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Abstract: Background: Whereas transcatheter aortic valve implantation (TAVI) has become the 14 

gold standard for aortic valve stenosis treatment in high risk patients, it has recently been extended 15 

also to intermediate risk patients. However, the mortality rate at 5 years is still elevated. The aim of 16 

the present study was to develop a novel machine learning (ML) approach able to identify the best 17 

predictors of 5 years mortality after TAVI among several clinical and echocardiographic variables, 18 

which may improve the long-term prognosis; Methods: We retrospectively enrolled 471 patients 19 

undergoing TAVI. More than 80 pre-TAVI variables were collected and analyzed through different 20 

feature selection processes, that allowed the identification of several variables with the highest 21 

predictive value of mortality. Different ML models were compared; Results: multilayer perceptron 22 

resulting in the best performance in predicting mortality at 5 years after TAVI, with an area under 23 

the curve, positive predictive value and sensitivity of 0.79, 0.73 and 0.71, respectively; Conclusions: 24 

We present a ML approach for the assessment of risk factors for long-term mortality after TAVI to 25 

improve clinical prognosis. Fourteen potential predictors were identified with the organic mitral 26 

regurgitation (myxomatous or calcific degeneration of the leaflets and/or annulus ) which showed 27 

the highest impact on 5 years mortality. 28 

Keywords: Machine Learning; TAVI; Mortality Prediction; Aortic Valve Disease 29 

 30 

1. Introduction 31 

Since its introduction in 2002, transcatheter aortic valve implantation (TAVI) has 32 

evolved dramatically thanks to its advantage to treat patients with symptomatic severe 33 

aortic valve stenosis (AS) at high or prohibitive risk for surgical aortic valve replacement 34 

(SAVR). Currently, TAVI is a consolidated procedure and guidelines recommend TAVI 35 

to improve symptoms and survival in symptomatic patients at high surgical risk [1]. 36 

Recent evidence has extended TAVI also in selected intermediate risk patients [1,2], and 37 

even low-risk candidates might be offered TAVI in the near future [3]. At 5 years, no 38 

difference in mortality between TAVI and SAVR for high-risk patients were observed [3]. 39 

More recently, it was demonstrated that 5-years mortality rates of TAVI and SAVR were 40 

not statistically different in a population at intermediate surgical risk, although incidence 41 

of death was higher in a subset of patients undergoing transapical TAVI [4]. Despite 42 

TAVI has become the gold standard treatment for high risk patients with severe 43 

symptomatic AS, demonstrating results either superior or at least non-inferior to SAVR, 44 

the reported all-cause mortality rate in high-risk patients ranges from 6.7% to 14.5% at 1 45 

year after TAVI and grows up to about 47% at 5 years [5,6]. While SAVR mortality is 46 

Citation: Lastname, F.; Lastname, F.; 

Lastname, F. Title. J. Cardiovasc. Dev. 

Dis. 2021, 8, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Firstname 

Lastname 

Received: date 

Accepted: date 

Published: date 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: ©  2021 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 

mailto:Mauro.Pepi@ccfm.it
mailto:Laura.Fusini@ccfm.it
mailto:Manuela.Muratori@ccfm.it
mailto:Claudia.Cefalu@ccfm.it
mailto:Valentina.Mantegazza@ccfm.it
mailto:Paola.Gripari@ccfm.it
mailto:Sarah.Ghulamali@ccfm.it
mailto:Franco.Fabbiocchi@ccfm.it
mailto:Antonio.Bartorelli@ccfm.it
mailto:Gloria.Tamborini@ccfm.it
mailto:enrico.caiani@polimi.it
mailto:Marco.Penso@ccfm.it


J. Cardiovasc. Dev. Dis. 2021, 8, x FOR PEER REVIEW 2 of 14 
 

 

mainly due to well-known parameters and factors related to mechanical or biological 47 

disfunction over time, TAVI long-term mortality prediction is still unknown. Therefore, 48 

the evaluation of mortality predictors in long-term follow-up after TAVI is of utmost 49 

importance for patient selection, risk stratification, to tailor therapy and correctly inform 50 

the patient about long-term prognosis after the procedure. 51 

Machine learning (ML) solutions have emerged as highly effective methods for 52 

prediction and decision-making, allowing more accurate prognoses by modeling linear 53 

and nonlinear interactions among many variables [7]. ML showed promising results in 54 

different medical fields [8,9] and recently were applied to predict in-hospital [10] or 55 

