
Thin-Walled Structures 190 (2023) 110951

i An update to this article is included at the end
Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

Full length article

The transformation matrix in the 7DOFs beam formulation
Claudio Bernuzzi, Marco Simoncelli ∗
Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Italy

A R T I C L E I N F O

Keywords:
Non-bisymmetric cross-section
Warping effects
Bimoment
7 degrees of freedom (7 DOFs)
Mixed torsion
Transformation matrix

A B S T R A C T

A non-negligible percentage of steel products for civil and industrial constructions is realised with members
characterised by a mono-symmetric cross-section. The non-coincidence between the centroid and the shear
centre reflects in a quite complex behaviour that is remarkably influenced by the warping effects. Usually,
frame design is based on the output data of commercial Finite Element Analysis Packages (FEAPs) but only
few of them offer a refined beam element formulation able to reproduce the response of non-bisymmetric
cross-section members (like the 7 degrees of freedom, DOFs, beam element). As a consequence, warping effects
are usually neglected in routine design, leading in several cases to assess non-correct internal stresses, global
displacements and critical buckling multipliers.

This paper is focussed on mono-symmetric cross-section members and deals with the influence of the
interaction between axial force, bending moments and bimoment in linear elastic range. In particular, the
two strategies that FE developers usually adopt, in the 7 DOFs beam formulation, to pass from the local
to the global reference system are herein shortly introduced and discussed. The effects of the associated
transformation matrices have been investigated in few examples, also reproduced via closed expressions
derived from the mixed torsion theory and FE shell models. Paper outcomes show that the results in terms of
generalised displacements, internal forces and, consequently, stress distribution along the member cross-section
are significantly different, strictly depending on the adopted transformation matrix. The importance of a correct
evaluation of the bimoment distribution is stressed also by the fact that the new edition of the EN1993-1-1,
expected in the next months, includes also the bimoment contribution for member checks.

1. Introduction

The design of steel frames is generally carried out by using commercial finite element analysis packages (FEAPs) offering beam elements whose
formulation efficiently represents the response of members having two axes of symmetry. For each node 6 degree of freedoms (DOFs) are generally
considered, as showed in Fig. 1a. Reference is made to three displacements (u, v and 𝛿) and three rotations (𝜑𝑥, 𝜑𝑦 and 𝜑𝑧) and to the associated
generalised forces, i.e. axial force (N), shear forces (𝐹𝑦 and 𝐹𝑧), bending moments (𝑀𝑦 and 𝑀𝑧) and the torsional moment (𝑀𝑥). It is worth
noting that in steel construction practice mono-symmetric cross-section members are quite frequently used, not only for isolated components,
like purlins and wall girts, but also for several types of structures such as lifting equipment systems (tower cranes, derricks, etc.) as well as for
industrial steel storage racks. The formers are generally composed of built-up compressed members with hot-rolled angles [1], whereas the latter
have a skeleton frame realised via cold-formed cross-section elements [2]. Due to the absence of two axes of symmetry, the cross-section centroid
(point O) generally does not coincide with the shear centre (point S). As a consequence, the quite complex structural behaviour is significantly
influenced by the interactions between bending moments and warping torsion [3–6], that cannot be captured via the previously introduced 6
degrees of freedom (DOFs) beam formulation. To simulate the correct behaviour of these cross-sections, more refined FE beam formulations able
to account for warping torsion are necessary. These formulations are available in literature since few decades, considering also plasticity and large
displacements [7–12]. As an example, Addessi et al. [13] presented three different beam FE formulations based on different kinematic assumptions
to describe the out-of-plane cross-section deformations. In particular, in the third proposed model, warping has been described by introducing
additional degrees of freedom on the cross-section plane, making hence possible an accurate description of the out-of-plane deformations. In all
the validation examples discussed in the previously mentioned references, only the interactions between bimoment and shear forces or torsion
have been considered. No attention has been paid on the axial-force bimoment interaction. Furthermore, another proposed beam element, whose
formulation is based on the Generalised Beam Theory (GBT) [14], incorporates a great number of sectional degrees of freedom allowing for capturing
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SYMBOLS

