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Abstract — Objective: Virtual Reality (VR) simulators represent 

a remarkable educational opportunity in order to acquire and refine 
surgical practical skills. Nevertheless, there exists no consensus 
regarding a standard curriculum of simulation-based training. This 
study introduces an automatic, adaptive curriculum where the 
training session is real-time scheduled on the basis of the trainee’s 
performances.  

Methods: An experimental study using the master console of the 
da Vinci Research Kit (Intuitive Surgical Inc., Sunnyvale, US) was 
carried out to test this approach. Tasks involving fundamental skills 
of robotic surgery were designed and simulated in VR. Twelve 
participants without medical background along with twelve medical 
residents were randomly and equally divided into two groups: a 
control group, self-managing the training session, and an 
experimental group, undergoing the proposed adaptive training.  

Results: The performances of the experimental users were 
significantly better with respect to the ones of the control group after 
training (non-medical: p<0.01; medical: p=0.02). This trend was 
analogous in the non-medical and medical populations and no 
significant difference was identified between these two classes (even 
in the baseline assessment).  

Conclusion: The analysis of the learning of the involved surgical 
skills highlighted how the proposed adaptive training managed to 
better identify and compensate for the trainee’s gaps. The absence 
of initial difference between the non-medical and medical users 
underlines that robotic surgical devices require specific training 
before clinical practice. 

Significance: This feasibility study could pave the way towards 
the improvement of simulation-based training curricula. 
 

Index Terms — Virtual Reality Simulators, Training and Motor 
Learning, Robot-Assisted Surgery, Adaptive Logics, Skill 
Assessment 

I. INTRODUCTION 
imulation-based education for the development of practical 
skills has come to the forefront in the recent years. This 

growth has affected different fields including medical and, in 
particular, surgical education [1]. Simulation can be defined as 
the creation of interactive environments that replicate a real-
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world scenario, although not identical to “real life” [2]. This has 
paved the way to new learning approaches that could replace 
the classical Halstedian paradigm (see one do one, teach one). 
In fact, a direct ethical advantage of simulation-based training 
in surgery is preventing patients from being subjected to any 
risk or complication during the learning phase [3].  In other 
words, a preliminary hands-on experience can be gathered 
before operating on real patients. Additionally, simulators are 
characterized by an easier access with respect to time-
consuming and expensive practice in the operating room. This 
allows to overcome the constraints associated to a limited case 
volume for surgical training [4]. This is all the more important 
since the increasing deployment of Robot-Assisted Surgery 
(RAS) has introduced the need of learning also how to deal with 
new interfaces between the surgeon and the surgical 
instruments. In fact, this approach has become currently 
adopted in a wide area of surgical interventions including 
urology, gynecology and general abdominal surgery [5][6]. 
This technique is able to combine the advantages of Minimally 
Invasive Surgery (MIS) with respect to open surgery [7] and the 
benefits of robotic surgery compared to standard MIS [8]. 
Nonetheless, the efficacy of this approach is strictly related to 
the surgeon’s experience [9]. In fact, this technique implies new 
control modalities, where the user has to manipulate a couple of 
robotic masters in order to position the surgical instruments and 
the endoscopic camera inside the patient. This teleoperative 
approach detrimentally involves the need of learning how to 
deal with the new dynamics of the manipulators [10] and how 
to compensate for the absence of haptic feedback [11]. Together 
with the complexity of surgery as a sensorimotor task, these 
new technologies lead to a distinct necessity of efficient training 
modalities. A recent survey-based study of residents enrolled in 
general surgery training program revealed that 78% of senior 
general surgery residents have been involved in a robot-assisted 
case, yet more than half of these residents have not received any 
formal training to this platform [12]. Simulators can overcome 
these issues and help in allowing a safe introduction of robot-
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based technologies in the surgical scenario.  
In order to maximize the learning benefit, there is a clear need 