1-year mortality after TAVI [11]. We hypothesized learning algorithms may allow to 56 

discover predictive features undetected by conventional statistical methods to improve 57 

risk definition and prognosis after TAVI procedure. We therefore aimed to develop a 58 

novel risk prediction approach based on a ML model able to predict mortality rate at 5 59 

years follow-up (5FU) after TAVI. 60 

2. Materials and Methods 61 

2.1. Study population 62 

Patients affected by symptomatic severe AS, as defined by guidelines [1,2] who 63 

underwent TAVI at Centro Cardiologico Monzino IRCCS (Milan, Italy) between 2008 and 64 

2014 were included. Patients were considered as high or intermediate operative risk for 65 

conventional SAVR by a multidisciplinary Heart Team. TAVI procedure were performed 66 

using a balloon-expandable SAPIEN or SAPIEN XT prosthesis (Edwards Lifesciences, 67 

Irvine, CA), that were delivered through either the transfemoral or the transapical 68 

approach. Both valves were available in 23- ,26-, 29- and 31-mm sizes. Prosthesis sizing 69 

was based on aortic annulus measurements using 3-dimensional imaging techniques 70 

(multidetector row computed tomography or transesophageal echocardiography). 71 

Baseline patient data including echocardiographic data, laboratory results, diagnosis and 72 

clinical status/symptoms were retrospectively analyzed. Patients were followed up until 73 

death. The study population was allocated into 2 groups: patients who were living at 74 

5-years from the TAVI (survivor) and patients who died until 5 years after TAVI 75 

(non-survivor). Survival and causes of death were assessed for all patients by consulting 76 

the patient’s medical files. All-cause of mortality at 5 years after TAVI was the main 77 

end-point. The study was approved by the local ethical committee and all enrolled 78 

patients signed informed consent.  79 

2.2. Clinical variables 80 

For each patient, 83 pre-TAVI variables were considered. All variables, as well as the 81 

descriptive statistics, can be found in Table S1 in the Supplement. Baseline transthoracic 82 

echocardiography, including M-mode, 2D and Doppler evaluation, was performed using 83 

commercially available ultrasound system (Vivid 7 and E9, GE Medical Systems, Horten, 84 

Norway; and iE33, Philips Medical Systems, Andover, Massachusetts). Left ventricular 85 

(LV) assessment was performed as recommended, including linear dimensions at 86 

parasternal long-axis view and mass evaluation [12]. LV volumes and LV ejection 87 

fraction were calculated according to the Simpson’s method, as well as and the left atrial 88 

volume. Severity of mitral and tricuspid valve regurgitation (MR, TR) was assessed 89 

according to guidelines [13]. Functional MR was defined as: no or minor pathology of the 90 

mitral valve leaflets, annulus and chordae associated with dilated LV with global or 91 

regional wall motion abnormalities. Organic MR was defined as: myxomatous or calcific 92 

degeneration of the leaflets and/or annulus [14]. Aortic valve area was derived from the 93 

continuity equation according to guidelines [15]. The mean trans-aortic valve gradient 94 

was measured on continuous wave Doppler acquisitions using either the apical 5- or 3- 95 

chamber view and the right parasternal view [15]. Aortic annulus area was estimated 96 

with the assumption of circular configuration, and the prosthesis to indexed annulus size 97 
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ratio was derived. Maximal TR jet velocity combined with inferior caval vein respiratory 98 

variation was used to calculate systolic pulmonary arterial pressure [16]. Baseline patient 99 

data were used to calculated Cardiac Operative Risk Evaluation II (EuroSCORE II) [17], 100 

which was considered as handcrafted features [18]. Parameters were defined according 101 

to the definitions applied in the EuroSCORE II. Additional baseline characteristics, 102 

potentially relevant to mortality evaluation, were also collected such as hemoglobin, 103 

C-reactive protein, serum albumin, aspartate transaminase, alanine aminotransferase, 104 

and total bilirubin. Typical symptoms of aortic stenosis (angina, dyspnea, and syncope) 105 

were recorded if mentioned in the clinical history. Porcelain aorta and hostile chest were 106 

noted according to recent definitions [19]. The procedure was considered as urgent if 107 

patients required intervention on current admission for medical reasons. 108 

2.3. Study design 109 

This study retrospectively evaluated three widely used supervised classification ML 110 

algorithms using different classifiers to predict the occurrence of all-cause of death at 5 111 

years mortality after TAVI: Random Forest (RF), Extreme Gradient Boosting (XGBoost) 112 

and multilayer perceptron (MLP) [20,21]. In addition, a logistic regression (LR) model 113 

was implemented. We derived the LR model using a multivariate analysis. Models were 114 

constructed in Python version 3.7 (Python Software Foundation) using the scikit-learn 115 

and keras packages. In Figure 1 is reported the analysis workflow schematically.  116 

