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ABSTRACT Real-time audio communications over IP have become essential to our daily lives. Packet-
switched networks, however, are inherently prone to jitter and data losses, thus creating a strong need for
effective packet loss concealment (PLC) techniques. Though solutions based on deep learning have made
significant progress in that direction as far as speech is concerned, extending the use of such methods
to applications of Networked Music Performance (NMP) presents significant challenges, including high
fidelity requirements, higher sampling rates, and stringent temporal constraints associated to the simultaneous
interaction between remote musicians. In this article, we present PARCnet, a hybrid PLC method that utilizes
a feed-forward neural network to estimate the time-domain residual signal of a parallel linear autoregressive
model. Objective metrics and a listening test show that PARCnet provides state-of-the-art results while
enabling real-time operation on CPU.

INDEX TERMS Audio signal processing, autoregressive models, machine learning, networked music per-
formance, neural networks, packet loss concealment, residual learning.

I. INTRODUCTION
In the past two decades, real-time broadband audio communi-
cations over the Internet have become an integral part of our
everyday life. In order to minimize latency and ensure a fluid
and uninterrupted user experience, packet-switched networks
rely on best-effort protocols, such as RTP/UDP, that prioritize
speed over reliability. This means there are no guarantees that
the data exchange will be error-free, and some packets could
be excessively delayed or lost and never re-transmitted. At the
receiver end, a decoder continuously reads from a jitter buffer
that accumulates valid packets. If the buffer queue is empty
when the decoder tries to access it, a packet loss concealment
(PLC) algorithm is invoked to supply the missing informa-
tion to the decoder. Naive PLC systems simply replace the
missing packets with silence (zero filling), comfort noise, or
fragments of the previously received audio stream [1]. Aside
from the simple repetition of the last-received packet [2], the
latter kind of PLC can exploit information about the pitch

and the correlation of valid and replaced waveform segments
to make the data insertion seamless by minimizing discon-
tinuities [3] as per, e.g., ITU-T Rec. G.711 [4]. Since audio
signals are typically “well-behaved” within short-time win-
dows, linear autoregressive (AR) models proved effective and
relatively inexpensive for speech [5], [6], [7] and networked
music applications [8]. More recent PLC methods involve the
use of deep neural networks to predict future packets from
the previously received audio context. Two main flavors of
deep PLC have been proposed (and sometimes combined [9]):
feed-forward models [10], [11], [12], [13], [14], [15], [16],
which are fast but do not ensure smooth signal continuation;
and systems based on autoregressive neural networks [17],
[18], [19], [20], which are typically more accurate but slower.
Advances in deep PLC have been proposed mostly for VoIP
applications [21], with the notable exception of [11], which
focuses on Networked Music Performance (NMP). Compared
to speech-centered use cases where intelligibility and word
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error rate are key in assessing PLC quality, NMP systems
strive for high fidelity and present challenges in terms of
higher audio quality and bandwidth, as well as strict latency
constraints [22].

In this article, we present PARCnet, a hybrid PLC method
for real-time NMP applications. PARCnet comprises two par-
allel modules: a linear predictor and a deep neural branch,
both operating in the time domain. While the goal of most pre-
dictive PLC methods is to yield an estimate of the lost packet
from the valid context, PARCnet recasts this problem into that
of predicting the residual signal of an AR model instead of
trying to generate a coherent waveform from scratch. Notably,
the idea of learning the residual of a linear predictor via an
auxiliary nonlinear model traces way back. In 1994, Thyssen
et al. [23] showed that a tiny artificial neural network with two
hidden layers and two nodes each is able to capture short-term
nonlinear dependencies in speech and improves upon simple
linear prediction coding (LPC).

In [23], the artificial neural network predicts the residual
signal one sample at a time, just like the linear predictor.
Instead, PARCnet’s neural branch implements a feed-forward
frame-by-frame inference mechanism. In turn, this allows us
to downsize the network architecture while drastically ex-
pediting computations compared to existing autoregressive
neural networks. Moreover, as the two branches yield the
respective output signals independently of one another, it is
possible to easily reduce the audible artifacts due to inbound
phase discontinuities that tend to affect feed-forward models.