Greek lower-case symbol

𝛼 angle between local and principal axes
𝛼𝑐𝑟 critical load multiplier
𝛿 vertical displacement
𝛿𝐹 vertical displacement due to the flexure
𝛿𝑤 vertical displacement due to the bimoment
𝜃 warping
𝜆𝑇 torsional slenderness
𝜈 Poisson ratio
𝜌 radius
𝜎 normal stress
𝜎𝐹 normal stress due to the flexure
𝜎𝑤 normal stress due to the bimoment
𝜑𝑖𝑝 particular solution
𝜑𝑥 rotation about 𝑥-axis
𝜑𝑦 rotation about 𝑦-axis
𝜑𝑧 rotation about 𝑧-axis
𝜔 sectorial area
𝜔𝑚𝑒𝑎𝑛 mean sectorial area
𝜔𝑜 sectorial area with respect to the centroid
𝜔𝑠,𝑚𝑎𝑥 maximum normalized sectorial area
𝜔𝑠 sectorial area with respect to the shear centre

Latin lower-case symbol

a, g distances defined in Figs. 5 and 7
b, b1, 𝑏2 flanges length
𝑏𝑠, ℎ𝑠 distance of shear centre from the global axes
d* dimensionless displacement
h web height
i, k generic points
j, p nodal points
s abscissa
t thickness
u axial displacement
{𝑢} vector of the displacements
v lateral displacement
𝜈𝐹 lateral displacement due to bending
𝜈𝑤 lateral displacement due to bimoment
x, y, z local axes
𝑦0, 𝑧0 co-ordinates of the centroid
𝑦𝑠, 𝑧𝑠 distance between shear centre and centroid

Latin upper-case symbol

A, D points of the cross-section
Ag cross-section area
B bimoment
C1, C2, C3 constants of integration
E Young modulus
𝐹𝑦 shear force in 𝑦-axis
𝐹𝑧 shear force in 𝑧-axis
{𝐹 } vector of the forces
F* nondimensional force
G tangential modulus
𝐼𝑤 warping constant
𝐼𝑦 second moment of area with respect the 𝑦-axis
𝐼𝑧 second moment of area with respect the 𝑧-axis
𝐼𝑡 torsional constant
2
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[𝐾]𝐸,𝑙 elastic stiffness matrix in the local system
[𝐾]𝐸,𝑔 elastic stiffness matrix in the global system
L length
𝑀𝑡 uniform (primary) torsional moment
𝑀𝑥 torsional moment
𝑀𝑦 bending moment about 𝑦-direction
𝑀𝑧 bending moment about 𝑧-direction
𝑀𝜔 non uniform (warping) torsional moment
M bending moment
N axial force
O position of the centroid
O position of the centroid
P external longitudinal force
S position of the shear centre
[𝑇 ] transformation matrix
X, Y, Z global axes

Fig. 1. Nodal displacements and generalised forces for (a) 6DOFs and (b) 7DOFs FE beam formulation.

both local and distortional cross-section deformations. The use of GBT elements to model a whole frame can represent a challenge for structural
engineers (especially for the modelling of joints) which generally are familiar with more classic FE strategies.

Despite refined approaches are available in literature, only a limited number of commercial FEAPs [15–20] offer beam elements accounting for
warping. The most common beam element in FEAPs is the one having 7 DOFs for each node, in which the seventh DOF is necessary to describe
the warping of the cross-section, 𝜃. Warping is defined as the first derivate of the torsional rotation 𝜑𝑥:

𝜃 (𝑥) = −
𝑑𝜑𝑥(𝑥)
𝑑𝑥

(1)

Considering Fig. 1b, reference can be made to the shear centre (S) for the definition of all the generalised displacements, with the exception of
he axial displacement u, which is defined in correspondence to the centroid (O). Furthermore, the shear forces (𝐹𝑦 and 𝐹𝑧), the torsional moment
𝑀𝑥) and the bimoment (B) are referred to S, whereas both bending moments (𝑀𝑦 and 𝑀𝑧) and the axial force (N) are defined with respect to O.

The focus of the paper is to discuss, with the use of 7DOF beam element, about the interaction between axial force, bending moments and
imoment in linear elastic range. No attention is herein paid to the problem of the bimoment-axial force interaction for the global stability [21].
n particular, a short introduction related to the thin-walled beam theory is proposed by focussing attention on the sole aspects of relevance for
he study. Furthermore, the two transform matrices usually adopted with the 7 DOFs element, to pass from the local to the global reference system
re shortly presented and discussed. Both have been implemented in an open FE software for academic use and applied to basic cases, which have
een reproduced also by means of the mixed torsion theory [4] and FE shell models. A direct comparison between the associated results shows that
hese transformation matrices are not always equivalent in terms of generalised forces and displacements and, as a consequence, routine design
ased on one or the other choice could be characterised by different reliability levels.

