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ABSTRACT

We study the problem of computing correlated strategies to commit

to in games with multiple leaders and followers. To the best of our

knowledge, this problem is widely unexplored so far, as the majority

of theworks in the literature focus on gameswith a single leader and

one or more followers. The fundamental ingredient of our model is

that a leader can decidewhether to participate in the commitment or

to defect from it by taking on the role of follower. This introduces a

preliminary stage where, before the underlying game is played, the

leaders make their decisions to reach an agreement on the correlated

strategy to commit to.We distinguish three solution concepts on the

basis of the constraints that they enforce on the agreement reached

by the leaders. Then, we provide a comprehensive study of the

properties of our solution concepts, in terms of existence, relation

with other solution concepts, and computational complexity.

1 INTRODUCTION

Over the last years, Stackelberg games are receiving an increasing

attention from the algorithmic game theory community, thanks to

their many applications in real-world scenarios, such as in secu-

rity [39]. In the classical Stackelberg setting [40], there is a leader

with the ability to play before the other player, who acts as fol-

lower by observing the realization of the leader’s strategy. In this

work, we follow a different approach, where the leader looks for a

strategy to commit to [12], and the follower observes the leader’s

mixed strategy, without knowing its actual realization. An inter-

pretation of this setting is provided by Von Stengel and Zamir [41]:

any (underlying) game is extended as a sequential game in which

the leader plays first, having a continuum of choices corresponding

to mixed-strategy commitments.

The majority of the works in the literature focus on games with a

single leader and a single follower [12, 41]. In this setting, the leader

seeks for a utility-maximizing mixed strategy to commit to, while

the follower plays a best response to the commitment. This model

has been largely studied, especially for security problems [1, 21, 33].

Some works also study games with a single leader and multi-

ple followers. Conitzer and Korzhyk [11] introduce a model where

the leader commits to a correlated strategy and, accordingly, she

draws recommendations for the followers, who must obey the in-

centive constraints of correlated equilibria [4]. The authors show

that, in normal-form games, an optimal correlated strategy to
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commit to can be computed in polynomial time. Other works

study situations where the followers play a Nash equilibrium [30]

in the game resulting from the leader’s mixed-strategy commit-

ment [9, 10, 13, 28, 29, 41]. However, these models usually result in

intractable computational problems even with a fixed number of

followers.

Settings including multiple leaders are widely unexplored in the

literature. In spite of this, many real-world applications naturally

involve more than one player with competitive advantages, playing

the role of leader. Some scenarios are, e.g., network platforms with

premium (prioritized) users, markets where a group of firms forms

a price-determining dominant cartel [15] , and political elections

in which some candidates choose policy positions in advance of

challengers. [2].

Restricted to the security context, there are some works address-

ing games with multiple uncoordinated defenders (leaders) [17, 23,

25, 26, 38]. However, differently from our work, they all enforce

Nash-like constraints on the leaders’ strategies. Moreover, their

models suffer from two major drawbacks: (i) an exact equilibrium

may not exist, and (ii) they strongly rely on problem-specific struc-

tures arising in security problems.

The operations research literature provides further works on

multi-leader-follower settings, under the name of mathematical

programs with equilibrium constraints [27]. They assume that both

leaders and followers are subject to Nash constraints, with the latter

playing in the game resulting from the leaders’ strategies [22, 24, 31].

Furthermore, other works from the same field focus on oligopoly

models where the leaders select the level of investment to maximize

profits [14, 35, 37]. All these works considerably depart from ours,

as they use fundamentally different models and lack thorough game

theoretic and computational studies.

1.1 Original Contributions

We introduce a new way to apply the Stackelberg paradigm to any

finite (underlying) game. Our approach extends the idea of commit-

ment to correlated strategies in settings involving multiple leaders

and followers, generalizing the work of Conitzer and Korzhyk [11].

The crucial component of our framework is that a leader can decide

whether to participate in the commitment or to defect from it by

becoming a follower. This induces a preliminary agreement stage

that takes place before the underlying game is played, where the

leaders decide, in turn, whether to opt out from the commitment

or not. We model this stage as a sequential game, whose size is

factorial in the number of players. Our goal is to identify com-

mitments guaranteeing some desirable properties that we define

on the agreement stage. The first one requires that the leaders

do not have any incentive to become followers. It comes in two
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flavors, called stability and perfect stability, which are related to, 
respectively, Nash and subgame perfect equilibria of the sequential 
game representing the agreement stage. The second property is 
also defined in two flavors, namely efficiency and perfect efficiency, 
both enforcing Pareto optimality with respect to the leaders’ utility 
functions, though at different levels of the agreement stage.

