
HOLL: Program Synthesis for Higher Order
Logic Locking

Gourav Takhar1(�), Ramesh Karri2 , Christian Pilato3 , and Subhajit Roy1

1 Indian Institute of Technology Kanpur, Kanpur, India.
{tgourav,subhajit}@cse.iitk.ac.in

2 New York University, New York, NY, USA. rkarri@nyu.edu
3 Politecnico di Milano, Milan, Italy. christian.pilato@polimi.it

Abstract. Logic locking “hides” the functionality of a digital circuit to
protect it from counterfeiting, piracy, and malicious design modifications.
The original design is transformed into a “locked” design such that the
circuit reveals its correct functionality only when it is “unlocked” with
a secret sequence of bits—the key bit-string. However, strong attacks,
especially the SAT attack that uses a SAT solver to recover the key bit-
string, have been profoundly effective at breaking the locked circuit and
recovering the circuit functionality.
We lift logic locking to Higher Order Logic Locking (HOLL) by hiding a
higher-order relation, instead of a key of independent values, challenging
the attacker to discover this key relation to recreate the circuit func-
tionality. Our technique uses program synthesis to construct the locked
design and synthesize a corresponding key relation. HOLL has low over-
head and existing attacks for logic locking do not apply as the entity to
be recovered is no more a value. To evaluate our proposal, we propose
a new attack (SynthAttack) that uses an inductive synthesis algorithm
guided by an operational circuit as an input-output oracle to recover
the hidden functionality. SynthAttack is inspired by the SAT attack,
and similar to the SAT attack, it is verifiably correct, i.e., if the correct
functionality is revealed, a verification check guarantees the same. Our
empirical analysis shows that SynthAttack can break HOLL for small
circuits and small key relations, but it is ineffective for real-life designs.

Keywords: Logic Locking · Program Synthesis · Hardware Security.

1 Introduction

High manufacturing costs in advanced technology nodes are pushing many semi-
conductor design houses to outsource the fabrication of integrated circuits (IC)
to third-party foundries [26, 43]. A fab-less design house can increase the invest-
ments in the chip’s intellectual property, while a single foundry can serve multiple
companies. However, this globalization process introduces security threats in the
supply chain [25]. A malicious employee of the foundry can access and reverse
engineer the circuit design to make illegal copies. Logic locking [45] alters the
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chip’s functionality to make it unusable by the foundry. This alteration depends
on a locking key that is re-inserted into the chip in a trusted facility, after fab-
rication. The locking key is, thus, the “secret”, known only to the design house.
Logic locking assumes that the attackers have no access to the key but they may
have access to a functioning chip (obtained, for example, from the legal/illegal
market). However, logic locking has witnessed several attacks that analyze the
circuit and attempt key recovery [31, 44, 49, 60].

In this paper4, we combine the intuitions from logic locking, program syn-
thesis, and programmable devices to design a new locking mechanism. Our tech-
nique, called higher order logic locking (HOLL), locks a design with a key rela-
tion instead of a sequence of independent key bits. HOLL uses program synthe-
sis [3, 51] to translate the original design into a locked one. Our experiments
demonstrate that HOLL is fast, scalable, and robust against attacks. Prior at-
tacks on logic locking, like the SAT attack [52], are not practical for HOLL. Since
the functionality of the key-relation is completely missing, attackers cannot sim-
ply make propositional logic queries to recover the key (like [44, 52, 18]). There
are variants of logic locking, like TTLock [62] and SFLL [61], that attempt to
combat SAT attacks [52]. However, these techniques use additional logic blocks
(comparison and restoration circuits) which makes them prone to attacks via
structural and functional analysis on this additional circuitry [48]. HOLL is re-
silient to such techniques as it exposes only a programmable logic that does not
leak any information related to the actual functionality to be implemented.

In contrast to logic locking, attacking HOLL requires solving a second-order
problem (see §8 for a detailed discussion on this). To assess the security of our
method, we design a new attack, SynthAttack, by combining ideas from SAT at-
tack [52] and inductive program synthesis [51]. SynthAttack employs a counter-
example guided inductive synthesis (CEGIS) procedure guided via a functioning
instance of the circuit as an input-output oracle. This attack constructs a syn-
thesis query to discover key relations that invoke semantically distinct functional
behaviors of the locked design—witnesses to such relations, referred to as distin-
guishing inputs, act as counterexamples to drive inductive learning. When the
locked design is verified to have unique functionality, the attack is declared suc-
cessful, with the corresponding provably-correct key relation.

Our experimental results (§6) show that the time required by an attacker
to recover the key relation for a given set of distinguishing inputs (attack time)
increases exponentially with the size of key relation. While the attacker may
be able to recover key relations for small HOLL-locked circuits with small key
relations, larger circuits are robust to SynthAttack. For example, for the des

benchmark, the asymmetry between HOLL defense and SynthAttack is large;
while HOLL can lock this design in less than 100 seconds, the attack cannot re-
cover the design even within four days for a key relation that increases the area
overhead of the IC by only 1.2%. Further, the attack time required to unlock
the designs increase exponentially with the complexity of the key relation.