 117 

Figure 1. Computational methods. Schematic workflow for the construction of classification 118 

models including feature selection, cross-validation to evaluate the discriminant performance and 119 

result interpretation. 120 

RF and XGBoost are tree-based ML algorithm, developed to improve tree-based 121 

ensemble’s performance, while not increasing the bias significantly. Booststrap 122 

aggregating technique was used in RF to build independent trees, where each tree is 123 

trained on a sample drawn from the training set, which makes the model an effective 124 

learners for smaller datasets. XGboost is an improved algorithm based on the gradient 125 

boosting method to fit an ensemble of weak learners trained sequentially such that each 126 

one of them is encouraged to correct mistakes of previous learners, which increases the 127 

accuracy and prevents overfitting. Combining sequentially decision tress as base learners 128 

in a way that each learner fits to the residuals from the precious step, has the advantage 129 

of accelerates the learning process.  130 
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MLP is a neuron-based model for nonlinear function approximation, with a number 131 

of neural unit through several layers. With a minimum of three layers (i.e., the input, 132 

hidden and output layers) the network changes its weight in proportional to the error 133 

between the true and predicted output by backpropagation algorithm, the standard 134 

algorithm for supervised-learning process.  135 

Before proceeding with the analysis, the dataset underwent a preprocessing for data 136 

optimization and consistency. There were 83 variables in the initial dataset. Different 137 

approaches were adopted to remove non-informative or redundant variables including 138 

dropping 0-variance features and highly correlated variables (Table S2 Supplement). A 139 

total of 70 predictors remained in the dataset. As requisite for many ML techniques and 140 

feature selection methods, Z-score standardization was applied for continuous predictors 141 

and dummy coding and target coding [22] for nominal and categorical variables, 142 

respectively.  143 

Considering the large number of available variables, different feature selection 144 

methods were evaluated. Feature selection is defined as the process of reducing the 145 

number of input variables needed to predict the target variable, removing 146 

non-informative or redundant predictors that might add uncertainty, thus degrading the 147 

performance of the model [23]. For each algorithms, feature selection was performed 148 

using Least Absolute Shrinkage and Selection Operator (LASSO), Gradient Boosting 149 

Machine (GBM), Boruta and RF [24-26]. In addition, recursive feature elimination (RFE) 150 

was applied to the best performing model.  151 

In order to train algorithms, and assess their performance and general error 152 

estimation, a stratified ten-fold cross-validation was implemented, thus the dataset was 153 

cyclically split into ten equally sized fold, preserving the percentage of samples for each 154 

class (i.e., survivor and non-survivor at 5 years after TAVI), in which nine folds were 155 

used to train the model (90% of the cohort) and one to validate model performance (10% 156 

of data). This method maximized the use of data for both training and testing, reducing 157 

the variance in prediction error for accurate estimate of model prediction performance.  158 

In each training set to optimize the ML model’s hyperparameters, an iterative 159 

strategy with different combinations of parameters and five-fold cross-validation was 160 

performed. Further details on the model’s hyperparameters are presented in Table S3 in 161 

the Supplement. 162 

2.4. Model evaluation 163 

ML performances on the testing set were evaluated by using the area under the 164 

receiver-operating curve (AUC). Moreover, for the resulting best AUC model, additional 165 

metrics were computed, such as accuracy, sensitivity, positive predictive value (PPV), 166 

and F1-score and a comparison with the EuroSCORE II, which represents the most used 167 

score in TAVI, was reported. 168 

To determine the major relevant predictors of the study outcome for the best ML 169 

model, the Permutation Feature Importance (PFI) approach was measured [27]. PFI is an 170 

algorithm for measuring the association of individual variables with model accuracy, 171 

where variables’ values are iteratively permutated within the test set, and the prediction 172 

error of the model is measured. A variable is considered important if permuting its value 173 

decrease the model’s discriminative capability, as the model relies heavily on that 174 

variable. F1-score was recalculated with permutated data to determine variable 175 

importance. 176 

For ML model interpretability, an additive feature attribution method (Shapley 177 

Additive Explanations) was proposed [28], which defines a weighted linear regression by 178 

using data and predictions of the analyzed model to point out the positive or negative 179 

relationship of feature value on the prediction. Results were discussed with expert 180 

medical cardiologists and clinical explanations were reported. 181 

2.5. Statistical analysis 182 
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Continuous data are presented as mean ± standard deviations or median [25th-75th 183 

percentile] as appropriate, and categorical variables as frequencies (%). Differences 184 

between survived and not-survived patients were assessed by unpaired Student’s t test 185 

for continuous variables (and the Welch’s corrected version, as appropriate) or the 186 