We introduce three solution concepts, which we generally call 
Stackelberg correlated equilibria (SCEs). They differ depending on 
the properties they call for. Specifically, SCEs, SCEs with perfect 
agreement (SCE-PAs), and SCE-PAs with perfect efficiency (SCE-
PAPEs) require, respectively, stability and efficiency, perfect stabil-
ity and efficiency, and both perfect stability and perfect efficiency.

First, we investigate the game theoretic properties of our solution 
concepts. We show that SCEs and SCE-PAs are guaranteed to exist 
in any game, while SCE-PAPEs may not. Moreover, we compare 
them with other solution concepts.

Then, we switch the attention to the computational complexity 
perspective. We show that, provided a suitably defined stability 
oracle is solvable in polynomial time, an SCE optimizing some linear 
function of leaders’ utilities (such as the leaders’ social welfare) can 
be computed in polynomial time, even in the number of players. The 
same holds for finding an SCE-PA, while we prove that computing 
an optimal SCE-PA is an intractable problem. Nevertheless, in the 
latter case, we provide an (exponential in the game size) upper 
bound on the necessary number of queries to the oracle.

In conclusion, we study which classes of games admit a polynomial-

time stability oracle, focusing on those with polynomial type [32]. 
We show that the problem solved by our oracle is strictly connected 
with the weighted deviation-adjusted social welfare problem intro-
duced by Jiang and Leyton-Brown [18]. As a result, we get that our 
oracle is solvable in polynomial time in all the game classes where 
the same holds for the problem of finding an optimal correlated 
equilibrium. 1

2 PRELIMINARIES

In this section, we introduce some basic concepts about games and 
their equilibria used in the rest of the paper.

2.1 Finite Games and Their Equilibria
A (finite) game G  is a  tuple (N , {Sp }p ∈N , {up }p ∈N ) , where N  = 
{1, . . . , n} is a finite set of players, S p is a finite set of player p’s 
strategies or actions, and up : S → is player p’s utility, defined
over the set of strategy profiles S =

>
p∈N Sp . Given s ∈ S , let s−p ∈

S−p =
>

q∈N \{p } Sq be the partial profile obtained by dropping

player p’s strategy sp from s , so that s = (sp , s−p ). We callX = ∆(S)
the set of correlated distributions defined over strategy profiles, i.e.,

each x ∈ X satisfies

∑
s ∈S x(s) = 1 and x(s) ≥ 0 for all s ∈ S .

Moreover, overloading notation, up (x) =
∑
s ∈S x(s)up (s) is player

p’s expected utility in x ∈ X.

A correlated distributionx ∈ X is a correlated equilibrium (CE) [4]

if, for every player p ∈ N and strategies sp , s
′
p ∈ Sp , the following

constraint holds:∑
s−p ∈S−p

x(sp , s−p )
(
up (sp , s−p ) − up (s

′
p , s−p )

)
≥ 0. (1)

1
Full proofs of all the results are in [8].

We can interpret a CE in terms of a mediator who draws some

strategy profile s ∈ S from a publicly known distribution x , and,
then, it privately communicates each recommendation sp to player

p. The distribution is an equilibrium if no player has an incentive to

deviate from the recommendation, as made formal by the incentive

constraints of Eq. (1). Moreover, a Nash equilibrium (NE) [30] is a

CE x ∈ X that can be written as the product distribution of players’

mixed strategies, i.e., x(s) =
∏

p∈N xp (sp ) for all s ∈ S , where each
xp ∈ ∆(Sp ) is a probability distribution over strategies Sp denoting

a player p’s mixed strategy.

In the following, we denote with XCE

P ⊆ X the set of correlated

distributions that satisfy the incentive constraints of Eq. (1) only

for a subset of players P ⊆ N . Clearly, XCE = XCE

N is the set of CEs

of the game.

Different classes of games are employed depending on how strate-

gies and utilities are represented. The most common representation

is the normal form, which encodes each utility function up as an

n-dimensional matrix indexed by s ∈ S . Thus, the size of a normal-

form game is exponential in the number of players. Many other

representations have been introduced in the literature. In Section 7,

we are interested in those with polynomial type [32], where the

number of players and the number of strategies are bounded by

polynomials in the size of the game. Many important classes of

games admit a polynomial-type representation, such as graphical

games [20], polymatrix games [16], anonymous games [5], and

congestion games [34].