for structured training curricula [13]. Three essential phases 
compose a general structured training program in robotic 
surgery [14]: the preclinical phase (didactic and skill training, 
comparison of surgical robotic methods with prior training and 
clinical experiences, and understanding of the robot 
technology); secondly, the bedside assistant phase (working as 
co-surgeon, learning trocar and robot placement, 
instrumentation, troubleshooting); and finally, the operative 
console phase (performing parts of the robotic operation). 
Simulators can be an effective training method in the initial 
preclinical stage by allowing a first approach to the surgical 
platform and a practical skill development [15-16]. This means 
a simulation-based training platform has to transfer the required 
surgical skills as efficiently as possible. Exercises should have 
face validity (i.e. the simulation resembles the real task), 
content validity (i.e. the intended content domain is measured 
by the assessment exercise), construct validity (i.e. the ability 
to differentiate between groups with different levels of 
competence), and predictive validity (i.e. capability to predict 
future performances and retain the acquired skills) [17]. For 
instance, the dV-Trainer by Mimic Technologies Inc. (Seattle, 
WA) is a virtual reality simulator that replicates the master 
console of the da Vinci robot by Intuitive Surgical Inc. 
(Sunnyvale, CA). Several studies have tested the features 
previously listed and the transferability of the skills acquired by 
training with this simulator to the real surgical field [18-19]. 
Processing the concept of construct validity, the validation of 
simulators should now follow Messick’s framework, where five 
distinct sources of validity evidence are investigated to build a 
validity argument [20]. These sources involve content, response 
process, inner structure, relation with other variables, and 
consequences of the assessment test.  In [21], 33 studies using 
Messick’s validity framework to validate surgical simulators 
are reviewed. 
Another key aspect while designing a training platform is the 
quantification of the user’s performance, which should be 
carried out as soon and objectively as possible [22-23]. The 
assessment of technical skills by observation, as it typically 
occurs in the operating room, can be time-expensive, subjective 
and then lacking of reliability [23-24]. Simulators cover this 
limitation by adding the possibility of quantitative 
measurements of the trainee’s performance by computing intra-
task metrics [25-27]. A metric can be defined as a variable that 
is sampled during the task execution. It can be task-independent 
(e.g. time, number of movements, path length of the end 
effector, as in [28]) or task-dependent (e.g. maximum cutting 
velocity, number of cutting segments, as in [29]). The constant 
monitoring of these metrics, as well as kinematics data 
associated to the user’s interaction with the masters, can 
provide accurate and objective measures about the trainee’s 
learning.  

Simulators have shifted the paradigm of a mentor-guided 
learning towards a self-directed training, with the consequent 
reduction of program costs [30]. Nevertheless, the success of 
this approach relies on the ability of the trainee to correctly 
perform self-assessment and management. Especially in the 
early stages of training, this condition is not totally 
accomplished [31]. Some recent studies have investigated the 

possibility to apply computer-based feedback during training. 
In [32], Kowalewski et al. proposed a training system for 
laparoscopy based on sensor and expert models. This system is 
able to generate automated real-time feedback to optimize the 
trainee’s learning. Malpani et al. developed an automated coach 
that provides real-time cues (like visual overlays and video 
demonstrations) for robotic surgical training and they 
demonstrated its feasibility on 16 subjects [33]. Out of the 
surgical field, Rauter et al. studied training by means of a 
robotic rowing simulator and they introduced an automated 
selection of the feedback type to incorporate human expertise 
in the learning process [34]. Enayati et al. addressed this topic 
by analyzing the application of an assistance-as-needed haptic 
feedback during training: this guidance was able to optimize the 
learning of some performance metrics (such as time) in the field 
of robotic surgery [35]. In this work, we address the modulation 
of the training curriculum. In fact, while training with 
simulators, there exists the need for defining a training session 
curriculum (i.e. which exercises perform and in which order). 
In order to overcome the restrictions of a static schedule, 
adaptive approaches have been proposed in other educational 
fields [36]. Adaptive training can be defined as a training 
modality in which the task is varied as a function of how well 
the trainee performs [37]. Such an approach features three key 
elements: a performance measurement module, an adjustable 
task feature (the adaptive variable) and an adaptive logic that 
automatically changes the adaptive variable as a function of the 
performance measurement. This adaptivity should also increase 
the training efficiency since effective learning takes place only 
when training occurs at an appropriate level of challenge for the 
trainee [38].   
Our study proposes an adaptive training curriculum for robotic 
surgery using simulators that automatically schedules the 
training session on the basis of an objective assessment of the 
trainee’s performances. This closed-loop framework is depicted 
in Figure 1. The research question can be summarized as 
follows: can an adaptive training achieve better final 
performances compared to a self-managed training, where the 
word adaptive refers to the fact that the training modules are 
arranged in an automatic and performance–based way? The 

Figure 1 Performance-based adaptive curriculum for robotic 
surgical training using simulators: the trainee performs a certain task 
and undergoes an assessment of his/her learning that is quantified in 
a performance. This last (together with the previous ones, if 
available) is employed in order to decide which exercise performing 
next. 
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research hypothesis is tested by analyzing both participants 
without medical background and a population of medical 
residents. This work represents an extension of a preliminary 
pilot study of ours [39]. 