The key relation can be implemented with reconfigurable or programmable

4 An extended version [54] of this paper is also available.
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t0 = x0 ∧ x2;
t1 = x3 ∧ t0
t2 = (x1 ∧ t0)
y0 = x0 ⊕ x2
y2 = (x1 ∧ x3) ∨ t2 ∨ t1
y1 = t0 ⊕ x1 ⊕ x3

(a) Original circuit

t0 = x0 ∧ x2
t1 = (x0 ∧ (r4 ⊕ r2) ∧ x3)

t2 = (x0 ∧ r3)
y0 = x0 ⊕ x2
y2 = (x1 ∧ x3) ∨ t2 ∨ t1
y1 = t0 ⊕ x1 ⊕ x3

(b) Locked circuit

{(r0 ↔ x1),
(r1 ↔ x2),
(r2 ↔ rand),
(r3 ↔ r0 ∧ r1),
(r4 ↔ r1 ⊕ r2)}

(c) Key relation

Fig. 1: HOLL on a 2-bit Adder.

devices, like programmable array logic (PAL) or embedded finite-programmable
gate array (eFPGA). For example, eFPGA, essentially an IP core embedded into
an ASIC or SoC, is becoming common in modern SoCs [2] and has been shown
to have high resilience against bit-stream recovery [7].
Our contributions are:
– We propose a novel IP protection strategy, called higher order logic locking

(HOLL), that uses program synthesis;
– To evaluate the security offered by HOLL, we propose a strong adversarial

attack algorithm, SynthAttack;
– We build tools to apply HOLL and SynthAttack to combinational logic;
– We evaluate HOLL on cost, scalability, and robustness;

2 HOLL Overview

2.1 Threat Model: the Untrusted Foundry

We focus on the threat model where the attacker is in the foundry [45, 46] to
which a fab-less design house has outsourced its IC fabrication. Such an attacker
has access to the IC design and the (locked) GDSII netlist which can be reverse-
engineered. Also, if the attacker can access a working IC (e.g., by procuring an IC
from the open market or a discarded IC from the gray market), they can leverage
the functional IC’s I/O behavior as a black-box oracle. However, we assume the
attacker cannot extract the bitstream, i.e. the correct sequence of configuration
bits, from the device. This can be achieved with encryption techniques when the
bitstream is not loaded into the device. Also, anti-readback solutions can prevent
the attacker from reading the bitstream from the device. The parameters used
to synthesize the key relation and the locked circuit (like the domain-specific
language (DSL), budget etc.) are not known to the attacker (see §8).

2.2 Defending with HOLL

Consider a hardware circuit Y ↔ ϕ(X), where X and Y are the inputs and out-
puts, respectively. HOLL uses a higher-order lock—a secret relation (ψ) among a
certain number of additional relation bits R. We refer to ψ as the key relation.

Fig. 1a shows an example of a 2-bit adder with input X ({x1x0, x3x2}) and
output Y (y2y1y0). The circuit is locked by transforming the original expressions
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(marked in blue) in Fig. 1a to the locked expressions (marked in red) in Fig. 1b.
The locked expressions use the additional relation bits r2, r3, and r4, enabling
that this locked design ϕ̂(X,R) functions correctly when the secret relation ψ
(Fig. 1c) is installed. The relation ψ establishes the correct relation between the
relation bits R. The key relation can be excited by circuit inputs (like in r0

and r1,), constants, or random bits (e.g., from system noise, etc.); for example,
the value rand in Fig. 1c represents the random generation of a bit (0 or 1)
assigned to r2. The “output” from the key relation are bits r3 and r4 that must
satisfy the relational constraints enforced by the key relation.

For the sake of simplicity, in the rest of the paper, we assume the relation
bits are drawn only from the inputs X of the design. We will attempt to infer
key relations of the form ψ(X,R). The reader may assume the value rand of in
Fig. 1c to be a constant value (say 0) to ease the exposition.

As ϕ̂ also consumes the relation bits R, HOLL transforms the original circuit
Y ↔ ϕ(X) into a locked circuit Y ↔ ϕ̂(X,R) such that the locked circuit
functions correctly if the key relation ψ(X,R) is satisfied. In other words, HOLL
is required to preserve the semantic equivalence between the original and locked
designs (ϕ = ϕ̂ ∧ ψ). Note that it only imposes constraints on the input-output
functionality of the circuits, not on the generated values of internal gates. For
example, in Fig. 1b, the value of t1 may be different from the one in the original
design (Fig. 1a), but the final output y2 is equivalent to the original adder.

This approach has analogies with the well-known logic locking solution [10,
37, 55]. Traditional logic locking produces a locked circuit by mutating certain
expressions based on input key bits. HOLL differs from logic locking on the type
of entities employed as hidden keys. While logic locking uses a key value (i.e., a
sequence of key-bits), our technique uses a key relation (i.e., a functional relation
among the key bits). As we attempt to hide a higher-order entity (relation),
we refer to our scheme as higher-order logic locking (HOLL). As synthesizing
a relation (a second-order problem) is more challenging to recover than a bit-
sequence (a first-order problem), HOLL is, at least in theory, is more secure
than logic locking. Our experimental results (§6) show that this security also
translates to practice.