2.2 Stackelberg Games and Equilibria

Any finite game has a Stackelberg counterpart where some of the

players are leaders and the others are followers. The former have the

ability to commit to a course of play beforehand, while the latter

decide how to play after observing the commitment [41].

Definition 2.1. Given a finite game G, a Stackelberg game (SG) is

a tuple (G,L, F ) where L and F are the sets of leaders and followers,

respectively, with N = L ∪ F .

In single-leader single-follower SGs, the follower best responds

to the leader’s mixed-strategy commitment [12, 41].

Definition 2.2. Given an SG (G, {1}, {2}), a leader’s mixed strat-

egy x1 ∈ ∆(S1) defines a Stackelberg equilibrium (SE) if it maxi-

mizes u1 given that, for each x ′
1
∈ ∆(S1), the follower plays an

x2(x
′
1
) ∈ ∆(S2) maximizing u2.

2

The multi-follower case unfolds in different scenarios depending

on how the followers are assumed to play. Conitzer and Korzhyk

[11] study what they call optimal correlated strategies to commit

to, where the leader commits to a utility-maximizing correlated

distribution satisfying the incentive constraints (Eq. (1)) for the

followers only. Formally:

Definition 2.3. Given an SG (G, {1},N \ {1}), x ∈ X is an optimal

correlated strategy to commit to if it maximizes the leader’s utility

u1(x) over the set X
CE

N \{1}
.

2
In the literature, different SE concepts are defined depending on how the follower is

assumed to break ties. The strong and weak SEs are two notable cases [6], where the

follower is assumed to break ties in favor and against the leader, respectively.



In our work, we pursue the approach of Conitzer and Korzhyk
[11], rather than letting the followers play an NE, as done, e.g., 
by Von Stengel and Zamir [41]. Indeed, while the two models pro-
vide the same leader’s utility in single-follower SGs (corresponding
to that in an SE), the latter may be strictly better in SGs with two
or more followers (see [11] for an example).

3 MULTI-LEADER-FOLLOWER

STACKELBERG GAMES

We address SGswithmultiple leaders and followers. The key compo-

nents of our approach are the following. First, we allow the leaders

to decide whether to participate in the commitment or to defect

from it by taking on the role of followers. This is modeled by the

agreement stage of the SG, whose result is the formation of an agree-

ment involving a subset of the leaders. Second, in the spirit of CEs,

we introduce a correlation device that, after the agreement, draws

recommendations and privately communicates them to the players.

Following Conitzer and Korzhyk [11], we assume that the leaders

involved in the agreement commit to play their recommendations,

while the followers obey to the usual incentive constraints of CEs

(see Eq. (1)). The correlation device may adopt different distribu-

tions depending on the sequence of defections that determined the

agreement, and these distributions are publicly known. Our goal

is to design the device, so as to achieve some desirable properties

of the commitment, which we formally describe in the rest of the

section.

Before going into our main definitions, we introduce some useful

notation. Given a subset of players P ⊆ N , we denote with ΠP the

collection of ordered subsets of P , including the empty set∅. Given

π ∈ ΠP and p ∈ P \ π , we let πp be the ordered set obtained

by appending p at the end of π . We use x = [xπ ] to denote a

vector of correlated distributions xπ ∈ XCE

π∪F , one per ordered

subset of leaders π ∈ ΠL , while X =
>

π ∈ΠL X
CE

π∪F is the set of all

such vectors. In words, π ∈ ΠL represents a sequence of leaders’

defections in the agreement stage, while x defines the publicly

known correlated distributions adopted by the correlation device,

with xπ being the one used when the sequence of defections is π .

Definition 3.1. Given a vector of distributions x = [xπ ] ∈ X, an
SG (G,L, F ) is structured in the following two stages:

• Agreement. It goes on in rounds. In a given round, each

leader, in turn, decides between Opt-In and Opt-Out.
3
All

the decisions are perfectly observable. If a player chooses

Opt-Out, then she leaves the set of leaders becoming a fol-

lower, and a new round starts. The stage ends when, during

a round, all remaining leaders decide to Opt-In. The result

is the ordered subset π ∈ ΠL of leaders who decided to

Opt-Out.
4 5

• Play. The correlation device draws some s ∈ S according to

the publicly known correlated distribution xπ . Then, each

3
We assume that the leaders are asked to take a decision according to some ordering,

e.g., p ∈ L decides before q ∈ L if p < q .
4
The agreement stage is finite as there are at most |L | rounds and each round involves

at most |L | decisions.
5
Our results do not rely on the protocol implemented in the agreement stage. Others

could be adopted, with the only requirement that they must record in which order the

leaders do Opt-Out.

player is privately told her recommendation and the under-
lying game G is played, with the leaders in L \ π sticking to 
their recommendations.