II. METHODS 
In order to test the research hypothesis, we exploited a virtual 

reality simulation environment that allowed us to design skill-
oriented tasks and to objectively quantify the trainee’s 
performances. The experimental study was designed primarily 
to assess the efficacy of the adaptive training on the final 
performances after training, and secondly to analyze the skill 
learning and the relevance of previous medical experience.  The 
following paragraphs describe the experimental setup and the 
acquisition protocol, as well as the specifications of the adaptive 
training logic. 

A. Experimental Setup 
The robotic platform employed in this study was the surgeon 

console of a da Vinci Research Kit (dVRK). This is a standard 
da Vinci surgical system (Intuitive Surgical, CA, USA) that is 
integrated with control hardware and software in order to 
directly access the measurements relative to the joints of each 
manipulator of the system [40]. The dVRK’s surgeon console 
includes a foot-pedal tray, a stereo viewer (each viewer has a 
resolution of 640x480 and refresh rate of 59.94 Hz) and two 
master manipulators (each one equipped with 7 actuated joints 
and a passive gripper).   

The VR environment was designed using our recently 
developed Assisted Teleoperation with Augmented Reality 
(ATAR) framework [41]. The developed software architecture 
for this study encompasses four Robot Operating System (ROS) 
nodes, namely: core simulation, teleoperation, Graphical User 
Interface (GUI) and bridge to dVRK controllers. The core 
simulation node generates the graphics and physics of the 
virtual objects, along with the task logic. The simulated 
environment runs at 25 Hz. The 3D graphics are produced using 
the Visualization Toolkit (VTK) and OpenGL libraries and are 

sent to the dVRK stereo displays through two output ports of a 
GeForce GTX 980 Ti GPU (Nvidia Corp.) with a refresh rate 
of 25 Hz. The Bullet physics library [42] was deployed to 
perform the dynamic simulation of 3D virtual objects. The 
robotic tools are simulated as kinematic objects resembling the 
da Vinci endoscopic tools and their pose is constrained to that 
of the master devices through the teleoperation node and with a 
translation down-scaling factor of 2. To ensure real-time 
interactivity with realistic collision detection, mesh objects are 
approximated through convex hull decomposition [43]. 
Through the GUI node, the operator can select the task to 
perform, as well as controlling the record of the current session 
data (which is performed at 30 Hz). 

B. Training Tasks 
As initially stated, simulators are involved in technical skills 

learning: we developed a curriculum composed by elementary 
and complex tasks. The former aims at training a single 
fundamental skill of robotic surgery, while the latter involves 
multiple skills at once. Starting from a complex bimanual 
visuo-motor task (analyzed in a previous study of ours [35]), we 
identified the involved elementary skills. In particular, this 
choice was guided by the analysis of a skill deconstruction list 
[34] generated by robotic operations observation and by 
interviews with clinical experts. These skills are listed and 
defined in Figure 2. Notice that, although the robotic platform 
enables 3D vision by a stereoscopic viewer, the trainee has to 
learn how to deal with this new vision modality [45-46]. We 
also highlight that all the elementary tasks involve a single arm 
at once, except for the object exchange: this latter task is meant 
to be elementary since it trains and evaluates just the grip 
transfer from an instrument to the other. Additionally, we 
designed a second complex task that involves the same basic 
skills of the former. This task does not make part of the training 
curriculum, but it appears just in the final evaluation stage in 
order to test the transferability of the acquired skills on a task 
which is totally new to the trainee. Figure 2 contains a picture 
of each virtual reality exercise, whose logic is explained in the 
following lines. 