Hardware constraints. Since the key relation must be implemented in the
circuit, we need to consider practical constraints. For example, the size of the
key relation affects the size of the programmable logic to be used for its imple-
mentation. This, in turn, introduces area and delay overheads in the final circuit.
The practical realizability of this technique adds certain hardware constraints:
– The key relation must be small for it to have a small area overhead;
– The key relation must only be executed once to avoid a significant perfor-

mance overhead;
– The key relation must encode non-trivial relations between the challenge and

response bits to strong security;
– The locked expressions are evenly distributed across the design to protect

all parts of the circuit, disallowing focused attacks by an attacker on a small
part of the circuit that contains all locks.
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Inferring the key relation. HOLL operates by

1. carefully selecting a set of expressions, E ⊆ ϕ, in the original design ϕ;
2. mutating each expression ei ∈ E using the relation bits R to create the

corresponding locked expression, êi.

For example, in Fig. 1a, we select two expressions, E = {e1, e2} where e1 = x1∧t0
and e2 = x3 ∧ t0. e1 computes t2 and is a function of t0 and x1, while ê1 uses x0

and r3, which is in turn a relation of r0 and r1. We formalize our lock program
synthesis problem as follows.

Lock Inference. Given a circuit Y ↔ ϕ(X), construct a locked circuit Y ↔
ϕ̂(X,R) and a key relation ψ(X,R) such that ϕ̂ is semantically equivalent to
ϕ with the correct relation ψ. Specifically, it requires us to construct: (1) a key
relation ψ and (2) a set of locked expressions Ê relating to the set of selected
expressions E extracted from ϕ such that the following conditions are met:

– Correctness: The circuit is guaranteed to work correctly for all inputs when
the key relation is installed:

∀X. (∀R. ψ(X,R) =⇒ (ϕ̂(X,R) = ϕ(X))) (1)

where ϕ̂ ≡ ϕ[ê1/e1, . . . , ên/en], for ei ∈ E ⊆ ϕ. The notation ϕ[ea/eb] implies
that eb is replaced by ea in the formula ϕ.

– Security: There must exist some relation ψ′ (where ψ′ 6= ψ) where the
circuit exhibits incorrect behavior; in other words, it enforces the key relation
to be non-trivial:

∃ψ ∃X ∃R. (ψ′(X,R) =⇒ ϕ̂(X,R) 6= ϕ(X)) (2)

We pose the above as a program synthesis [40, 50] problem. In particular, we
search for “mutations” ê1, . . . , ê2 and a suitable key relation ψ such that the
above constraints are satisfied.

2.3 Attacking with SynthAttack

As we attempt to hide a relation instead of a key-value, prior attacks on logic
locking (like SAT attacks), which attempt to infer key bit-strings, do not apply.
However, the attackers can also use program synthesis techniques to recover the
key relation using an activated instance of the circuit as an input-output oracle.

We design an attack algorithm, called SynthAttack, combining ideas from
SAT attack (for logic locking) and counterexample guided inductive program
synthesis. Our attack algorithm generates inputs X1, X2, . . . , Xn and computes
the corresponding outputs Y1, Y2, . . . , Yn using the oracle, to construct a set of
examples Λ = {(X1, Y1), . . . , (Xn, Yn)}. Then, the attacker can generate a key
relation ψ that satisfies the above examples, λ, using a program synthesis query:∏

Xi,Yi∈Λ

∃Ri. ϕ̂(Xi, Ri) ∧ ψ(Xi, Ri) = Yi (3)
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The above query requires copies of ϕ̂(X,R) for every example—hence, the for-
mula will quickly explode with an increasing number of samples. Our scheme is
robust since the sample complexity of the key relationships increases exponen-
tially with the number of relation bits employed. Additionally, the attacker does
not know which input bits excite the key relation and how the relation bits are
related to each other.

Table 1: In-out
samples.

X Y Ŷ

1111 110 110
1001 011 011
0000 000 000
1100 011 011
0101 010 110

{(r0 ↔ x2),
(r1 ↔ x0),
(r2 ↔ 0),
(r3 ↔ r0∧ r1),
(r4 ↔ 0)}

Fig. 2: Gener-
ated key rela-
tion

For the locked adder (Fig. 1b) with the in-
put samples shown in Table 1 (first four rows),
the above attack can synthesize the key rela-
tion shown in Fig. 2. Columns Y and Ŷ in Ta-
ble 1 represent the outputs of the original cir-
cuit and the circuit obtained by the attacker,
respectively. Even on a 4-bit input space, when
25% of all possible samples are provided, the
attack fails to recover the key relation as shown
by the last input row of Table 1. The red box highlights the output in the attacker
circuit does not match the original design.

Definition (Distinguishing Input). Given a locked circuit ϕ̂, we refer to input X
as a distinguishing input if there exist candidate relations ψ1 and ψ2 that evoke
semantically distinct behaviors on the input X. Formally, X is a distinguishing
input provided the following formula is satisfiable5 on some relations ψ1 and ψ2:

ϕ̂(X,R1) 6= ϕ̂(X,R2) ∧ ψ1(X,R1) ∧ ψ2(X,R2) (4)

It searches for a distinguishing input, Xd, that produces conflicting outputs on
the locked design. Any such distinguishing input is added to the set of examples,
Λ, and the query repeated. If the query is unsatisfiable, it implies that no other
relation can produce a different behavior on the locked design and so the relation
that satisfies the current set of examples must be a correct key relation.

Though SynthAttack significantly reduces the sample complexity of the at-
tack, our experiments demonstrate that SynthAttack is still unsuccessful at
breaking HOLL for larger designs.