Remark 1. The agreement stage of an SG can be represented as a

sequential (i.e., tree-form) game involving the leaders. In such game,

the players play in turn, according to some fixed order, with only

two actions available at each decision point: Opt-In and Opt-Out.

When a player chooses Opt-Out, then she never plays anymore. The

game ends after a sequence of Opt-In actions performed by all leaders

who have not selected Opt-Out yet. Thus, each leaf of the game

corresponds to the ordered subset π ∈ ΠL representing the sequence

of leaders who performed Opt-Out on the path to the leaf. Players’

payoffs are defined by up (xπ ) for p ∈ L. See Figure 1 (Right) for an
example of sequential-game-representation of the agreement stage.

Next, we introduce some desirable properties that the distri-

butions of the correlation device should satisfy. In the following

definitions, we assume that an SG (G,L, F ) is given.
First, we introduce stability. In words, we require that the leaders

in L do not have any incentive to become followers. We introduce

two different notions of stability, as follows.

Definition 3.2. Given x = [xπ ] ∈ X, for any π ∈ ΠL , xπ is stable

if, for every p ∈ L \ π , up (xπ ) ≥ up (xπp ). Moreover:

• x is stable if x∅ is stable;

• x is perfectly stable if xπ is stable for every π ∈ ΠL .

We denote with XS ⊆ X and XPS ⊆ X the sets of stable and

perfectly stable distributions, respectively.

Remark 2. The rationale behind stability is that of NE. Indeed, x ∈ X
is stable if and only if each leader playing Opt-In is an NE of the

sequential game representing the agreement stage. Intuitively, this is

because, if x ∈ X is stable, each leader must not have any incentive

to play Opt-Out given that the other leaders always play Opt-In.

Remark 3. The rationale behind perfect stability is that of subgame

perfection. Indeed, x ∈ X is perfectly stable if and only if each leader

playing Opt-In is a subgame perfect equilibrium of the agreement

stage. The reason is that perfect stability requires that playing Opt-In

is optimal at any decision point of the sequential game.

The second property that we look for is efficiency. We require

that the correlated distributions of the correlation device are Pareto

optimal with respect to the utility functions of the leaders who

decided to Opt-In. Given X′ ⊆ X, for π ∈ ΠL , we use PL\π (X′) to

denote the set of Pareto optimal correlated distributions in the set

{x ′π | x′ = [x ′π ] ∈ X′}, where the objectives are the functions up ,
for p ∈ L \ π . Formally:

Definition 3.3. Given x = [xπ ] ∈ X′ ⊆ X, for any π ∈ ΠL , xπ is

efficient on the set X′
if xπ ∈ PL\π (X′). Moreover:

• x is efficient on X′
if x∅ is efficient on X′

;

• x is perfectly efficient on X′
if xπ is efficient on X′

for every

π ∈ ΠL .

We introduce three different solution concepts for our SGs, which

we refer to as Stackelberg correlated equilibria (SCEs). They differ on

the types of stability and efficiency that they prescribe. Formally:

Definition 3.4. Given an SG (G,L, F ), x ∈ X is an:



• SCE if it is efficient on the set XS
;

• SCE with perfect agreement (SCE-PA) if it is efficient on the

set XPS
;

• SCE with perfect agreement and perfect efficiency (SCE-PAPE)

if it is perfectly efficient on the set XPS
.

We denote with XSCE
, XSCE-PA

, and XSCE-PAPE
the sets of SCEs,

SCE-PAs, and SCE-PAPEs, respectively.