. Essential theoretical background

The behaviour of thin-walled members has already been deeply investigated in literature [4,6] but few essential concepts are herein briefly
ecalled allowing for a better understanding of the paper contents. In particular, the concept of the sectorial area and the two Vlasov’s theorems
re herein discussed, whose impact is usually ignored in routine design.
The sectorial area. The analysis of thin-walled elements is based on the definition of a suitable geometrical function, 𝜔(s), that is the cross-

ection sectorial area. It corresponds to twice the swept area (dashed background in Fig. 2) described by the radius 𝜌, which moves along the
3
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Fig. 2. General definition of the sectorial area (𝜔).

midline of the cross-section from the point s = 0 to the point of interest. The swept area is generally considered positive when radius 𝜌 rotates in
the clockwise direction.

When the sectorial area 𝜔(s) is evaluated with respect to the centroid (O) of the cross-section, it is identified as 𝜔0 (𝑠) and it can be evaluated
(Fig. 2) as:

d𝜔0 (𝑠) = d𝜔0 (𝑦, 𝑧) = 𝑦𝑑𝑧 − 𝑧𝑑𝑦 = 𝜌(𝑠)𝑑𝑠 (2a)

𝜔0 = ∫

𝑠

0
d𝜔0(𝑠) = ∫

𝑠

0
𝜌(𝑠)𝑑𝑠 (2b)

Generally, reference is made to the so-called normalised sectorial area, 𝜔𝑠(𝑦, 𝑧) i.e. the sectorial area evaluated with respect to the shear centre,
which can be obtained from equation:

𝜔𝑠(𝑦, 𝑧) = 𝜔0(𝑦, 𝑧) + 𝑧𝑠
(

𝑦 − 𝑦0
)

− 𝑦𝑠(𝑧 − 𝑧0) − 𝜔𝑚𝑒𝑎𝑛 (3)

where the position of the centroid (O) and of the shear centre (S) are defined by the couples of co-ordinates (𝑦0, 𝑧0) and (𝑦𝑠, 𝑧𝑠), respectively. Term
𝜔𝑚𝑒𝑎𝑛 is a constant value obtained as the average value of 𝜔𝑜 considering its effective distribution along the whole cross-section.

As shown in Fig. 1(b), a key feature of this theory is represented by the presence of an additional generalised internal force that is the bimoment,
𝐵 (𝑥), obtained as:

𝐵 (𝑥) = −𝐸𝐼𝑤
𝑑𝜃 (𝑥)
𝑑𝑥

= −𝐸𝐼𝑤
𝑑2𝜑(𝑥)
𝑑𝑥2

(4)

where 𝐼𝑤 is second moment of area of the sectorial area (or warping constant) of the whole cross-section, defined as:

𝐼𝑤 = ∫ 𝜔2
𝑠𝑑𝐴𝑔 (5)

where 𝐴𝑔 is the cross-section area. Once the sectorial area and the warping constant have been appraised, it is possible to define the distribution
of the warping normal stress 𝜎𝑤(𝑥, 𝑦, 𝑧) on the basis of the bimoment value via the equation:

𝜎𝑤 (𝑥, 𝑦, 𝑧) =
𝐵 (𝑥)
𝐼𝑤

𝜔𝑠(𝑦, 𝑧) (6)

It is worth noting that the presence of the bimoment is generally ignored in the routine design, because it is not adequately considered in
he actual version of the standard provisions [22,23]. Consequently, the most adopted FEAPs do not offer an accurate beam formulation and the

member safety index is independent of the effective warping stress distribution acting on the cross-section. Moreover, in the future edition of the
EN1993-1-1 [24], which is expected to be available in the next months, the bimoment presence will be explicitly considered in the verification
equations. As a consequence, its correct evaluation is of paramount importance in order to guarantee a safe design.

Bimoment associated with the axial force. Vlasov [4] investigated the effect of an external applied force, P at a certain point k (𝑦𝑘, 𝑧𝑘), as
howed in Fig. 3, in terms of resulting axial force (𝑁), bending moments (𝑀𝑦 and 𝑀𝑧) and bimoment (𝐵) applied on the cross-section, via the
ollowing equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑁 = 𝑃

𝑀𝑦 = 𝑃𝑧𝑘

𝑀𝑧 = −𝑃𝑦𝑘

𝐵 = 𝑃𝜔𝑠
(

𝑦𝑘, 𝑧𝑘
)

(7a–d)

It is worth noting that the longitudinal force, that is eccentric with respect to the centroid, generates bending moments and bimoment on the
ross-section depending on the sectorial area distribution. Eq. (7d) is generally identified as the first Vlasov’s theorem, which expresses a direct
elationship between the axial force and the bimoment.
4
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Fig. 3. Member end loaded by a force 𝑃 , acting on point 𝑘.