3 Program Synthesis to Infer Key Relations

We represent the key relation ψ as a propositional formula, represented as a set
(conjunction) of propositional terms. The terms in ψ belong are categorised as:

– Stimulus terms: As mentioned in §2, a subset of the relation bits are
related to input bits or constants; the stimulus terms appear as (ri ← xj)
where ri ∈ R, xj ∈ X ∪ {0, 1}.

– Latent terms: These clauses establish a relation among the relation bits;
the variables v in these terms are drawn from the relation bits R, i.e. v ∈ R.

5 All free variables are existentially quantified.
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For example, in Fig. 1c the terms (r0 ← x1), (r1 ← x2), and (r2 ← rand) are
stimulus terms, while (r3 ← (r0 ∧ r1)) and (r4 ← (r1 ⊕ r2)) are latent terms.

Budget. As the key relation may need to be implemented within a limited hard-
ware budget, our synthesis imposes a hard threshold on its size. The threshold
could directly capture the hardware constraints for implementing the key re-
lation (e.g., the estimated number of gates or ports) or indirectly indicate the
complexity of the key relation (e.g., number of relation bits, propositional terms,
or latent terms).

3.1 Lock and Key Inference Algorithm 1: HOLL(ϕ, T,Q)

1 ψ ← ∅
2 ϕ̂← ϕ
3 done← False

4 while not done do
5 E ← SelectExpr(ϕ̂)

6 H, Ê ← Synthesize(ψ, ϕ̂, E)
7 ψ′ ← ψ ∪H
8 if Budget(ψ′) ≤ T then
9 ψ ← ψ′

10 ϕ̂← ϕ̂[{êi/ei |
11 ei ∈ Ei, êi ∈ Ê}]
12 else
13 q ← CheckSec(ψ, ϕ̂)
14 if q then
15 done← True

16 else
17 ψ ← ∅
18 ϕ̂← ϕ

19 end

20 end

21 end
22 return ϕ̂, ψ

Algorithm 1 outlines our algorithm for
inferring the key relation and the locked
circuit. The algorithm accepts an un-
locked design Y ↔ ϕ(X) and a budget
T for the key relation.

Main Algorithm. The algorithm it-
erates, increasing the complexity of the
key relation, till the budget T is reached
(Lines 4-21). In every iteration, the al-
gorithm selects a set of suitable expres-
sions E for locking, uses our synthe-
sis procedure to extract a set of addi-
tional latent terms H for the key rela-
tion, and produces the mutated expres-
sions êi for each expression ei ∈ E (Line
6). If the additional synthesized rela-
tions keep the key relation within the
budget T (Line 8), the mutated expres-
sions are replaced for ei ∈ E (Line 11).
HOLL verifies that the solution meets
the two objectives of correctness and security (§2). We handle correctness in
the Synthesize procedure of Algorithm 1 and security in Lines 13-14 of the
same algorithm. The CheckSec() procedure verifies if the synthesized (locked)
circuit and key relations satisfy the security condition (Eqn 2). If CheckSec()
returns True, the key relation ψ and the locked circuit ϕ̂ are returned; otherwise,
synthesis is reattempted.

Correctness. HOLL attempts to synthesize (via the Synthesize procedure) a
key relation ψ and a set of locked expressions êi such that the circuit is guaran-
teed to work correctly for all inputs given to ψ; this requires us to satisfy:

∃ψ, ê1, . . . , ên. ∀X. ∀R. (ψ(X,R) =⇒ ϕ̂(X,R) = ϕ(X)) (5)
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(r0 ← x1),
(r1 ← x2), (r2 ← x0),
(r5 ← (r0 ∧ r1)),

(r4 ← ( (r0 ∧ r1) ∧r2)),

(r3 ← ( (r0 ∧ r1) ∨r2))

(a) Without optimization

(r0 ← x1),
(r1 ← x2),
(r2 ← x0),
(r5 ← (r0 ∧ r1)),
(r3 ← ( r5 ∨r2)),

(r4 ← ( r5 ∧r2))

(b) With opt.

Fig. 3: Key relations generated without and
with optimization.

t0

x2 x0

x1x3y0

y1

y2

t1 t2

Fig. 4: Dependency graph for
the expressions in Fig. 1a.

where ϕ̂ ≡ ϕ[ê1/e1, . . . , ên/en], for ei ∈ (E ⊆ ϕ). In other words, we attempt
to synthesize a set of modified expressions Ê that, once replaced the selected
expressions in E, produces a semantically equivalent circuit as the original circuit
if the relation ψ holds.

We solve this synthesis problem via counterexample-guided inductive synthe-
sis (CEGIS) [3]. We provide a domain-specific language (DSL) in which ψ and êi
are synthesized. CEGIS generates candidate solutions for the synthesis problem
and uses violations to the specification (i.e. the above constraint) to guide the
search for suitable programs ψ and êi.