Example 3.5. Consider the SG in Figure 1, where L = {1, 2} and

F = ∅. Let x = [xπ ] be such that x∅(s1,1, s2,1) = 1, x {2}(s1,5, s2,1) =

1, and xπ (s1,1, s2,2) = 1 for all the other π ∈ ΠL . Clearly, xπ ∈ XCE

π
for all π ∈ ΠL . Moreover, being x∅ stable and Pareto optimal, x is

an SCE. Observe that, if player 2 performsOpt-Out, x prescribes an
irrational behavior to player 1, as u1(x {2}) = 0, while she gets 1 by

doing Opt-Out. Thus, x is not perfectly stable, as playing Opt-In

must be optimal at any decision point of the agreement stage. For

instance, x′ = [x ′π ] with x ′∅(s1,2, s2,1) = 1 and x ′π (s1,3, s2,2) = 1

for every other π ∈ ΠL is an SCE-PA. However, notice that x′ is
not an SCE-PAPE since x ′

{2}
does not maximize player 1’s utility.

Instead, x′′ = [x ′′π ] with x ′′∅(s1,4, s2,1) = 1, x ′′
{2}

(s1,3, s2,1), and

x ′′π (s1,4, s2,2) = 1 for all the other π ∈ ΠL is an SCE-PAPE.

s2,1 s2,2
s1,1 5, 0 1, 2

s1,2 4, 1 1, 2

s1,3 2, 1 1, 1

s1,4 3, 2 1, 3

s1,5 0, 0 0, 0

1

2

x∅

OPT-IN
1

x{2}

OPT-IN

x{2,1}

OPT-OUT

OPT-OUT

OPT-IN 2

x{1}

OPT-IN

x{1,2}

OPT-OUT

OPT-OUT

Figure 1: Left: Example of two-player normal-form SG with

L = {1, 2}. Right: Sequential game representing its agree-

ment stage.

4 ON THE EXISTENCE OF SCE

We investigate the existence of our solution concepts in general SGs.

We show that SCEs and SCE-PAs always exist, while we provide

an SG where there is no SCE-PAPE.

The fundamental step for proving our existence results (Theo-

rem 4.1) is to show that (i) XS
and XPS

are polytopes, and (ii) they

are non-empty. The latter point is a direct consequence of the fact

that all vectors x = [xπ ] ∈ X with xπ = x for some CE x ∈ XCE

are perfectly stable.

Theorem 4.1. Every SG admits an SCE and an SCE-PA.

Proposition 4.2. There are SGs with no SCE-PAPE.

Proof sketch. Consider the SG in Table 1, where L = {1, 2, 3}

and F = ∅. Any x = [xπ ] ∈ XSCE-PAPE
must be such that, for every

xπ with player 3 in π , u3(xπ ) = 1 (as player 3 always gets 1 by

deviating to s3,3). Given the definition of stability and player 3’s

incentive constraints, x {1,2} and x {2,1} must always recommend

s3,3 to player 3. Moreover, by stability and efficiency, x {1} must

always recommend (s1,1, s2,2, s3,2), where player 1 gets a utility of

s2,1 s2,2
s1,1 0, 2, 0 2, 0, 0

s1,2 0, 2, 0 1, 2, 1

s3,1

s2,1 s2,2
s1,1 0, 2, 0 2, 1, 1

s1,2 0, 2, 0 0, 0, 0

s3,2

s2,1 s2,2
s1,1 0, 0, 1 0, 0, 1

s1,2 0, 0, 1 0, 0, 1

s3,3

Table 1: Three-player normal-form SG with no SCE-PAPE

(players 1, 2, and 3 select rows, columns, and matrices, re-

spectively).

2. Similarly, x {2} must always recommend (s1,2, s2,2, s3,1) and, thus,
player 2 receives a utility of 2. Thus, for stability, x∅ must satisfy

u1(x∅),u2(x∅) ≥ 2, which is impossible. □

As a result, in the rest of this work we focus on SCEs and SCE-

PAs. We remark that the non-existence of SCE-PAPEs implies that,

under the requirements of perfect stability and perfect efficiency,

there cannot be an agreement involving all the leaders. This does

not rule out the possibility that some subsets of leaders can still

reach an agreement. However, these cases are much more involved,

as the actual group of leaders reaching an agreement inevitably

depends on the rules of the protocol implemented in the agreement

stage.

5 SCES AND OTHER SOLUTION CONCEPTS

We show that the optimal correlated strategies to commit to in-

troduced by Conitzer and Korzhyk [11] are a special case of SCEs.

Intuitively, in single-leader SGs, efficiency is equivalent to the max-

imization of leader’s utility, while stability does not enforce addi-

tional constraints on the commitment.

Theorem 5.1. Given an SG (G, {1},N \ {1}), it holds XSCE =

XSCE-PA = XSCE-PAPE
and, given some x = [xπ ] ∈ XSCE

, x∅ is an

optimal correlated strategy to commit to.