Figure 2 The task pool is composed by complex and elementary tasks. The former contains all the elementary skills that the latter individually 
focuses on. 
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1. Steady Hand Task – Complex  
The user moves a ring along a curved wire pathway, 
while attempting to avoid the ring and wire making 
contact and keeping the ring’s plane perpendicular to the 
wire’s tangent. In each repetition, the subject has to grasp 
a ring from the right side of the wire with the right hand 
tool, carry it to the middle of the wire and transfer the 
ring to the left tool and finally carry the ring to the left 
end of the wire. 

2. Skill Transfer Task – Complex 
The user grabs a needle and performs an instrument to 
instrument exchange through randomly oriented rings. 
While conducting the transfer, he/she has to keep the 
needle orthogonal with respect to the ring’s plane and 
passing through the ring’s center. 

3. 3D Perception Task – Elementary  
The user controls a cylinder that moves in the space. The 
purpose is to insert the cylinder sequentially into rings 
placed at different depth levels.  

4. Wrist Manipulation Task – Elementary  
The user has the control of the orientation of one virtual 
hand and he/she has to rotate his wrist in order to keep it 
overlapped to a second, concentric and randomly rotating 
hand.  

5. Hand-Eye Coordination Task – Elementary  
The user controls the position of a pointer and tries to 
keep it as close as possible to a target that moves along a 
random path in the space.  

6. Object Exchange Task – Elementary 
The user has to grasp a ring from the right tower and to 
place it on the target tower after performing an 
instrument-to-instrument exchange. 

 

C. Performance Assessment 
The performances were objectively assessed on the basis of 

five task metrics (Table I). These metrics have shown to be 
capable of building learning curves across training in [35]. All 
the metrics were expressed as values ranging from 0 to 1. To 
achieve this goal, a metric 𝑚	 was normalized and saturated as: 

 𝑚∗ = 𝑠𝑎𝑡(0, #!"#$	$	#
#!"#$	$	#%&'#$

, 1)       (1) 

where 𝑠𝑎𝑡(𝑎, 𝑥, 𝑏) saturates the input 𝑥 between the minimum 
𝑎 and the maximum	𝑏. The ideal value of each metric 𝑚%&'( 
was determined by taking into consideration the performances 
of three surgeons (all with number of robotic surgical cases > 
300 so that they could be regarded as experts), while the lower 
boundary 𝑚)*+'( was tuned according to novice users’ data. 
Precisely, 𝑚%&'( and 𝑚)*+'( were computed as the average of 
the 5 best and worst values of each metric ever recorded, 
considering 50 repetitions of each task (performed by expert 
and novice users, as previously stated). Finally, the 
performance 𝑃, in the ith elementary task was computed as a 
weighted sum of the associated metrics:  

𝑃, =	
∑.(	#(
∑.(

∈ [0,1]         (2) 

where 𝛽/	  is the weight associated to the jth metric 𝑚/
	  in the ith  

elementary task and j ranges from 1 to 5. 

As far as it concerns the complex tasks, an evaluation of each 
involved ith elementary skill was calculated analogously: 

𝑆, =	
∑0(	#(
∑0(

∈ [0,1]        (3). 

where 𝛼/	  is the weight associated to the jth metric 𝑚/
	  in the 

complex task and j ranges from 1 to 5. 
The overall performance in the complex tasks was derived as 
the average of the skill-related ones. Table I reports the metric 
weights in the complex (red) and elementary (blue) tasks. These 
weights were assigned under expert surgeon’s supervision. 

 

D. Acquisition Protocol 
A user study was carried out to test the research hypothesis.  
The study population consisted in 12 non-medical participants 
and 12 medical residents, whose specifics are reported in Table 

Table I Task Metrics 

*Note The data related to the medical participants’ previous 
experience in surgery (open surgery and laparoscopic surgery) refer 
both to firsthand experience and to assistance during the procedure. 
 