A problem with the above formulation is illustrated in Fig. 3: the key re-
lation in Fig. 3a uses 5 gates without reusing expressions, “wasting” hardware
resources. Fig. 2b shows an optimized key relation that reuses the response bit r5,
allowing an implementation with only 3 gates. To encourage subexpression reuse,
we solve the following optimization problem where ϕ̂ ≡ ϕ[ê1/e1, . . . , ên/en], for
ei ∈ E ⊆ ϕ.:

argmin
budget(ψ)

∃ψ, ê1, . . . , ên. ∀X. (∀R. ψ(X,R) =⇒ ϕ̂(X,R) = ϕ(X)) (6)

Security. The security objective requires that the locking (i.e., the key relation
ψ and the locked expressions) is non-trivial; that is. there exists some relation
ψ′:ψ′ 6= ψ for which the circuit is not semantically equivalent to the original
design:

∃ψ′, ψ′ 6= ψ, s.t. ∃X. (∃R. ψ′(X,R) ∧ ϕ̂(X,R) 6= ϕ(X)) (7)

The above constraint is difficult to establish while synthesizing ψ; it requires
a search for a different relation ψ′ that makes ϕ̂ semantically distinct from ϕ
while ψ maintains semantic equivalence. Instead, we use a two-pronged strategy:

– We carefully design the DSL used to synthesize ψ and êi to reduce the
possibility they generate trivial relations;

– After obtaining ψ and ϕ̂, we attempt to synthesize an alternative relation
ψ′ (using 8) such that ϕ̂ is not semantically equivalent to ϕ, ensuring that
ψ and ϕ̂ do not constitute a trivial locked circuit.
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∃ψ′. ∃X,R′. ϕ(X) 6= ϕ̂(X,R′) ∧ ψ′(X,R′) (8)

The procedure CheckSec(ψ, ϕ̂) (Algorithm 1, Line 13) implements the above
check (Eqn. 8).

Theorem 1. If Algorithm 1 terminates, it returns a correct (Eqn. 1) and secure
(Eqn. 2) locked design.

Proof. The proof follows trivially from the design of the Synthesize (in particular,
Eqn. 5) and CheckSec (in particular, Eqn. 8) procedures.

3.2 Expression Selection

HOLL constructs the dependency graph [19] (V,D) for expression selection,
where nodes V are circuit variables. A node v ∈ V represents an expression e
such that v is assigned the result of expression e, i.e. (v ← e). The edges D are
dependencies: the edge v1 → v2 connects the two nodes v1 to v2 if variable v1

depends on variable v2. The tree is rooted at the output variables and the input
variables appear as leaves.

For example, Fig. 4 shows the dependency graph for the circuit in Fig. 1a.
Triangles represent input ports (x0, x1, x2, x3) while inverted triangles represent
output ports (y0, y1, y2).

Our variable selection algorithm has the following goals:

1. Ensure expression complexity: The algorithm selects an expression ez
as a candidate for locking only if the depth of the corresponding variable
z in the dependency graph lies in a user-defined range [L, U] to create a
candidate set Z. The lower threshold L assures the expression captures a
reasonably complex relation over the inputs, while the upper threshold U
ensures the relation is not too complex to exceed the hardware budget. The
algorithm starts by randomly selecting a variable z0 ∈ Z from this set.

2. Encourage sub-expression reuse in key relation: We attempt to select
multiple “close” expressions; for the purpose, the algorithm randomly selects
variables wi ⊆ Z on which z0 (transitively) depend on.

3. Encourage coverage: We select expressions for locking in a manner so as
to cover the circuit. To this end, interpreting (V,D) as an undirected graph,
we randomly select expressions ui ∈ Z that are farthest from z0, i.e. the
shortest distance between ui and z0 is maximized.

Our algorithm first executes step (1), and then, indeterminately alternates be-
tween (2) and (3), till the required number of variables are selected. Let us use
the dependency graph in Fig. 4 to show how the above algorithm operates:

– Given the user-defined range [1,3], we compose the initial candidate set
Z = {y0, t0, t1, t2, y1, y2}.

– Let us assume we randomly pick the expression for y2. Now, y2 depends on
expressions t0, t1 and t2 ({t0, t1, y2} ⊆ Z) [Rule 1].
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– We randomly choose new expressions to lock/transform from {t0, t1, y2}. For
example, we select t2 and t0—[Rule 2].

– We find y0, which is the furthest expression from t0, t2, y2 in Z. We select to
lock the set of expressions {y1, y2, t0, t2}—[Rule 3].

4 HOLL: Implementation and Optimization

Implementation. We implemented HOLL in Python, using Sketch [50] syn-
thesis engine to solve the program synthesis queries. We used Berkeley-ABC [8]
to convert the benchmarks into Verilog and PyVerilog [53], a Python-based
library, to parse the Verilog code and generate input for Sketch. We use the
support for optimizing over a synthesis queries provided by Sketch to solve
Eqn. 6. Algorithm 1 may not terminate; our implementation uses a timeout to
ensure termination.

Domain Specific Language. We specify our domain-specific language for
synthesizing our key relations and locked expressions. The grammar is specified
as generators in the Sketch [50] language. The grammar for the key relations
and locked expressions is as follows:

〈G〉 ::= r ← x | r ← r〈Bop〉r | r ← 〈Uop〉r | r ← r

〈Bop〉 ::= or | and | xor
〈Uop〉 ::= not

The rule 〈G〉 ::= r ← x is only present in the key relation grammar since the
locked expressions have no input bits.

Backslicing. To improve scalability, we use backslicing [56] to extract the por-
tion of the design related to the expressions selected for locking. For a variable
vi, the set of all transitive dependencies that can affect the value of vi is referred
to as its backslice. For example, in Fig. 4, backslice(t2) = {t0, x0, x1, x2}.