II. PROPOSED METHOD
Let us assume that an M-sample audio packet has gone miss-
ing at time index k. If we assume a linear AR(p) model for
the short-time signal under consideration [24]

y[n] =
p∑

i=1

ϕiy[n − i] + ε[n], (1)

a prima facie solution would be to fit the parameters
ϕ1, . . ., ϕp locally and forecast the samples at indices n =
k, . . ., k + M − 1 through the linear combination of p past
samples by setting ε[n] to zero in (1). In practice, however,
the residual of a finite-memory linear model is far from being
white [24], to the detriment of audio quality. The key idea
behind PARCnet is to let a feed-forward neural network pre-
dict the residual term ε[n] from the past N-sample context
x = [y[k − N], . . ., y[k − 1]]T in a nonlinear fashion. More
precisely, the missing waveform ŷ[n] is estimated as{

ŷ[n] = y[n] + fθ (x)n−k,

y[n] = ∑p
i=1 ϕiy[n − i],

(2)

where n = k, . . ., k + M − 1 and fθ : RN → RM is a vector-
valued neural mapping parameterized by θ , whose entries
fθ (x)0, . . ., fθ (x)M−1 are indexed by an integer subscript.

PARCnet is casual, which means that no information re-
garding future packets is available at inference time. To
smooth out the transitions between the prediction and the next

packet (outbound discontinuities), we gather M ′ > M samples
and linearly cross-fade the overlapping sections.

Whereas AR(p) is expected to be accurate in forecasting
the first few future samples and to provide a smooth tran-
sition between valid and predicted packets, fθ (x) is much
more likely to introduce audible (inbound) discontinuities at
the seams due to its feed-forward nature. To mitigate this
effect, we ease fθ (x) in with an upward ramp from 0 to 1
of length K = 16. In practice, we modulate the amplitude of
fθ (x)n−k by means of a time-domain envelope vector v =
[v0, . . ., vM ′−1]T with entries in [0,1]. Namely, v� = �

K−1 for
0 ≤ � < K and v� = 1 for K ≤ � < M ′. Since the two PARC-
net branches run in parallel and independently of one another,
we rewrite (2) in vector form as

ŷ = yAR + v � fθ (x), (3)

where

yAR =
[ p∑

i=1

ϕiy[k − i], . . .,
p∑

i=1

ϕiy[k + M ′ − 1 − i]

]T

,

(4)
and � indicates the Hadamard product.

A. LINEAR AUTOREGRESSIVE MODEL FITTING
While fθ (·) undergoes an offline training process, AR(p) co-
efficients are estimated from the previously received context
in an online fashion. For each packet, we find the AR(p)
coefficients through the autocorrelation method [25], solving
the resulting Toeplitz system of equations using the efficient
Levinson-Durbin algorithm [26]. The autocorrelation function
is computed over a sliding 100 ms context window with stride
of 10 ms, in which the signal is assumed to be wide-sense
stationary.

To improve the conditioning of the autocorrelation matrix,
we implement diagonal loading [27], i.e., we add a positive
term μ = 10−3 to the zeroth autocorrelation coefficient. Di-
agonal loading is also known as white noise compensation, as
it corresponds to adding a constant white noise term in the
power spectral domain, which is known to reduce the bound
on the eigenvalue spread that may cause ill-conditioning in
linear prediction problems [27].

B. NEURAL NETWORK TRAINING
The nonlinear PARCnet branch fθ (·) makes use of a feed-
forward neural network Fθ (·). To capture long-term depen-
dencies, we task the network to predict the residual associated
to the valid context along with that of the missing audio
packet. Namely, assuming to have access to N valid samples
(or a prediction thereof) prior to a packet loss starting at index
k, we could define the input vector x̃ = [y[k − N], . . ., y[k −
1], 0, . . ., 0]T by appending M ′ zeros to the context x ∈ RN .
Let ỹAR be the corresponding vector of linearly predicted
samples. Hence, we define the training objective as

min
θ

L (ỹ, Fθ (x̃) + ỹAR) , (5)
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TABLE 1. Multiresolution STFT Parameters

where ỹ = [y[k − N], . . ., y[k + M ′ − 1]]T contains a win-
dowed portion of the ground-truth waveform. This way, the
neural network is actively encouraged to learn the residual
signal of a linear predictor of order p.