Table II Participants Statistics 
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II. All the subjects had none to little experience with robotic 
teleoperation. None of the volunteers had neurological 
disorders or visuo-motor problems with a possible negative 
impact on their performance. The research outline was 
explained to all the subjects prior to enrollment and the 
experiments were carried out following the recommendations 
of our institution. All the subjects gave written informed 
consent in accordance with the declaration of Helsinki.  
Both the medical and non-medical users underwent the same 
acquisition protocol. They were randomly divided into two 
groups: a control group (N=6), performing the self-managed 
training, and an experimental group (N=6), undergoing the 
adaptive training. Participants were assigned by an investigator 
who was not involved in their recruitment; random assignment 
(numbers randomly generated from a computer) was blocked 
(block size equal to 2) and stratified by whether the participant 
had any medical experience. The group allocation followed the 
two samples block random assignment paradigm. Firstly, the 
subjects were introduced to the dVRK console and they were 
shown videos of a successful execution of each task. The total 
time was selected as a training constraint to have comparable 
protocols between the two groups. In fact, the users underwent 
45 minutes of training: the ones belonging to the control group 
directly chose their exercises and they were provided with their 
percentage performance after each task repetition; the 
experimental group was provided with the task to perform 
according to the adaptive algorithm (described in the following 
section). Moreover, each user performed an initial baseline 
assessment (2 repetitions) and a final evaluation (4 repetitions) 
on the steady hand complex task. The former aimed at testing 
that all the trainees initially belonged to the same statistical 
population in terms of performances; the latter allowed to 
quantify the training effects. Finally, all the subjects went 
through a final test consisting of 4 repetitions of the skill 
transfer complex task. Before the experiments started, the users 
were informed about the training protocol and the modalities of 
final performance assessment. 

 

E. Adaptive Logic 
The adaptive logic automatically modulated the training 

curriculum of the experimental group as a function of their 
performances. The training session of these users was split into 
3 units, as shown in Figure 3a. These were defined as 15 

minutes training slots, where the user performed one repetition 
of the steady hand complex task at the beginning and then 
elementary tasks till the end of that unit. Once the elementary 
training started, the adaptive algorithm had to output the 
elementary task that the user should perform.  The proposed 
method aims at maximizing the learning by filling the gaps in 
the different surgical skills. This was achieved by scheduling 
the training on the basis of a priority index (φ1, where i 
corresponds to the ith elementary skill) that took into account 
the initial user’s performance in the complex task, together with 
the influence of the on-going elementary training. In a formal 
way, 

  𝚤̅ = 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦	𝑡𝑎𝑠𝑘	𝑡𝑜	𝑝𝑒𝑟𝑓𝑜𝑟𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜑,). 
 
To initialize this index, the skill-related performance (3) in the 
first complex task repetition was exploited: 

        𝜑,	 	 = 	1 − 𝑆,  ∈ [0,1]         (4).  

Once the first selected elementary task was performed, in order 
to update the priority index, the result in the elementary training 
was considered as well as the correlation of the performed 
elementary task with other skills and with the complex task 
itself. To achieve this goal, we introduced the concepts of skill 
connection and structural significance respectively (Figure 3b).  
These were quantified by computing the correlation of metric 
weights of the two tasks under analysis. The skill connection 
was defined as:  

      𝜌,/ =
∑ .)* .)

(
)

2∑ .)*
+

) ∑ .)
( +

)

∈ [0,1]         (5) 

where	𝛽#,  is the weight associated to the mth metric in the ith 
elementary task, while 	𝛽#

/  is the weight associated to the mth 
metric in the jth elementary task. As far as it concerned the 
structural significance, 

       𝜎, =
∑ 0)* .)*)

2∑ 0)*
+

) ∑ .)*
+

)

∈ [0,1]        (6) 

Figure 3 a) Experimental Group Training Session. It is composed by 3 15-minutes sub-slots, each one starting with one repetition of the 
complex task followed by elementary tasks according to the adaptive training logic (automatic scheduling). b) The concepts of skill connection 
and structural significance. 
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where 𝛼#,  is the weight associated to the mth metric in the 
complex task to evaluate the ith skill and 	𝛽#,  is the weight 
associated to the mth metric in the ith elementary task. In the end, 
the priority index was updated as 

    𝜑,3&)	 =	𝜑,
*45F1 − 𝜎, 	𝜌,/	𝑃/G		 ∈ [0,1]      (7) 

 
where j is the index of the elementary task that the user 
performed last time and 𝑃/ is the associated performance.  