Given the set of expressions E, we compute the union of the backslices of the
variables in E, i.e. all expressions B in the subgraph induced by e ∈ E in the
dependency graph; we use B ⊆ E for lock synthesis.

Backslicing tilts the asymmetrical advantage further towards the HOLL de-
fense. The attacker cannot apply backslicing on the locked design since the de-
pendencies are obscured, preventing the extraction of the dependency graph.

Incremental Synthesis. Given a set of expressions E, the procedure Synthesis
in Algorithm 1 creates a list of relations H and a new set of locked expressions Ê.
If the list of expressions is large, we select the expressions in the increasing order
of their depth in the dependency graph. The lower the depth of the expression
is, the closer it is to the inputs, and the simpler is the expression. Selecting an
expression with the lowest depth first (say e1) ensures that other expressions (ej)
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depending on this expression can use the relations H generated during synthesis
of ê1. This also makes synthesizing the other expressions easier as the current
relation has some sub-expressions on which the new relations can be built.

5 SynthAttack: Attacking HOLL with Program Synthesis

As HOLL requires inference of relations and not values, existing attacks designed
for logic locking do not apply. We design a new attack, SynthAttack, that is
inspired by the SAT attack [52] for logic locking and counterexample-guided
inductive program synthesis (CEGIS) [51].

5.1 The SynthAttack Algorithm

Algorithm 2: SynthAttack(ϕ̂, Jϕ̂(ψ)K)
1 i← 0
2 Q0 ← >
3 while True do
4 X ′ ← SolveX(Qi
5 ∧ (ϕ̂(X,R1) 6= ϕ̂(X,R2))
6 ∧ ψ1(X,R1) ∧ ψ2(X,R2))
7 if X ′ = ⊥ then
8 break

9 end
10 Y ′ ← Jϕ̂(ψ)K(X ′)

11 Qi+1 ← Qi ∧ (ϕ̂(X ′, Ri1)↔ Y ′)

12 ∧ (ϕ̂(X ′, Ri2)↔ Y ′)

13 ∧ ψ1(X ′, Ri1) ∧ ψ2(X ′, Ri2)
14 i← i+ 1

15 end
16 ψ1, ψ2 ← Solveψ1,ψ2(Qi)
17 return ψ1

SynthAttack runs a CEGIS
loop: it accumulates a set of
examples, Λ. These examples,
Λ, are used to constrain the
space of the candidate key-
relations. SynthAttack, then,
uses a verification check to
confirm if the collected ex-
amples are sufficient to syn-
thesize a valid key-relation.
Otherwise, the counterexam-
ple from the failed verifica-
tion check is identified as an
distinguishing input (§2)
to be added to Λ, and the al-
gorithm repeats.

If there does not exist any
distinguishing input for the
locked circuit ϕ̂, then ϕ̂ has
a unique semantic behavior—and that must be the correct functionality. Any
key-relation that satisfies the counterexamples (distinguishing inputs) generated
so far will be a valid candidate for the key relation. An inductive synthesis
strategy based on distinguishing inputs allows us to quickly converge on a valid
realization of the key-relation as each distinguishing input disqualifies many po-
tential candidates for the key relation. Note that (as we illustrate the following
example) there may be multiple, possibly semantically dissimilar, realizations of
a key-relation that enables the same (correct) functionality on the locked circuit.

SynthAttack is outlined in Algorithm 2: the algorithm accepts the design of
the locked circuit (ϕ̂) and an activated circuit ϕ̂(ψ) (the locked circuit ϕ̂ activated
with a valid key-relation ψ). The notation Jϕ̂(ψ)K indicates that this activated
circuit can only be used as an input-output oracle, but cannot be inspected.
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SynthAttack runs a counterexample-guided synthesis loop (Line 3). It checks
for the existence of a distinguishing input in Line 4: if no such distinguishing
input exists, it implies that the current set of examples is sufficient to synthesize
a valid key-relation. So, in this case, the algorithm breaks out of the loop (Line 7-
8) and synthesizes a key-relation (Line 16), that is returned as the synthesized,
provably-correct instance for the key relation.

If there exists a distinguishing input X ′ (in Line 4), the algorithm uses the ac-
tivated circuit to compute the expected output Y ′ corresponding to X (Line 10).
This new counterexample (X ′, Y ′) is used to block all candidate key-relations
that lead to an incorrect behavior, thereby reducing the potential choices for ψ1

and ψ2. The loop continues, again checking for the existence of distinguishing
inputs on the updated constraint for Qi.

The theoretical analysis of SynthAttack is available in the extended ver-
sion [54]. The algorithm only terminates when it is able to synthesize a provably
valid key-relation, that allows us to state the following result.

Theorem 2. Algorithm 2 will always terminate, returning a key-relation ψ1

such that ϕ̂(ψ1) is semantically equivalent to ϕ̂(ψ), where ψ is the “correct”
relation hidden by HOLL. (The proof is available in the extended version [54].)

{(r0 ↔ x1),
(r1 ↔ x2),
(r2 ↔ r0),
(r3 ↔ r2 ∧ r1),
(r4 ↔ ¬r2 ∧ r1)}

Fig. 5: Key rela-
tion generated by
SynthAttack.

Table 2: Dis-
tinguishing
inputs.