Proof sketch. Since the SG has only one leader (player 1),XS =

XPS
, and, thus, XSCE = XSCE-PA

. For the same reasons, XSCE-PA =

XSCE-PAPE
. Moreover, Pareto optimality is the same as maximizing

the leader’s utility function u1. Let x = [xπ ] ∈ XSCE
and assume,

by contradiction, that x∅ is not an optimal correlated strategy to

commit to. Then, there would be another x̂ ∈ XCE

N \{1}
such that

u1(x̂) ≥ u1(x∅). However, replacing x∅ with x̂ in x would give us

another x̂ ∈ XS
, contradicting the efficiency of x. □

Given the relation between optimal correlated strategies to com-

mit to and SEs in single-leader single-follower SGs:

Corollary 5.2. Given an SG (G, {1}, {2}), any x = [xπ ] ∈ XSCE

is such that u1(x∅) is the leader’s utility in an SE.

For the relationships of SCEs with other non-Stackelberg solu-

tion concepts, see [8].

6 COMPUTATIONAL COMPLEXITY OF SCE

We study the computational complexity of SCEs and SCE-PAs in

general SGs. We distinguish between the problem of finding an

equilibrium and that of computing an optimal equilibrium, i.e., one

maximizing a specific given linear function of leaders’ utilities,



such as the leader’s social welfare. We introduce the following 
formal definitions (problems f-SCE-PA and o-SCE-PA(λ) are defined 
analogously for SCE-PAs).

Definition 6.1 (f-SCE). Given an SG (G,L, F ), find an SCE.

Definition 6.2 (o-SCE(λ)). Given an SG (G,L, F ) and λ = [λp ] ∈

[0, 1] |L | , find an SCE x = [xπ ] ∈ XSCE
maximizing the objective

function fλ =
∑
p∈L

∑
s ∈S λpup (s)x∅(s).

Let us remark that, in general, the size of a vector x ∈ X is

factorial in the number of players. Thus, in the following, we assume

that there is some compact representation for x. 6

We establish a tight connection between our problems and an

auxiliary one, which is a generalization of the problem of finding

an optimal CE. In the rest of the section, we assume to have access

to an oracle solving this auxiliary problem, which we call stability

oracle. In Section 7, we then investigate for which games the oracle

can be efficiently implemented.

Definition 6.3. A stability oracle O(G, c,L, {xp }p∈L′⊆L) is an al-

gorithm that, given a finite gameG , a coefficients vector c = [cp ] ∈
[−1, 1]n , a set of leaders L ⊆ N , and a collection of correlated

distributions xp ∈ X for p ∈ L′ ⊆ L, returns an x ∈ XCE

N \L maximiz-

ing

∑
p∈N

∑
s ∈S cpup (s)x(s) subject to the stability constraints, i.e.,

up (x) ≥ up (xp ) for all p ∈ L′. 7

In the following, we are interested in games where the stability

oracle runs in polynomial time. Thus, we assume that O always

returns a correlated distribution with size polynomial in the size

of the game.
8
We also consider the decision form of the stability

oracle, which reads as follows:

Definition 6.4. The decision form of a stability oracle O is an

algorithm Od(x ,L, {xp }p∈L′⊆L) that, given x ∈ X, L ⊆ N , and

xp ∈ X for p ∈ L′ ⊆ L, answers Yes if x ∈ XCE

N \L and x satisfies the

stability constraints, and No otherwise.

In the following, given L ⊆ N and λ = [λp ] ∈ [0, 1] |L | , we let

cλ = [cλ,p ] ∈ [0, 1]n be such that cλ,p = λp if p ∈ L, while cλ,p = 0

if not. Moreover, given p ∈ N , we let cp = [cp,q ] ∈ [0, 1]n be such

that cp,p = −1 and cp,q = 0 for all q ∈ N \ {p}. Note that cλ is

the coefficients vector of the objective fλ , while cp corresponds to

minimizing up .

6.1 Computing SCEs

We show that, in games admitting a polynomial-time stability or-

acle, an optimal SCE can be computed in polynomial time. In-

tuitively, o-SCE(λ) is solved by x = [xπ ] computed as: x {p } =
O(G, cp ,L \ {p},∅) for p ∈ L, x∅ = O(G, cλ ,L, {x {p }}p∈L), and
xπ = O(G, cλ ,∅,∅) for every other ordered subset π ∈ ΠL . For-

mally:

Theorem 6.5. Given an SG (G,L, F ) and λ ∈ [0, 1] |L | , o-SCE(λ)
can be solved with |L| + 2 queries to an oracle O.