F. Statistical Analysis 
Due to the small sample size, non-parametric statistical 

significance tests were used to compare the training effects on 
the two groups. The Wilcoxon rank sum test was employed to 
test significant differences in initial and final median 
performances. The performance measures were selected as 
dependent variables and training groups as independent factors. 
Statistically significant effects were assessed at p < 0.05. The 
statistical analysis was performed in MATLAB using the 
command ranksum().  

III. RESULTS AND DISCUSSION 
In this section, the main outcomes of the user study are 

presented and discussed, focusing on the performance 
comparison between the control and the experimental group. 
Medical and non-medical participants are compared as well. No 
subject gave up during the experiment and all the enrolled 
subjects underwent the experiment, having the related acquired 
data reported in this paper. 
 The primary outcomes of the study are depicted in Figure 4. 
This shows a comparison of the initial and final performances 
in the steady hand complex task. All the groups were 
characterized by an increase in the median performances and a 
reduction of their variability after training. The initial baseline 
assessment proved that all the subjects belonged to the same 
population (no significant difference across all the groups, see 
Table III). The medical users were characterized by slightly 
higher starting points in terms of performances but not in a 
significant way (similarly to the results in [47], where users 
with and without medical background performing with the da 
Vinci Surgical Simulator were compared). This can be 
explained by the fact that all these subjects had no prior 

experience with robotic surgical devices. Since the skills 
involved in the complex task are fundamental skills of robotic 
surgery, their earlier surgical experience (open and 
laparoscopic surgery) did not carry weight in their initial 
performances. This could also suggest and remark the 
importance of an appropriate and focused training for all the 
surgeons who are approaching a robotic teleoperative device.  
Moving to the final evaluation of the participants in the 
complex task, statistically significant difference between the 
control and experimental group was found both in the medical 

Figure 4 Overall performances in the steady hand complex task 
before (t0) and after training (tf). The horizontal line represents the 
median across the population, the bottom and top edges of the bold 
vertical bars stand for the 25th and 75th percentiles, the light vertical 
bar is for whiskers and outliers are depicted as red crosses. 

Note On the left, the table reports the medians (m) and percentiles (p25, p75) associated to the overall performances in the steady hand task. The 
initial performances(t0) are shown in light grey, while the final performances (tf) are in dark grey. On the right, each box of the table contains 
the p-value of the Wilcoxon rank sum test between the performances of the populations of the corresponding rows and columns. Statistically 
significant effects (bold) were assessed for p<0.05.  

Table III Statistics about overall performances 
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and non-medical class: the subjects who underwent the adaptive 
training achieved higher final performances compared to the 
ones who self-managed their training.  
Comparing the non-medical and medical participants, similar 
results were identified: the adaptive training enabled higher 
final performances in both the classes. Going further in detail, 
the medical subjects were characterized by higher learning 
effects (estimated as the median performance variations, p final 
– p initial) when compared to the non-medical users: 11.31% 
(NM) vs. 16.05% (M) in the control groups and 25.36% (NM) 
vs. 28.94% (M) in the experimental groups. This could suggest 
a better predisposition to learning the robotic surgical skills by 
the subjects with a medical background, even if their baseline 
performances were comparable to the ones of the non-medical 
participants. Additionally, the motivational factor could play a 
key role in learning, thus boosting the improvement of subjects 
from the medical sphere. 

The analysis of Figure 4 leads to the key consideration that 
the adaptive training allowed both the medical and non-medical 
participants to achieve higher learning effects and, in turn, final 
performances compared to the participants who directly 
managed their training session. The overall composition of the 
training curriculum helps in understanding these primary 
outcomes. Figure 5A reports the average number of task 
repetitions across the users of each class (medical or not) and 
group (control and experimental). The total number of task 
repetitions was higher in the experimental group, both for 
medical and non-medical participants. The immediate 
explanation of this lies in the fact that the experimental subjects 
had just to perform the task the adaptive algorithm selected for 
them; on the other hand, the users belonging to the control 
group had to think about which task executing next on the basis 
of their experience and the performance feedback they were 
provided with. This decisional step implies a loss of time and, 
in turn, a lower number of task performed in a given time 
window. Considering the time constraints related to the usage 
of simulators by medical residents, these results highlight the 
promising feature of an automatic schedule of the training in 
order to take full advantage of the available time with the 
device. 
Additionally, the control group performed a higher number of 
complex task repetitions with respect to the experimental users 