We define the objective in (5) as the linear combination of
time-domain mean squared error (7), spectral convergence (8),
and the L1-norm of the regularized log-magnitude error (9).
Similarly to prior work [12], [13], [28], [29], the spectro-
temporal losses are evaluated at multiresolution scales, i.e.,
using Q = 3 different sets of Fourier analysis parameters as
shown in Table 1. Namely,

L = LMSE + λ

Q

Q∑
q=1

(
L(q)

sc + L(q)
log

)
, (6)

where

LMSE = 1

N + M ′

k+M ′−1∑
n=k−N

(y[n] − ŷ[n])2 , (7)

L(q)
sc =

∥∥ | STFTq(y[n])| − | STFTq(ŷ[n])| ∥∥F∥∥ | STFTq(y[n])| ∥∥F

, (8)

L(q)
log = 1

TqFq

∥∥∥∥ln
| STFTq(y[n])| + ε

| STFTq(ŷ[n])| + ε

∥∥∥∥
1

, (9)

| STFTq(·)| ∈ RFq×Tq indicates the magnitude of the short-
time Fourier transform (STFT) evaluated at resolution q,
‖ · ‖1 is the L1-norm, ‖ · ‖F is the Frobenius norm, ε is a
small number to avoid numerical errors, and λ = 0.005. We
train the model for 275 000 iterations using RAdam [30] with
β1 = 0.5, β2 = 0.9, a batch size of 128, and a learning rate of
0.001.

Although the loss function includes time-frequency ob-
jectives, it is worth noting that, at inference time, PARCnet
operates solely in the time domain. Indeed, once the training
phase is completed, Fθ (x̃) outputs a vector of N + M ′ time-
domain samples. In practice, however, we assume that the N
preceding samples are valid, and we are only interested in
estimating the missing packet. Therefore, the mapping fθ (x)
is obtained by taking Fθ (x̃) and discarding the first N sam-
ples. This leaves us with a sequence of M ′ samples that are
combined with yAR as in (3).

The length of the context window N is a free parameter
that must be set taking into account the specific attributes of
the target audio signals. Concurrently, though, the number of
operations involved in a forward pass of the model increases

FIGURE 1. PARCnet architecture.

FIGURE 2. Dilated residual block.

FIGURE 3. Bottleneck GLU block.

with N , potentially impacting real-time performance when
limited computational resources are available.

C. NEURAL NETWORK ARCHITECTURE
We implement Fθ (·) as a lightweight fully-convolutional
causal information bottleneck model [13]. As shown in Fig. 1,
the encoder and the decoder comprise E = D = 4 dilated
residual blocks followed by either max-pooling-based down-
sampling or nearest-neighbor upsampling [31], both with a
factor of two. Each dilated residual block (Fig. 2) com-
prises a skip connection passing through a convolutional layer
with no dilation and two stacks of convolutions with dila-
tion factor of two and four, respectively, batch normalization,
and LeakyReLU with slope α = 0.2. The number of filters
progressively grows in the encoder (8, 16, 32, 64), and de-
creases symmetrically in the decoder (64, 32, 16, 8). The
convolutional layers have filters of size 11 in the encoder
and seven in the decoder. The bottleneck, instead, comprises
B = 6 blocks (Fig. 3) consisting of an input stack, a gated
linear unit (GLU) [32] with kernel size 11, and an output
stack, as well as a residual path shortcutting the input and
the output of the block, followed by PReLU [33]. The input
and output stacks feature a pointwise (PW) convolution with
dilation factor of one and 32 and 64 channels, respectively,
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followed by batch normalization. Similarly to [13], the di-
lation rate grows exponentially with each GLU in order to
capture the correlation among increasingly distant samples.
Namely, the jth bottleneck layer has a dilation rate of 2 j−1,
j = 1, . . . , B. The output of the decoder is thus fed to a PW
convolution followed by a hyperbolic tangent activation func-
tion. All convolutions in the model are 1D.

III. EVALUATION
We run our experiments using a subset of MAESTRO [34],
which contains over 200 hours of human-performed piano
recordings. For our purpose, we create a smaller dataset of
audio data (approximately 28 hours of music), downsampled
at 32 kHz and converted to mono. We consider packets of
length M = 320 samples (10 ms), which is just above a typical
buffer size used by commercially available sound cards. In
doing so, we do not normalize the data, as we want the system
to be robust to silence and amplitude variations. Finally, as a
test set, we select one hour of held-out data from MAESTRO
and, following [11], we simulate evenly-spaced losses with a
loss rate of 10%.