X Y

1101 100

0001 001

0101 010

0111 100

1001 011

0011 011

Example. SynthAttack on Fig. 1b iteratively
generates six distinguishing inputs (Table 2).
The key relation synthesized by SynthAttack
(Fig. 5) is not semantically equivalent to the
hidden key-relation that was computed and
hidden by HOLL (Fig. 1c). This shows that
there may exist multiple valid candidates for
the key-relation that all evoke the same func-
tionality on the locked design. For example,
X = 0100 generates r4 = 1 for the key rela-
tion in Fig. 1c but r4 = 0 for Fig. 5; however,
the output of the locked circuit remains the same in both cases (Y = 001).

6 Experimental Evaluation

We selected 100 combinational benchmarks from ISCAS’85 [1] and MCNC [59]
and report the time for program synthesis and the overhead after applying our
locking method. For long running experiments, we select a subset of 10 randomly
selected benchmarks where, number of input ports range between 16 and 256,
output ports range range between 7 and 245, AND gates in range [135, 4174].

For our experiments, we use number of relation terms as budget in the range
[12-14] for the key relation and depth of expression selection in range [2-4].
We conduct our experiments on a machine with 32-Core Intel(R) Xeon(R) Silver
4108 CPU @ 1.80GHz with 32GB RAM.

For both HOLL and SynthAttack, we use the Sketch synthesis tool. Since
synthesis solvers are difficult to compare across different problem instances, we
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were wary of the case where the defender gets an edge over the attacker due
to use of different tools. We create the attack-team-defence-team asymmetry by
controlling the computation time: while the defender gets 20 minutes (1200s) to
generate locked circuit, the attacker runs the attack for up to 4 days.
Our experiments aim to answer five research questions:

RQ1. What is the attack resilience of HOLL? (§6.1)
RQ2. How do impact expression selection heuristics affect attack resilience? (§6.2)
RQ3. What is the hardware cost for HOLL? (§6.3)
RQ4. What is the time taken to synthesize the locked design and key-relation

for HOLL? (refer to the extended version [54])
RQ5. What are the impact of the optimizations for scalability (backslicing and

incremental synthesis)? (refer to the extended version [54])

Here is a summary of our findings:

Security. The key relations can be recovered completely by the attacker
via SynthAttack but only for small circuits with a small hardware budget.
For medium and large designs, key relations are fast to obtain (<1200s)
but cannot be recovered by our attack even within 4 days. This shows our
defense is efficient while our attack is strong but not scalable.

Hardware Cost. Our key relations with a budget of 12-14 latent terms
have a minimal impact on the designs and the overhead reduces as the size
of the circuit grows. On the largest benchmark, the area overhead is 1.2%.
The corresponding configurations for programmable devices are small and
provide high security.

HOLL Performance. The HOLL execution time ranges between 8s and
1001s, with an average of 33s for small, 17s for medium, and 60s for large
designs for the budget of 8-10 latent terms. Our optimizations are crucial
for the scalability of our HOLL defense (locking) algorithm: we fail to lock
enough expressions in large circuits without these optimizations.

6.1 Attack Resilience

We define attack resilience of locked circuit, ϕ̂, in terms of time taken to obtain
a key relation, ψ′, such that ϕ̂ ∧ ψ′ is equivalent to original circuits, ϕ.

Attack time. Fig. 6 shows the cumulative time spent till the ith iteration
(y-axis) of the loop versus the loop counter i, that is also the number of distin-
guishing inputs (samples) generated so far (x-axis). We show exponential trend
curves (as a solid pink line) to capture the trend in the plotted points while
the data-points are plotted as blue dots. The plots show that the plotted points
follow the exponential trend lines, illustrating that SynthAttack does not scale
well, thereby asserting the resilience of HOLL.

SynthAttack failed to construct a valid key-relation for any of these ten
designs within a timeout of 4 days. However, for small designs with lesser number
of latent terms, SynthAttack was able to construct a valid key-relation (Fig. 7).
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Attack resilience vs. number of latent terms. The complexity of the key
relation increases with the number of relation bits. As shown in Fig. 7 (for
benchmarks al2 and i9), the time required to break the locked circuit increases
exponentially as the number of relation bits increases. We gave a timeout of 10
hours for this experiment and al2 timed out at 9 latent terms, and i9 timed
out at 8 latent terms. Both results are for locked circuits with variables selected
with the depth of locked expression, êi, equal to 1.

6.2 Impact of Expression Selection on Attack Resilience

Attack resilience vs. Depth of locked expression. The attack resiliency
of ϕ̂ increases significantly as we increase the depth of the locked expression
selected for HOLL for ϕ. We observe that for a number of latent terms in key
relation equal to 2, for benchmark al2, increases from 213s to 3788s for depth 1
and 2, respectively. For benchmark i9, attack time increases from 351s to 1141s
for depth 1 and 2, respectively.

Attack time vs. Coverage. To show the effect of coverage we select expres-
sions (in ei ∈ E) such that the distance (§3.2) among the expressions is largest
(termed as diverse) and smallest (termed as converged). The attack time to
break the locked circuit is more for diverse than converged expression selection
heuristic. For example, for benchmarks C432 and i9, attack time increases from
115s to 142s and 229s to 316s, respectively, when expression selection heuristic
is changed from converged to diverse. The results are with three latent terms.