6
As we see next, for all our positive results we can safely assume that there is a

compact representation for x ∈ X (e.g., x only requires a polynomial number of

polynomially-sized distributions).

7
Note that, given a finite gameG , O(G, c, ∅, ∅) returns an optimal CE x ∈ XCE

for

the objective function defined by c ∈ [0, 1]n .
8
Indeed, this assumption is not restrictive, as all the games we study in Section 7 admit

a poly-time oracle O with this property.

Corollary 6.6. Given an SG (G,L, F ), if there is a poly-time oracle

O, then o-SCE(λ) can be solved in polynomial time.

6.2 Computing SCE-PAs

First, we provide a positive result: one can find an SCE-PA with

polynomially many invocations to a stability oracle. It is sufficient

to compute x = [xπ ] where x {p } = O(G, cp ,∅,∅) for p ∈ L and

x∅ = O(G, cλ ,L, {x {p }}p∈L). Thus:

Theorem 6.7. Given an SG (G,L, F ), f-SCE-PA can be solved with

|L| + 1 queries to an oracle O.

Corollary 6.8. Given an SG (G,L, F ), if there is a poly-time oracle

O, then f-SCE-PA can be solved in polynomial time.

Now, we switch to the problem of computing an optimal SCE-PA,

showing that it cannot be solved efficiently, even with access to a

polynomial-time stability oracle. Specifically, we prove a stronger

negative result: even the easier problem of verifying the perfect

stability of a given x ∈ X is computationally intractable. Our state-

ment is based on a reduction from the coNP-complete problem of

deciding whether a given formula in disjunctive normal form (DNF)

is a tautology or not [3].

Theorem 6.9. Given an SG (G,L, F ) and x ∈ X, verifying whether
x ∈ or < XPS

is not in P unless NP = coNP, even with access to a

polynomial-time decision-form oracle Od
.

Proof sketch. Given a formula Φ in DNF, we construct an SG

(G,L, F ) involving a leader pv for each variable v ∈ V and a single

follower pf . Each pv has two actions, sT and sF, which define the

truth value ofv . As a result, any s ∈ S corresponds to a truth assign-

ment τ s defined by leaders’ strategies. The follower has a strategy

sv for each variable v ∈ V . Table 2 reports the leaders’ utilities (the

follower always gets 0). We build x = [xπ ] ∈ X with x∅(s) = 1 for

some s ∈ S such that spv = sT for all v ∈ V . Furthermore, for every

v ∈ V and π ∈ ΠL\{pv } , we let xπpv (s) = 1 for s ∈ S with sp = sF
for all p ∈ πpv , sp = sT for all p ∈ L \ πpv , and spf = sv .

If. Suppose Φ is a tautology. For every π ∈ ΠL , xπ recommends

all the leaders in π to play sF. Note that, for every v ∈ V and

π ∈ ΠL\{pv } , upv (xπ ) = #F(τ s ) = |π |, while, if pv decides to Opt-

Out, she is recommended to play sF (one more variable is set to

false) and, being spf = sv , she gets the same utility. As a result, all

distributions xπ are stable.

Only if. Suppose Φ is not a tautology. Let s ∈ S be such that

Φ(τ s ) = F. If spv = sT for every v ∈ V , then x∅ is not stable as

the leaders would Opt-Out (getting at least 0 > −1). Otherwise,

there exists s ′ ∈ S such that Φ(τ s
′

) = T and xπ (s
′) = 1, xπpv (s) = 1

for some v ∈ V , π ∈ ΠL\{pv } . Then, upv (xπ ) = #F(τ s
′

) = |π | and
upv (xπpv ) = |V | > |π |. Thus, xπ is not stable, as leader pv would

Opt-Out. □

As a byproduct of Theorem 6.5 we have that, when looking

for optimal SCEs, one can restrict the attention to those x ∈ X
admitting a representation whose size is polynomial in the size

of the game. For Theorem 6.7, the same holds when searching for

an SCE-PA. However, Theorem 6.9 implies that optimal SCE-PAs

require an exponential number of different distributions. Moreover,

even when x ∈ X can be easily represented in a compact form (as



Φ(τ s ) = T Φ(τ s ) = F

spf = sv spf , sv ∃v : spv = sF ∀v : spv = sT
sT 0 #F(τ s ) |V | −1

sF #F(τ s ) − 1 |V | |V | 0

Table 2: Leader pv ’s (v ∈ V ) utilities in the SG for the reduc-

tion of Theorem 6.9. On rows, there arepv ’s strategies sT and

sF, whereas, on columns, we report the four possible cases

for s ∈ S . #F(τ s ) denotes the number of variables set to false

by τ s .

in the proof of Theorem 6.9), we cannot check in polynomial time

whether x ∈ XPS
or not.