Mann‐Whitney U test, whilst a χ2 test was applied for categorical data. DeLong test was 187 

used to measure difference between AUC. Significant variables at univariate analysis 188 

were included in the multivariate LR model for the identification of independent 189 

predictors. Statistical analyses were conducted with SPSS 26 (SPSS Inc, Chicago, IL), and 190 

values of p<0.05 were considered statistically significant. 191 

3. Results 192 

Of the 475 patients with severe AS undergoing successful TAVI, 4 patients were 193 

excluded for incomplete data. The final population included 471 patients, who were 194 

divided into 2 groups according to whether the patients survived or died during the 5 195 

years after TAVI; 259 (55%) were in the survivor group (mean age 80 ± 6 years, 36.7% 196 

men), and 212 (45%) were in the not-survivor group (mean age 82 ± 6 years, 35.8% men). 197 

Specifically, 12 patients (2%) died from stroke and cardiovascular death occurred in 93 198 

patients (20%). According to EuroSCORE II, patients were at high and intermediate 199 

surgical risk in 75% and 25%, respectively. Table 1 reports the baseline characteristics of 200 

the study population, which had a prevalence of female (63.7%) and a mean age of 81 201 

years. The majority of the patients presented hypertension (87.3%), dyspnea (91.7%) and 202 

coronary artery disease (57.3%). Clinical and echocardiographic parameters of the study 203 

cohort dichotomized based on 5 years mortality status are presented in Table S1 in the 204 

Supplement.  205 

Table 1. Baseline characteristic of the population 206 

Characteristics n = 471 

Age, years 81 ± 6 

Female, n(%) 300 (63.7%) 

Body mass index, Kg/m2 

     Overweight (BMI 25 to <30) 

     Obesity (BMI 30 or higher) 

25 ± 5 

154 (32.7%) 

68 (14.4%) 

Hypertension 411 (87.3%) 

Diabetes mellitus 122 (2.6%) 

Dyslipidemia 276 (58.6%) 

Angina 147 (31.2%) 

Dyspnea 432 (91.7%) 

Syncope 87 (18.5%) 

COPD 131 (27.8%) 

NYHA functional class III or IV 369 (78.3%) 

EuroSCORE II 16 [10-21] 

Previous stroke 60 (12.7%) 

Porcelain aorta 32 (6.8%) 

Cardiac history  

     Coronary artery disease 270 (57.3%) 

     Previous myocardial infarction 92 (19.5%) 

     Previous PCI 144 (30.6%) 

     Previous CABG 71 (15.1%) 

     Atrial fibrillation 86 (18.3%) 

Procedural characteristics  

Prosthesis size  

     23-mm 195 (41.4%) 
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     26-mm 228 (48.4%) 

     29-mm 41 (8.7%) 

     31-mm 7 (1.5%) 

Pre-operative echocardiographic characteristics   

LVEDV index (ml/m2) 54 [43-69] 

LVESV index (ml/m2) 21 [16-34] 

LVEF (%) 59 [48-66] 

LV mass index (g/m2) 147 ± 39 

Left atrial volume index (ml/m2) 57 ± 24 

Aortic valve area (cm2) 0.65 ± 0.14 

Mean aortic pressure gradient (mmHg) 51 ± 15 

Peak aortic pressure gradient (mmHg) 82 ± 22 

PAPS (mmHg) 42 ± 12 

Aortic regurgitation ≥2 120 (25.5%) 

Mitral regurgitation ≥2 144 (30.6%) 

Tricuspid regurgitation ≥2 89 (18.9%) 

MR etiology  

     Functional MR 295 (62.6%) 

     Organic MR 176 (37.4%) 

BMI, body mass index; MR, mitral regurgitation; COPD, chronic obstructive pulmonary disease; 207 

NYHA, NewYork Heart Association; PCI, percutaneous coronary intervention; CABG, coronary 208 

artery bypass graft; LV, left ventricular; EDV, end diastolic volume; ESV, end systolic volume; EF, 209 

ejection fraction; PASP, pulmonary artery systolic pressure. 210 

 Figure 2 shows the results of the feature selection analysis: using LASSO 15 211 

potential predictors were selected for the ML analysis, with GBM 18 predictors were 212 

identified, while Boruta and RF respectively identified 5 and 15 predictors. Creatinine 213 

and hemoglobin were shared across all methods. 214 

 215 

Figure 2. Feature selection methods. The most relevant variables identified for each method. MR, mitral regurgitation; 216 