6.3 Hardware cost

The key relations can be implemented either as embedded Field Programmable
Gate Array (eFPGA) or Programmable Array Logic. We synthesize the original
and locked designs with Synopsys Design Compiler R-2020.09-SP1 targeting
the Nangate 15nm ASIC technology at standard operating conditions (25◦C).
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Table 3: Hardware Impact of HOLL.

Orig. Key Relation
Over-
head

Bench
Area
(µm2)

Area
(µm2)

#Eq.
LUT

#Eq.
conf.
bits

Area
(%)

al2 17.89 4.473 138 8,832 25.0
cht 20.74 4.178 132 8,448 20.1
C432 20.05 4.866 150 9,600 24.3
C880 50.04 4.325 132 8,448 8.6
i9 77.07 4.129 126 8,064 5.4
i7 80.41 4.129 126 8,064 4.3
x3 95.21 5.014 156 9,984 5.3
frg2 100.81 4.669 144 9,216 4.6
i8 120.37 4.325 132 8,448 3.6
des 445.37 5.554 174 11,136 1.2

Table 3 provides the esti-
mated cost for implementing
the key relations with pro-
grammable devices. To do so,
we compute the number of
equivalent NAND2 gates used
to estimate the number of 6-
input LUTs. Given the num-
ber of LUTs, we give an
estimation of the equivalent
number of configuration bits
(see [54] for details)–including
those for switch elements. Re-
sults show that the size of the
key relations is independent
of original design size. Table
3 reports the fraction of the
area locked with HOLL (key relation) to the area of the original circuit. The
results show that the impact of HOLL is low, mainly for large designs.

7 Related Work

Logic Locking: Attacks and Defenses. Existing logic locking methods aptly
operate on the gate-level netlists [55]. Gate-level locking cannot obfuscate all the
semantic information because logic synthesis and optimizations absorb many of
them into the netlist before the locking step. For example, constant propagation
absorbs the constants into the netlist. Recently, alternative high-level locking
methods obfuscate the semantic information before logic optimizations embed
them into the netlist [37, 17]. For example, TAO applies obfuscations during
HLS [37] but requires access to the HLS source code to integrate the obfuscations
and cannot obfuscate existing IPs. Protecting a design at the register-transfer
level (RTL) is an interesting compromise [29, 10]. Most of the semantic informa-
tion (e.g., constants, operations, and control flows) is still present in the RTL
and obfuscations can be applied to existing RTL IPs. In [29], the authors pro-
pose structural and functional obfuscation for DSP circuits. In [10], the authors
propose a method to insert a special finite state machine to control the tran-
sition between obfuscated mode (incorrect function) and normal mode (correct
function). Such transitions can only happen with a specific input sequence. Dif-
ferently from [13], we extract the relation directly from the analysis of a single
RTL design, making the approach independent of the design flow. None of these
methods consider the possibility of hiding a relation among the key bits.

Program Synthesis. Program synthesis has been successful in many domains:
synthesis of heap manipulations [39, 20, 58], bit-manipulating programs [27],
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bug synthesis [41], parser synthesis [30, 47], regression-free repairs [6, 5], syn-
chronization in concurrent programs [57], boolean functions [22, 24, 23] and even
differentially private mechanisms [38]. There has also been an interest in using
program synthesis in hardware designs [16]. VeriSketch [4] exploits the power
of program synthesis in hardware design. Our work is orthogonal to the objec-
tives and techniques of VeriSketch: while VeriSketch secures hardware against
timing attacks, we propose a hardware locking mechanism. Zhang et al. [63] use
SyGUS based program synthesis to infer environmental invariants for verifying
hardware circuits. We believe that this work shows the potential of applying pro-
gramming languages techniques in hardware design. We believe that there is also
a potential of applying program analysis techniques, symbolic [9, 21, 12, 36, 34],
dynamic [42, 14] and statistical [28, 32, 11, 33], for hardware analysis; this is a
direction we intend to pursue in the future.

8 Discussion

We end the paper with an important clarification: the eFPGA configuration in
HOLL can also be represented as a bit sequence (i.e., a sequence of configuration
bits). So, why can an attacker not launch attacks similar to SAT attacks on logic
locking to recover the HOLL configuration bitstream?

The foremost reason is that while the key-bits in traditional logic locking
simply represent a value that the attacker attempts to recover, the bit-sequence
in HOLL is an encoding of a program [15, 35]. This raw bit-sequence used to
program an eFPGA is too “low-level” to be synthesized directly—the size of such
bit-streams is about 60-85 times of the keys used in traditional logic locking (128
key bit-sequence). So, the HOLL algorithm designer uses a higher-level domain-
specific language (DSL) to synthesize the key relation (see §4), that is later
“compiled” to the configuration sequence. The attacker will also have to use a
similar strategy of using a high-level DSL to break HOLL.

However, while the designer of the key relation can use a well-designed small
domain-specific language (DSL) that includes the exact set of components re-
quired (and a controlled budget) to synthesize the key relation, the attacker,
not aware of the key relation or the DSL, will have to launch the attack with
a “guess” of a large overapproximation. In other words, the domain-specific
language used for synthesis is also a secret , thereby making HOLL much
harder to crack than traditional logic locking.

We evaluate HOLL (§6.1) under the assumption that the DSL (and budget)
are known to the attacker. In real deployments (when the DSL is not known to
the attacker), HOLL will be still more difficult to crack.
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