in the case of non-medical participants, while an opposite trend 
was identified among the medical subjects. Considering that the 
average duration of the complex task (93 sec, across all the 
novice users) was higher than the average duration of the 
elementary tasks (75 sec, across all the novice users), the 
abovementioned trends could explain why the difference in 
total number of tasks between the control and the experimental 
subjects was less marked among the medical users.  
Figure 5B shows the percentage of task switching, that is 
defined as the number of times the user performed 
consecutively two different tasks normalized by the total 
number of performed tasks. Statistically significant difference 
was found between the control and experimental users of each 
class: while the participants who self-managed their training 
moved towards focusing on a single exercise till proficiency 
before switching, the adaptive logic pushed towards frequent 
switching and consecutive tasks diversification. 
In synthesis, a preliminary explanation of the higher end points 
that the experimental users achieved could be the optimization 
of the training time. At the same time, the higher final 
performances of the experimental users can be linked to the 
reduction of the subject’s cognitive load during training, when 
the subject could focus just on the exercise and not also on the 
choice of the task. However, a more detailed analysis of the 
effects the adaptive training managed to obtain is required: 
Figure 6 shows the initial and final skill-related performances 
of the different groups. Again, these are the performances 
associated to each one of the involved skills (3D Perception, 
Hand-Eye Coordination, Wrist Articulation and Object 
Exchange) achieved during the baseline assessment and the 
final test on the steady hand task. Analogously to Figure 4, the 
general trend is an increase in the median performances and a 
reduction of their variability from the initial to the final 
experimental time step. As reported in Table IV, the 
comparison of skill performances between control and 
experimental group puts into evidence the absence of 
significant difference pre-training and the achievement of 
higher performances in each skill by the participants who 
underwent the adaptive training. Additionally, the analysis of 
the distribution of the four skills across a single group 
highlights as the initial dispersion of all the performances, was 
better compensated by the experimental users. This can be 

Figure 5 A) Training curriculum average composition (i.e. number of tasks performed for each category); B) Percentage of task switching (i.e. 
number of times the user performed consecutively two different tasks normalized by the total number of performed tasks). Same legend and 
boxplot details with respect to Fig.4 apply. 

1 
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quantified by introducing an inter-skill variance (defined as the 
difference between the 75th and 25th percentiles of the 
population composed by all the final skill performances of a 
certain group). This parameter was lower in the experimental 
group (non-medical: 0.09 vs. 0.17; medical: 0.15 vs. 0.21) after 
training. Focusing again on the skill spread before training, the 
results are similar across all the groups (lowest performances in 
skill 4, i.e. the object exchange). 
Moving to the end of the training session, that biggest skill gap 
was compensated just in the experimental users. These results 
can be interpreted by assuming that the adaptive training 
achieved its objective of identifying the subject’s gaps in each 
skill and structuring the curriculum to fill those gaps.   
 A final secondary outcome is derived from the examination 
of the performances achieved in the skill transfer task at the end 
of the experiment (Figure 7). This exercise involves the same 
skills of the steady hand task and it was totally new to the users 
when they were asked to perform it. The statistical analysis of 

the performances of the different groups highlights that the 
experimental participants performed better with respect to the 
control users (both in the non-medical – p=0.0286 – and 
medical – p=0.0152 – classes). Again, this could be explained 
by assessing that the skill-oriented and adaptive algorithm 
managed to train the users on the skills, not just on a certain task 
that involves them, as well as it was able to evaluate the 
subjective gaps and propose a user-specific training schedule in 
order to maximize the learning benefit in a fixed training time 
with the simulator. 

IV. CONCLUSION 
This study introduced a skill-oriented and adaptive 

curriculum for training in robotic surgery using virtual reality 
simulators. This novel approach was compared to a traditional 
self-managed training, where the trainee decides which tasks to 
perform on the basis of his/her experience and a performance 
feedback about his/her previous attempts. A feasibility study 

Figure 6 Initial and final performances Si in the steady hand complex task related to the single involved skills (3D perception, hand-eye 
coordination, wrist articulation and object exchange). Same legend and boxplot details with respect to Fig.4 apply. 
 