ALT, alanine aminotransferase; IVST, interventricular septal thickness; Meangrad, mean aortic pressure gradient; INR, 217 

international normalized ratio; PAPS, pulmonary artery systolic pressure; BSA, body surface area; BMI, body mass index; 218 

LV, left ventricular; EF, ejection fraction. 219 

Algorithm discrimination of tenfold cross-validation is presented for each ML 220 

model in figure 3. The best AUC was reached combining LASSO as feature selection 221 

method and MLP as model, which was able to predict the outcome with good 222 
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performance (AUC: 0.77; 95% confidence interval [CI]: 0.73 to 0.81) with significant 223 

difference in AUC compared with MLP+GBM (AUC: 0.72; 95% CI: 0.68 to 0.76), 224 

MLP+BORUTA (AUC: 0.69; 95% CI: 0.65 to 0.73), MLP+RF (AUC: 0.72; 95% CI: 0.67 to 225 

0.75), XGBoost+GBM (AUC: 0.73; 95% CI: 0.69 to 0.77), XGBoost+BORUTA (AUC: 0.71; 226 

95% CI: 0.65 to 0.75), XGBoost+RF (AUC: 0.71; 95% CI: 0.65 to 0.76), RF+LASSO (AUC: 227 

0.72; 95% CI: 0.68 to 0.76), RF+GBM (AUC: 0.71; 95% CI: 0.66 to 0.76), RF+BORUTA (AUC: 228 

0.68; 95% CI: 0.63 to 0.73) and RF+RF (AUC: 0.71; 95% CI: 0.66 to 0.76), while there was no 229 

significant difference versus XGBoost+LASSO (AUC: 0.74; 95% CI: 0.71 to 0.77).  230 

 231 

Figure 3. Evaluation of mortality prediction for different ML models. Receiver operating characteristic curve from tenfold 232 

cross-validation for mortality prediction. AUC, area-under-the-curve; MLP, multilayer perceptron; GBM, Gradient 233 

Boosting Machine; XGBoost, Extreme Gradient Boosting; RF, Random Forest; LASSO, Least Absolute Shrinkage and 234 

Selection Operator. 235 

Table 2 reports the variables included in the LR model. At multivariate analysis only 236 

the mean aortic pressure gradient, organic etiology of MR, creatinine and hemoglobin 237 

were the independent predictors associated with 5 year mortality after TAVI. 238 

Table 2. Univariate and multivariate regression analysis. 239 

 Univariate Multivariate 

 OR (95% CI) p-value OR (95% CI) p-value 

Age, years 1.035 (1.004-1.066) 0.028 1.031 (0.996-1.067) 0.079 

Left ventricular ejection fraction, % 0.975 (0.961-0.990) 0.001 1.004 (0.982-1.025) 0.745 

Left atrial area, cm2 1.062 (1.030-1.095) <0.001 1.011 (0.974-1.049) 0.565 

Mean aortic pressure gradient, mmHg 0.978 (0.966-0.991) 0.001 0.982 (0.966-0.998) 0.025 

Mitral regurgitation ≥2 1.773 (1.194-2.633) 0.005 1.129 (0.701-1.818) 0.617 

Organic mitral regurgitation 2.071 (1.417-3.026) <0.001 1.642 (1.071-2.517) 0.023 

Tricuspid regurgitation ≥ 2 1.950 (1.221-3.114) 0.005 0.860 (0.465-1.590) 0.631 

Pulmonary artery systolic pressure, mmHg 1.031 (1.014-1.048) <0.001 1.012 (0.990-1.033) 0.284 

NewYork Heart Association ≥3 1.864 (1.177-2.951) 0.008 1.133 (0.661-1.943) 0.649 

Diuretics 2.191 (1.410-3.405) <0.001 1.206 (0.709-2.052) 0.489 

Spironolactone 2.185 (1.403-3.401) 0.001 1.607 (0.907-2.664) 0.066 

Creatinine, mg/dl 2.819 (1.776-4.473) <0.001 1.941 (1.257-2.996) 0.003 

Hemoglobin, g/dl 0.818 (0.732-0.915) <0.001 0.867 (0.776-0.992) 0.022 

International normalized ratio 4.735 (1.943-11.539) 0.001 1.992 (0.825-4.811) 0.125 

Atrial fibrillation 2.740 (1.682-4.463) <0.001 1.693 (0.898-3.195) 0.104 

Only variables with a univariate p-value<0.05 were allowed to enter the multivariate logistic 240 

regression analysis. 241 
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After RFE, LASSO+MLP had the best discrimination compared to multivariate LR 242 

and EuroSCORE II (MLP: 0.79; 95% CI: 0.75 to 0.83 vs LR: 0.76; 95% CI: 0.73 to 0.79 vs 243 