This poses a new intriguing question: can we restrict the atten-

tion to x ∈ X whose size is less than factorial in the number of

players? We show that the answer is positive. It is sufficient to

consider x ∈ X whose size is exponential in the number of players,

as only the unordered set of defecting leaders and the last of them

who decided to Opt-Out matter.

Theorem 6.10. Given an SG (G,L, F ) and x = [xπ ] ∈ XPS
, there

is an x′ = [x ′π ] ∈ XPS
s.t. x ′∅ = x∅ and x ′πp = x ′π ′p for every p ∈ L

and π ,π ′ ∈ ΠL\{p } defining the same set.

Theorem 6.10 allows us to reduce the number of queries to a

stability oracle that are necessary to find an optimal SCE-PA.

Theorem 6.11. Given an SG (G,L, F ) and λ ∈ [0, 1] |L | , o-SCE-
PA(λ) can be solved with |L|2 |L |−1 + 1 queries to O.

Finally, we can provide an example showing that Theorem 6.11

is tight, which leads to the following proposition.

Solving o-SCE-PA(λ) requires to take into account the last player
who performed Opt-Out, while focusing only on the set of defect-

ing leaders is not sufficient.

7 STABILITY ORACLE FOR COMPACT GAMES

We study which classes of games admit a polynomial-time stability

oracleO, focusing on thosewith polynomial type.
9
Weonly provide

ourmain final result; a detailed description of all the ancillary results

is in [8].

Inspired by the classical approaches for finding CEs in games

with polynomial type [18, 19, 32], we solve O(G, c,L, {xp }p∈L′⊆L)
in polynomial time using the ellipsoid method. This requires that

a suitably defined separation problem (Sep(z, t)) can be computed

in polynomial time. Our main result is that Sep(z, t) can be re-

duced to the weighted deviation-adjusted social welfare problem

(w-DaSW(y,v, t)) introduced by Jiang and Leyton-Brown [18] for

finding an optimal (according to some linear function of players’

utilities) CE. This establishes a strict connection between the prob-

lem solved by our stability oracle and that of computing optimal

CEs. As a consequence, given the results of Jiang and Leyton-Brown

[18], O can be computed in polynomial time for all the compact

9
We remark that, for normal-form games, a polynomial-time stability oracle O can be

implemented by using a variation of the LP for finding optimal CEs [36].

games where finding an optimal CE is computationally tractable.

Thus:

Theorem 7.1. The following games admit a polynomial-time sta-

bility oracle O: anonymous games, symmetric games, and bounded-

treewidth graphical and polymatrix games.

Finally, our results also imply that the polynomial-time stability

oracle O always outputs a polynomially-sized distribution (see [8,

Corollary 11.1]).

8 DISCUSSION

This paper introduces a new way to apply the Stackelberg paradigm

to any (underlying) finite game. Differently from previous works,

our approach deals with scenarios involving multiple leaders by

introducing a preliminary agreement stage in which each leader can

decide whether to be a leader or become a follower. We introduce

and study three natural solution concepts that differ depending on

the properties that they require on the agreement stage (others, e.g.,

requiring stability and perfect efficiency, will be explored in future).

Our equilibria generalize the optimal correlated strategies to

commit to introduced by Conitzer and Korzhyk [11] for single-

leader multi-follower Stackelberg games. At the same time, they

also provide a significant advancement over the multi-leader so-

lution concepts introduced in the security context (see, e.g., [17]).

First, correlated-strategy commitments are more natural than lead-

ers’ strategies satisfying some Nash-like constraints. Second, our

equilibria are funded on strong game-theoretic groundings, as they

are guaranteed to exist independently of the game structure. Last

but not least our solutions apply to general games.

Finally, our computational findings exploit a general framework

relying on a game-independent stability oracle. Thus, our positive

results can be extended to other game classes by simply designing

polynomial-time oracles.
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