to 255. σIJ is the covariance
between pixel intensities of images I and J, given by

σIJ =
1

N − 1

N∑
i=1

(Ii − µI) · (Ji − µJ) (8)

MSSIM values closer to 1 indicate higher similarity between
images, while the values closer to 0 indicate significant
structural differences.

Universal Quality Index (UQI): The UQI assesses the
similarity between two images by considering their mean,
variance, and covariance [29].

UQI(I, J) =
4µI · µJ · cov (I, J)

(µI
2 + µJ

2) · (σI
2 + σJ

2)
(9)

where µI and µJ are the means, σ2
I and σ2

J are the variances,
and cov(I, J) is the covariance between the intensity values of
the two images I and J. The UQI value ranges from 0 to 1, with
higher values indicating greater similarity to the true image.

3.2. No-reference image quality assessment (NR-IQA)

The advantage of NR-IQA metrics lies in their independence
from reference experimental XCT projection images during the
calculation process. Instead, these methods assess the quality of
simulated images solely based on their intrinsic characteristics,
such as statistical information, edge details, and other image
features. In theory, the closer the numerical values of simulated
computational metrics are to those of the actual reference
metrics, the better the simulation results are deemed to be.

Signal-to-Noise-Ratio (SNR) was evaluated from different
areas in the target region and background region.

SNR =
µt

σb
(10)

where µt is the mean gray value for the target region, typically
refers to the region of interest (e.g., the scanned workpiece),
and σb is the standard deviation of the gray value for the
background region, it denotes the surrounding area outside the
region of interest, same as followed.

Contrast to Noise Ratio (CNR) evaluates the level of contrast
in an image relative to the background noise. The formula is:

CNR =
µt − µb

σb
(11)

where µt and µb are the mean gray values for the target
and background regions, respectively, and σb is the standard
deviation of the gray values for the background region.

Contrast over Unsharpness(C/U) assesses the contrast of an
image relative to its overall sharpness [30]. The formula is as
follows:

C/U =
CNR
UNIF

=
µt − µb

σb · µ
(12)

Fig. 3. CT Projection Images - Simulation vs. Experimental (a)ASTRA;
(b)TIGRE; (c)gVirtualXray; (d) Measured image

CNR represents the contrast-to-noise ratio, and UNIF stands
for the overall uniformity of the entire image, with µ being
comprised of both target and background components.

Image Quality Measure (Q) evaluates the difference in
grayscale between regions of the target and background in an
image relative to their respective noise levels [31]. The formula
is given by:

Q =
µt − µb√
σ2

t + σ
2
b

(13)

4. Example of metrics calculation

A simple 6 steps multi-diameter aluminum cylinder was
considered to illustrate the calculation of the criteria. In this
example, we fully utilize the functionalities provided by each
toolkit to generate CT projection images. Both experimental
and simulated images are depicted in Fig. 3.

Since the simulated images are ideal and generated without
background noise, the focus lies on computing a series of
reference-based image quality assessment (R-IQA) metrics
for the projection images generated by the three simulation
toolkits. The results are presented in Table 7, with values
retained to four decimal places, where it is noteworthy that
the reference images are the projection images obtained from
experiments

All simulations exhibit approximate similarity in root mean
square error (RMSE) and correlation coefficient (CC) values.
However, when considering metrics like universal quality index
(UQI), and mean structural similarity index (MSSIM), the
computed R-IQA metrics for ASTRA and TIGRE exhibit
remarkable similarity, with gVirtualXray displaying slightly
higher prediction capability, possibly attributable to parameters
within the X-ray source settings.

5. Conclusion and Outlook

This paper provides an initial overview of the research
landscape in XCT simulation, exploring and comparing

Table 7. The results of evaluation criteria of CT simulation projection images

Toolkit Name
Images Evaluation Criteria(R-IQA)
RMSE CC MSSIM UQI

ASTRA 10.1762 0.6165 0.5535 0.5505
TIGRE 10.1743 0.6163 0.5532 0.5502
gVirtualXray 10.3559 0.6192 0.5939 0.5914
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three simulation software packages: ASTRA, TIGRE, and
gVirtualXray. It focuses on key components such as the X-ray
source, workpiece, sample manipulation stages, and detector,
and discusses setting parameters related to XCT measurement
uncertainty. Criteria for comparing the toolkits were introduced
and then applied to a reference sample.

Moving forward, the plan is to delve deeper into the
specific parameters of these XCT simulation toolkits. This
will involve considering noise characteristics in the simulation
process and aligning simulation parameters with actual
experimental conditions to generate different angles of XCT
projection images using various toolkits. Subsequently, both
reference-based and no-reference image quality assessment
metrics will be employed to evaluate the imaging performance
of different toolkits, with corresponding angles of experimental
projection images serving as benchmarks. This evaluation aims
to provide valuable insights for researchers in selecting the most
suitable toolkit for their imaging requirements.
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