EuroSCORE II: 0.60; 95% CI: 0.55 to 0.62), although no significant difference was 244 

observed between MLP and multivariate LR (figure 4a). Considering the different feature 245 

selection methods, there was no performance improvement in LR (figure 4b): 246 

LR+BORUTA (AUC: 0.67; 95% CI: 0.64 to 0.71), LR+LASSO (AUC: 0.74; 95% CI: 0.69 to 247 

0.78), LR+RF (AUC: 0.72; 95% CI: 0.68 to 0.76), and LR+GBM (AUC: 0.73; 95% CI: 0.69 to 248 

0.77). 249 

  

(a) (b) 

Figure 4. Receiver-operating characteristic curves for prediction of 5-year mortality. AUC, area-under-the-curve; LR, 250 

logistic regression; GBM, Gradient Boosting Machine; RF, Random Forest; LASSO, Least Absolute Shrinkage and 251 

Selection Operator. 252 

RFE identified 14 pre-treatment variables as the most relevant predictors of 253 

mortality in TAVI patient at 5-years follow-up: MR etiology, stroke volume index, 254 

interventricular septal thickness, left atrium area, aortic valve area, mean aortic pressure 255 

gradient, creatinine, alanine aminotransferase, hemoglobin, international normalized 256 

ratio, age, spironolactone, angina and euroSCORE II (Table 3). Specifically, compared 257 

with the survivor group, the non-survivor group had higher age (mean 82 ± 6 years vs 80 258 

± 6 years; p=0.025), higher creatinine (median 1.16 [0.91-1.48] mg/dl vs 0.92 [0.77-1.20] 259 

mg/dl; p<0.001), lower hemoglobin (mean 11.9 ± 1.6 g/dl vs 12.4 ± 1.7 g/dl; p<0.001), lower 260 

mean aortic pressure gradient (mean 48 ± 15 mmHg vs 53 ± 14 mmHg; p<0.001), higher 261 

left atrium area (mean 28 ± 7 cm2 vs 26 ± 6 cm2; p<0.001) and higher aortic valve area 262 

(mean 0.66 ± 0.14 cm2 vs 0.64 ± 0.14 cm2; p=0.078). In addition, higher prevalence of 263 

organic MR was found in the non-survivor group compared to the survivor group (46.7% 264 

vs 29.7%; p<0.001).  265 

The PPV of the MLP for predicting mortality after TAVI was 0.73, the sensitivity was 266 

0.71 and the F1-score was 0.71. The overall accuracy of the MLP was 0.73 (Table 4). Codes 267 

used for MLP development are made publicly available in the Supplement. 268 

Table 3. Prediction selected for 5-years mortality prediction after TAVI. 269 

 
Survivor 

(n=259) 

Non-Survivor 

(n=212) 
p-value 

 Echocardiographic parameters  

Mitral regurgitation etiology, 

n(%) 

Functional 182 (70.3%) 

Organic 77 (29.7%) 

Functional 113 (53.3%) 

Organic 99 (46.7%) 
<0.001 
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Stroke volume index, ml/m2 42 ± 8 40 ± 9 0.020 

Interventricular septal 

thickness, mm 

13 ± 2 14 ± 2 0.496 

Left atrium area, cm2 26 ± 6 28 ± 7 <0.001 

Aortic valve area, cm2 0.64 ± 0.14 0.66 ± 0.14 0.078 

Mean aortic pressure gradient, 

mmHg 

53 ± 14 48 ± 15 0.001 

 Blood chemistry tests  

Creatinine, mg/dl 0.92 [0.77-1.20] 1.16 [0.91-1.48] <0.001 

Alanine aminotransferase, UI/l 17 [12-23] 16 [12-22] 0.448 

Hemoglobin, g/dl 12.4 ± 1.7 11.9 ± 1.6 <0.001 

International normalized ratio 1.05 ± 0.19 1.17 ± 0.42 <0.001 

 Other patient characteristics  

Age, years 80 ± 6 82 ± 6 0.025 

Spironolactone, n(%) 42 (16.2%) 63 (29.7%) <0.001 

Angina, n(%) 90 (34.7%) 57 (26.9%) 0.057 

EuroSCORE II, % 14 [8-20] 18 [12-25] <0.001 

p-value, survivor vs non-survivor (unpaired Student’s t test, Mann‐Whitney U test, or χ2 test). 270 