We evaluate the PLC performance of the proposed method
against several baselines, the simplest of which is trivial
zero filling. We implement three linear AR(p) models with
p = 32, 64, 128, i.e., the three largest time lags examined
in [8], [11]. To ease outbound transitions, we forecast 25%
more samples than a packet length and apply a linear cross-
fade. To facilitate a meaningful comparison, we integrate the
highest-order linear predictor, namely AR(128), into PARC-
net’s linear branch. Additionally, we consider five deep PLC
baselines: PLAAE [12], FRN [9], Verma et al. [11], TF-
GAN [13], and LPCnet [19].

As in the original paper, PLAAE is implemented using
five causal encoder blocks, with dilation factors dı = 3ı−1,
ı = 1, . . ., 5. Our interpretation of the undisclosed parameters
consists of six non-overlapping transposed decoder blocks,
each comprising three residual blocks with dilation dj = 3j−1,
j = 1, . . ., 6. In the bottleneck, the latent code is projected
onto 256 channels, which are then reduced by a factor of
two with each decoder block. Lastly, the remaining channels
are projected onto one by a point-wise convolution yielding a
monophonic signal. At inference time, we perform maximum-
correlation alignment and linear cross-fading as specified by
the authors [12]. We optimize the FRN model [9] using the
publicly available codebase, having set the sampling rate to
32 kHz and having included 320 among the training packet
sizes. We modify Verma et al. [11] by applying logarithmic
compression to the input mel-spectrograms instead of context-
wise peak normalization in the time domain, as preliminary
experiments showed a slightly superior performance. We
make no modifications to the TF-GAN [13] implementation
provided by the authors other than adapting the discriminator
parameters to the higher sampling rate. Finally, we train the
PLC version [20] of LPCnet [19] on our dataset of piano
recordings.

PARCnet’s input consists of eight-packet sequences (total-
ing 80 ms), where the last packet is assumed to be lost and
thus replaced with zeros. PARCnet and TF-GAN [13] are
optimized using 100 000 of such sequences. PLAAE [12],
instead, requires a longer temporal context: 100 000 packets
are paired with the mel-spectrogram extracted from the past
one second of audio and used for training. Verma et al. [11]
use an even longer temporal context, where two downsampled
context windows of 8 s and 4 s are concatenated to the previ-
ous 2 s one along the channel dimension. The LPCNet [19]
prediction is obtained by conditioning the generative model
with a feature vector obtained through a recurrent neural net-
work that receives either a binary flag and the known features
extracted from correctly received frames or a zero-vector if
the target frame was lost. Finally, FRN [9] is trained using
40 000 audio sequences masked by a two-state Markov chain
randomly selected out of three models with intra-state transi-
tion probabilities of 0.9, 0.5, 0.5 for the “valid” state, and 0.1,
0.1, 0.5 for the “loss” state, respectively.

A. OBJECTIVE METRICS
First, we evaluate the Normalized Mean Squared Error
(NMSE) between predicted and ground-truth packets, i.e.,

NMSE := 10 log10
‖y − ŷ‖2

2

‖y‖2
2

, (10)

where the normalization compensates for the dependency of
the error term on the energy of the ground-truth packet.

In prior work, Mel-Cepstral Distortion [38] has been used
to assess the performance of PLC techniques [12]. However,
though most suited for speech, cepstral analysis is not tailored
to those music signals that cannot be properly characterized
by a source-filter model. Therefore, we consider spectral con-
vergence (SC) [28] as an alternative frequency-domain metric.
Unlike the original definition, we apply a mel-frequency filter
bank to the magnitude STFT features to account for the non-
linear human perception of sound. Mel-SC is given by

Mel-SC := ‖Ymel − Ŷmel‖F

‖Ymel‖F
, (11)

using 64 mel-scale triangular filters and a 512-sample Hann
window with 50% overlap.

NMSE and Mel-SC are objective error measures and, as
such, are known not to correlate so well with human as-
sessments. Therefore, we include two objective perceptual
measures in our study. First, we evaluate ITU-R BS.1387
Perceptual Evaluation of Audio Quality (PEAQ) [39]. In par-
ticular, we use the open-source MATLAB implementation of
the PEAQ Basic algorithm by P. Kabal [35]. We evaluate
PEAQ over windows of ten seconds and report the average
Objective Difference Grade (ODG) and its standard deviation.
Second, we consider PLCMOS, a convolutional-recurrent en-
coder developed for the INTERSPEECH 2022 Audio Deep
Packet Loss Concealment Challenge [36]. PLCMOS produces
scores between one and five aimed at estimating the Mean
Opinion Score (MOS) of human listeners according to the
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TABLE 2. Evaluation Results on Held-Out Data From MAESTRO [34]. CPU Time is Estimated by Averaging 10 000 Single-Packet Predictions on a
Laptop-Mounted AMD Ryzen 5900HS Processor. Underlined Entries are Real-Time At a Sampling Rate of 32 kHz. ↑ Higher is Better; ↓ Lower is Better