Figure 7 Post-training overall performances in the skill transfer task. 
Same legend and boxplot details with respect to Fig.4 apply. 
 

Table IV 

Note Each box contains the p-value of the Wilcoxon rank sum test 
between the performances of control and experimental groups in 
each skill.  
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was carried out on a population without medical background 
and on a sample of medical residents.  

To sum up the results, the primary outcome of the study was 
the verification of the research hypothesis: subjects undergoing 
adaptive training achieved better final performances compared 
to the control group (i.e. subjects who self-managed their 
training session). 

Additionally, this work led to the following secondary 
considerations:   
• the adaptive training was capable to better identify and 

compensate for the trainee’s gaps in the involved skills;  
• the subjects who underwent the adaptive training managed 

to optimize the available time with the simulator by 
performing a higher number of tasks; 

• skill transfer to a new simulated task applied most to 
experimental users, showing that the adaptive training 
strategy managed to better teach the skills instead of the 
task itself. This is the real goal of a simulation-based 
training program (i.e. acquire the fundamental skills in 
robotic surgery); 

• all the above-mentioned considerations are valid for both 
the non-medical and medical population; 

• no significant difference between the two classes was 
derived from the baseline assessment. This could be due to 
the fact that medical residents had no prior experience with 
robotic surgery. This kind of surgery implies new control 
modalities with respect to conventional surgical 
approaches and dealing with these robotic devices is not 
immediate in terms of motor learning. These results are in 
line with the outcomes that other investigations have 
previously derived regarding skill transferability among 
heterogeneous surgical approaches [48]. Following this 
reasoning, an appropriate training constitutes a 
fundamental step towards a safe introduction of these 
technologies in the surgical scenario.  

In synthesis, the proposed adaptive approach led to 
promising results, showing how a smart training schedule can 
maximize the learning process when training with a simulator. 
However, this work just focused on basic skills in human robot 
interaction. These skills are fundamental for trainees who first 
approach surgical robotics but how they impact on clinical 
outcomes was not under investigation in this work. 
In response to the lack of supervised curricula for VR 
simulators, the automated and objective method that we 
designed could suggest the introduction of an artificial 
intelligence mentor as an integrated component of a simulation-
based platform for training in robotic surgery. This way, each 
training session can be guided by a constant and objective 
performance evaluation, followed by an ad hoc scheduling of 
the intra-session curriculum.  

The current study was a proof of concept and several factors 
have still to be investigated. Among the major limitations that 
characterized the work, this research focused just on the initial 
part of the trainees’ learning curve and longer or multiple 
session experiments should be performed. Equally, this 
research considered a limited set of fundamental skills of 
robotic surgery: a detailed identification of these basic 
capabilities and an analysis of a broader skills spectrum have to 
be carried out. This should be combined with an upper level 

recognition of the surgical tasks that involve these skills and 
with a clear understanding about how these skills map onto the 
complex tasks and clinical outcomes. Additionally, the skill 
assessment method could be refined in order to generalize the 
metric selection and the weight computation towards 
performance assessment. In particular, the definition of weights 
should be achieved by using systematic methods like the Delphi 
process to take into account experts’ opinion and to reach 
experts’ consensus (as in [49]).  Extensive analysis of expert 
data should be included in order to provide solid validity of the 
simulation-based training protocol.  

Finally, a wider population has to be analyzed to move from 
a feasibility study towards a validation work. Larger sample 
size could lead to higher statistical determinism, as well as more 
restrictive selection criteria (or partition according to single 
surgical specialties) of the medical population could result in 
interesting considerations. 
In terms of additional future developments, the integration of 
methods capable to quantify the trainee’s performance in a task-
independent way could be an added value to this research. 
Machine learning-based approaches, which can exploit the data 
(both associated to the master kinematics, as in several previous 
studies [50-52], and to the interaction with the virtual 
environment) recorded during these preliminary experiments in 
order to assess the user’s proficiency, are currently under our 
investigation. 
In the direction of an adaptive training protocol that can guide 
the trainee through the learning of a full robotic surgical 
procedure, further analyses could involve a control group that 
performs the training under the guidance of a real mentor. This 
experimental protocol will assess the efficacy of the adaptive 
algorithm with respect to an expert but subjective proctoring 
(the current golden standard when learning surgical 
procedures). 
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