Table 4. Performance metrics of multilayer perceptron model. 271 

Algorithm Feature selection 

method 

AUC Accuracy Positive 

Predictive Value 

Sensitivity F1-score 

multilayer 

perceptron 

LASSO + RFE 0.79 0.73 0.73 0.71 0.71 

AUC, area under the receiver-operating curve; LASSO, Least Absolute Shrinkage and Selection 272 

Operator; RFE, recursive feature elimination.  273 

Assessing PFI (Figure 5) identified features important to model accuracy for 274 

mortality prediction after TAVI, with organic MR showed the highest impact on 5-years 275 

mortality, followed by the mean aortic pressure gradient. In figure 6 the effect of each 276 

features on the ML classifier. 277 

 278 

Figure 5. Permutation feature importance PFI method. More relevant features are associated with 279 

more negative values. MR, mitral regurgitation; ALT, alanine aminotransferase; IVST, 280 

interventricular septal thickness; Meangrad, mean aortic pressure gradient; INR, international 281 

normalized ratio. 282 
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 283 

Figure 6. Shapley Additive exPlanations value plot. The horizontal axis shows whether the effect of 284 

the feature is associated with a higher or lower prediction, while the color indicates whether the 285 

value of the feature is high (red) or low (blue) for a given observation.  286 

4. Discussion 287 

In this retrospective study, we present a novel ML approach for the prediction of 288 

5-years mortality after TAVI. To the best of our knowledge, no research has been 289 

conducted using ML in reporting longitudinal data in the long-term after TAVI. The 290 

main results are the following: (i) MLP model achieved the best AUC (0.79) in predict 291 

mortality at 5 years after TAVI; (ii) novel features, never considered in previous mortality 292 

risk scores in TAVI patients, were identified.  293 

The assessment of risk factors for long-term mortality after TAVI is crucial to 294 

improve clinical decision-making and prognosis. In this context, ML may represent a 295 

valid computational tool able to manage a high number of variables and interactions 296 

among them, thus integrating the multitude of predictors, which represents a challenge 297 

for the clinician. ML-based prognostic tools often discover unexpected variables and 298 

interactions, allowing the recognition of potentially new predictors [29]. Lopes et al. [11] 299 

achieved the highest AUC (0.70) with a random forest classifier in predicting 1-year 300 

mortality after TAVI, while for in-hospital mortality after TAVI, LR was the best model 301 

(AUC: 0.92) [10]. Based on our results, ML models might have an important clinical role 302 

in evaluating the long-term mortality risk after TAVI, incorporating a multitude of 303 

information to accurately represent the clinical scenario under investigation. In the 304 

future, this might allow a better evaluation of different treatment options and improve 305 

patients selection, especially considering intermediate and low risk patients. In this 306 

analysis, only pre-TAVI echocardiographic and clinical variables were considered. It is 307 

reasonable to hypothesize that the longer is the follow-up, the greater is the need to 308 

include also post-TAVI variables to better tune the model and make the prediction more 309 

robust and updated over time. However, the inclusion of intraoperative or 310 

post-treatment variables was beyond our scope of aiding treatment decision. With 311 

expanding indications for TAVI, our findings may support clinician in assessing 312 

prognosis after TAVI, which is paramount for accurate patient information regards the 313 

outcome of the procedure. 314 

Among ML models, MLP showed slightly better predictive abilities. Our findings 315 

did not show significant difference in AUC between MLP and LR to estimate 5FU 316 
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mortality. There are two possible hypotheses for this: 1- complex non-linear relationships 317 

do not exist, at least among the selected predictors; 2- the size of the study cohort might 318 

limit the model’s optimization. Nevertheless, as clinicians continue to gather significant 319 

amounts of patient data, the role of ML in medicine is expected to increase, becoming an 320 

essential tool for clinicians in different clinical contexts, including decision-making, 321 

diagnosis and events prediction. Differently from conventional statistical models, ML 322 

models are capable of capturing more complex non-linear relationships between data, 323 

with potential benefits in terms of mortality prediction. Furthermore, unexpected 324 

predictor variables, which non-linearly interact with stronger predictors, could improve 325 

clinical decision-making, supporting diagnosis and therapy planning. Moreover, the 326 

incorporation of new data during the training procedure could furtherly improve the ML 327 

model performance over time. Finally, using the ML approach, several variables usually 328 

excluded from the analysis based on traditional statistics, as a consequence of their 329 

inherent methodological limitations, were included in the same examination. However, 330 

besides the power in identifying complex patterns and in providing high prediction 331 

accuracy, many ML models lack transparency, that refers to an understanding of how the 332 

model works and what the model actually computes, thus preventing the direct 333 

identification and evaluation of the relationships between the input variables. 334 