ITU-T Rec. P.808 [40]. Nevertheless, it is worth noting that
PEAQ was originally developed to assess the impairment in-
troduced by lossy audio codecs, and whether it constitutes a
suitable objective measure for PLC applications is a subject of
debate within the scientific community. See, for example, [41]
and [42]. Similarly, PLCMOS was trained solely on speech
and might not be entirely reliable when applied to music.
PEAQ and PLCMOS are averaged over 10 s windows with
no overlap and require the signals to be resampled at 48 kHz
and 16 kHz, respectively. Mel-SC, instead, is evaluated on the
entire audio files at the native 32 kHz sampling rate.

Along with the objective metrics described above, Table 2
reports the number of trainable parameters of the deep learn-
ing models and the CPU time estimated by averaging 10 000
single-packet predictions on a laptop-mounted AMD Ryzen
5900HS.

B. LISTENING TEST
As none of the metrics described in Section III-A are en-
tirely reliable in assessing music-oriented PLC algorithms,
we conducted a MUltiple-Stimuli with Hidden Reference
and Anchor (MUSHRA) test [43] compliant with the ITU-R
Rec. BS.1534-3 [44]. A total of 16 musically-trained par-
ticipants were asked to rate five 10-second piano excerpts
processed with eight PLC methods on a scale of 0 (Bad) to
100 (Excellent). The excerpts were randomly sampled from
the MAESTRO test set and degraded with 10 ms losses every
100 ms. The subjects were instructed to identify the ground-
truth track without tampering (hidden reference), as well as
the zero-filling technique (anchor), and were tasked to rate
the former with 100 points and assign the lowest score to the
latter.

According to the ITU-R Rec. BS.1534-3 post-screening
guidelines [44], any assessor who rates the hidden reference
below a score of 90 for more than 15% of the total number
of test items must be excluded from the aggregated responses.
Hence, we excluded one assessor who rated the hidden refer-
ence at 79 while assigning a score of 100 to PARCnet in one
of the five test audio excerpts. We were left with 15 assessors,

14 males and one female, with ages ranging from 25 to 37
(28.8 on average). The test results are shown in Fig. 4. Audio
examples are available online.1

C. RESULTS AND DISCUSSION
Of all methods, only the three AR models, LPCnet, and PAR-
Cnet are able to operate in real-time at a sampling rate of
32 kHz (see Table 2). As for LPCNet, we load the model
weights optimized in Keras into the highly efficient C imple-
mentation provided by the authors [20], whereas our inference
model runs in Python using PyTorch. Therefore, since PARC-
net has the lowest number of trainable parameters among all
deep PLC models (416 k), i.e., less than a tenth of those of
LPCnet (5.9 M), we expect it to outspeed all baselines once
properly optimized. Overall, PLAAE is the slowest method
due to the computational burden of the ex-post maximum-
correlation alignment [12].

As shown in Table 2, PARCnet outperforms all deep PLC
methods considered in the study across all objective met-
rics. Notably, PARCnet is backed by an already proficient
linear predictor. Indeed, the simple AR(128) model appears
to outperform the other baseline methods as far as NMSE,
PEAQ, and PLCMOS are concerned. This can be explained by
considering that the sustained portion of the notes produced
by a solo musical instrument tends to be quasi-harmonic as
long as we do not take into account attack transients. Thus, a
short-time music signal may be well represented by an all-pole
system of sufficiently high order. Nevertheless, the integration
of AR(128) within the deep residual learning framework of
PARCnet yields a significant improvement across the board
compared to just using the linear predictor.

In particular, as far as PEAQ is concerned, PARCnet is the
only method among those considered in the present study for
which all 10-second test audio segments sit between what [39]
describes as perceptible, but not annoying (−1.0) and slightly
annoying (−2.0). Moreover, PARCnet is the only method to

1Audio examples available at https://polimi-ispl.github.io/PARCnet.
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FIGURE 4. Results of the MUSHRA listening test. Mean and standard deviation (top); box-and-whiskers diagram (bottom).