To try to cope with this limitation, we conducted a posteriori analysis to understand 335 

which features were more relevant in the achievement of the results. PFI method 336 

identified organic MR as a strong predictor of mortality. In addition, age, aortic valve 337 

area, mean aortic pressure gradient and hemoglobin levels proved to be relevant 338 

predictors for mortality prediction, playing an important role in this context. As a result, 339 

these variables combined altogether assumed a more relevant importance in the 340 

definition of 5-years mortality risk after TAVI. Other variables, such as spironolactone, 341 

international normalized ratio and creatinine, appeared also relevant factors in assessing 342 

mortality. The variable importance technique PFI provides a global insight into the 343 

model’s behavior, considering interactions between features; however, this method does 344 

not reflect the intrinsic feature effects on the target variable. Interestingly, the 345 

EuroSCORE II resulted an important predictors for the MLP. Although the EuroSCORE’s 346 

performance in a long follow-up is limited (Figure 4), its predicting ability was included 347 

into the 5-years estimate. 348 

From a clinical point of view some of pre-procedural patient characteristics included 349 

in SHAP analysis such as anemia, older age, renal dysfunction, high mean aortic 350 

gradient, smaller aortic area and atrial dilatation not only are incorporated in traditional 351 

risk scores showing a negative relationship with the outcome after TAVI, but also have a 352 

negative prognostic significance in the general population [30,31].The presence of angina 353 

is associated with a more favorable prognosis at 5FU, probably because angina onset may 354 

facilitate an earlier diagnosis of severe AS in comparison with patients without angina, 355 

who may develop afterwards heart failure symptoms, which are associated with a worst 356 

prognosis. As regards MR etiology as a negative survival prognostic factor in TAVI 357 

patients, a significant association has been demonstrated between 3-year mortality rate 358 

and pre-TAVI organic MR [32]. In fact, while both functional and organic 359 

moderate/severe pre-TAVI MR was associated with higher mortality rate at 1-year 360 

follow-up, a significant improvement in regurgitation severity was observed mainly in 361 

patients with functional MR and the persistence of significant regurgitation in organic 362 

cases had a negative impact on 3-year mortality [32]. Finally, another novelty of our 363 

study is that low stroke volume (SV) is associated with higher mortality. A low SV is 364 

generally due to LV dysfunction and an increased mortality risk in classical low flow-low 365 

gradient AS has been largely proved [33]. However, low SV is also frequently described 366 

in patients affected by paradoxical low-flow low-gradient AS with small LV volumes and 367 

preserved LV ejection fraction. Low SV is known to have an important negative impact 368 

on survival of these patients when not undergoing surgery, however controversial data 369 

exist on clinical outcomes after surgery or TAVI [34,35]. 370 
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4.1. Limitations 371 

The present study has some limitations. First, the size of the dataset was limited 372 

which may affect the model’s performance. Second, it was a single-center study. The 373 

inclusion of datasets from multiple centers would provide more information about the 374 

generalization of the model. Third, the dataset included patients undergoing TAVI until 375 

2014, thus including only patients at high and intermediate risk, therefore we may not 376 

extrapolate our results to lower risk cases. Furthermore, additional variables may impact 377 

on the model‘s outcome, such as natriuretic peptides and troponin, or computed 378 

tomography parameters. Specifically, morphological features could have improved the 379 

model discrimination. Recently, statistical shape models have attracted much attention as 380 

method to improve the robustness and accuracy of feature extraction. These methods, in 381 

the context of the heart valve’s morphology analysis, could be used for capturing features 382 

of the global shape of the valve, rather than reducing it to conventional geometric 383 

measurements [36]. In addition, the lack of transparency and the difficult interpretation 384 

of the ML model may affect its reliability into clinical practice. Regardless, it is likely that 385 

a synergistic relationship between ML and medicine will become more pronounced, 386 

thanks to the rapid improvements of ML-algorithms and the increasing digitalization of 387 

data. 388 

5. Conclusions 389 

Several risk scores have been proposed to predict outcomes after TAVI but 390 

optimizing the selection of patients remains an unmet clinical need. This analysis 391 

confirms that 5-years mortality prediction after TAVI is challenging even using 392 

ML-techniques. We present a new approach to long-term mortality prediction in TAVI 393 

patients based on different analytic methods and different variables compared with 394 

previous risk scores. By using a ML model several new variables were highlighted as 395 

potentially influencing long-term prognosis. 396 
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