FIGURE 5. Example of packet prediction.

exceed the threshold of what [40] defines as poor listening
quality (2.0) with regard to PLCMOS.

The conclusions drawn above are confirmed by the re-
sults of the MUSHRA test shown in Fig. 4. We found a
statistically significant relationship (P < .05) between the ob-
jective perceptual measures obtained for each method and
the corresponding average opinion scores. We report a Pear-
son correlation coefficient (r) of 0.957 for PEAQ (P = 1.8 ×
10−4) and 0.899 for PLCMOS (P = 2.3 × 10−3). We also
note that NMSE significantly correlates with the subjects’
judgments yielding r = −0.725 (P = .04), whereas Mel-SC
is characterized by a non-significant linear correlation with a
Pearson r of −0.437 (P = .27).

FIGURE 6. Example of packet prediction without time-domain envelope
fading-in the deep residual estimate.

Further inspecting Fig. 4, we notice that Verma et al.,
PLAAE, and TF-GAN perform comparably or worse than
trivial zero filling. This can be attributed to audible “clicks”
in the audio playback caused by discontinuities at the seam
between subsequent packets, which these models fail to ad-
dress. Conversely, FRN, LPCnet, and AR(128) seem less
susceptible to this type of audio degradation thanks to their
autoregressive inference mechanism.

Despite being the only linear model considered in the
present study, AR(128) appears to consistently improve upon
the neural network baselines. These results confirm previous
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FIGURE 7. Spectrograms of a 2-second piano excerpt from MAESTRO [34].

observations [11] and put forward linear prediction as a viable
option for low-resource NMP applications.

PARCnet is shown to significantly outperform all baseline
methods. In particular, the proposed method provides an im-
provement of 21.7 points on average compared to AR(128).
At the same time, PARCnet scores have the least spread
among all methods considered in the MUSHRA test, indicat-
ing a stronger user agreement concerning the overall improved
listening quality. Ultimately, this seems to suggest that the
proposed strategy of learning the residual signal of a linear
predictor using an auxiliary nonlinear model is advantageous
for PLC in NMP applications.

D. EXAMPLE OF MODEL INFERENCE
Fig. 5 shows an example of PARCnet prediction compared to
that of AR(128). The first M = 320 samples are considered
valid (solid blue line), whereas the following 10 ms (marked
by a red rectangle) correspond to a simulated packet loss. It
can be seen that the AR estimate (orange line) closely matches
the lost packet (dotted blue line) as far as the first few samples
are concerned. Past that, however, the quality of the prediction
degrades severely. On the contrary, the neural contribution of
PARCnet appears to be instrumental in improving the results
significantly (red line), especially as far as the later portion of
the lost packet is concerned.

This phenomenon also provides empirical justification for
the use of the time-domain envelope vector v ∈ [0, 1]M ′

introduced in Section II. As mentioned above, autoregressive
models are less likely to introduce inbound discontinuities
than feed-forward models. This is highlighted in Fig. 6, where
a discontinuity of the first kind (jump discontinuity) is clearly
noticeable at the seam between the valid and the predicted
packet when no envelope is applied to the deep residual es-
timate (red line). Notably, these artifacts have the effect of
abruptly increasing the signal bandwidth, causing annoying
impulse-like click sounds in the audio playback. On the con-
trary, AR(128) seems well capable of continuing the signal
smoothly, further motivating the design choice of relying on
the linear model for estimating the first few samples, while
gradually fading-in the neural contribution.

Finally, Fig. 7 shows the spectrogram of a 2-second piano
excerpt from MAESTRO (Fig. 7(a)), and illustrate the effects
of concealing missing packets with AR(128) (Fig. 7(b)), LPC-
Net (Fig. 7(c)), and PARCnet (Fig. 7(d)).

IV. CONCLUSION
In this article, we introduced PARCnet, a novel low-latency
hybrid packet loss concealment method that combines lin-
ear autoregressive models and feed-forward neural networks
in a synergistic way. We exploited the short-time statistical
properties of music signals to apply linear autoregression
while using a parallel neural predictor to estimate the non-
linear residual term. Evaluated on a large-scale dataset of
piano recordings, PARCnet turned out to reach state-of-the-art
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results and significantly outperform recent deep-learning-
based methods in terms of objective metrics and subjective
judgments while being able to operate in real-time on a
consumer-grade CPU.
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