Fig. 4. Bending moment acting on the plane of the membrane.

Moreover, by combining Eqs. (7d) and (3), it is possible to express the bimoment as depending on the axial force and bending moments
[25].

𝐵 = 𝑃𝜔𝑠(𝑦𝑘, 𝑧𝑘) = 𝑃 [𝜔0(𝑦𝑘, 𝑧𝑘) + 𝑧𝑠
(

𝑦 − 𝑦𝑘
)

− 𝑦𝑠(𝑧 − 𝑧𝑘) − 𝜔𝑚𝑒𝑎𝑛] (8a)

𝐵 = 𝑃
(

𝜔0,𝑘 − 𝜔𝑚𝑒𝑎𝑛
)

+𝑀𝑧𝑧𝑆 −𝑀𝑦𝑦𝑆 (8b)

Bimoment associated with bending moments. In his second theorem, Vlasov investigated the dependence between bimoment and bending
moments. A bending moment, M, acting on the plane tangent to the cross-section in point k can be seen as due to a longitudinal couple of notional
forces P, at a certain distance 𝛥s (Fig. 4), ie:

𝑀 = 𝑃𝛥𝑠 (9)

Starting from Eq. (7d), it is in fact possible to evaluate B as:

𝐵 = −𝑃𝜔𝑠,𝑘 + 𝑃
(

𝜔𝑠,𝑘 + 𝛥𝜔𝑠,𝑘
)

= 𝑃𝛥𝜔𝑠,𝑘 (10)

From Eq. (10), letting 𝛥𝑠 → 0, it is possible to obtain the relationship:

𝐵 = 𝑃𝛥𝜔𝑠,𝑘 = 𝑀
(𝛥𝜔𝑠,𝑘

𝛥𝑠

)

𝛥𝑠→0
= 𝑀

(

𝑑𝜔𝑠
𝑑𝑠

)

(11)

The bimoment is hence proportional to the value of the first derivate of the sectorial coordinate with respect to the abscissa s and to the applied
ending moment.

For a better understanding of the impact of Vlasov’s two theorems on the routine design, two practical cases are discussed below.

.1. Plain channel members

Consider a mono-symmetric plain channel having a constant thickness (t), with h and b representing the height web and the flange width,
espectively. For this cross-section, the distributions of 𝜔0, 𝜔𝑠 and d𝜔𝑠/ds are reported in Fig. 5 together with the value of 𝜔𝑚𝑒𝑎𝑛.

Considering Vlasov’s theorems, if a couple of forces is applied on points D and D’ (at a distance equal to h, Fig. 6a), which generates a bending
oment 𝑀𝑦, the bimoment can be evaluated by considering three different possibilities, leading to the same results:

(1) in accordance with Eq. (7d), the bimoment value is:

𝐵 = 𝑃𝜔𝑠,𝐷 + 𝑃𝜔𝑠,𝐷′ = 𝑃𝑔 ℎ
2
− 𝑃 (−𝑔 ℎ

2
) = 𝑃 𝑔ℎ (12a)

(2) by considering Eq. (8), it should be noted that the shear centre position 𝑦S is equal to (g+a), whereas term 𝑧S is nil. Bimoment is hence
equal to:

𝐵 =
[

−𝑃
(

− 𝑏ℎ) + 𝑃
(

− 𝑏ℎ − 𝑎ℎ
)]

+ [𝑃ℎ (𝑔 + 𝑎)] −
[

𝑃 ℎ (𝑎 + 𝑏) − 𝑃 ℎ (𝑎 + 𝑏)
]

= 𝑃 ℎ 𝑔 (12b)

2 2 2 2

5
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T

Fig. 5. Distribution of 𝜔0, 𝜔𝑠 and d𝜔𝑠/ds for a plain channel.

Fig. 6. Different cases of longitudinal forces on a plain channel.

(3) by considering Eq. (11), the bimoment can be related to the derivate of the sectorial area, which is equal to g :

𝐵 = 𝑀
(

𝑑𝜔𝑠
𝑑𝑠

)

= 𝑃ℎ 𝑔 (12c)

Two other cases of practical interest are depicted in parts (b) and (c) of Fig. 6. It is especially worth noting that:

• a couple of forces (P) applied in the points where the normalised sectorial area is nil (i.e. at a distance g from the web, Fig. 6b) leads to
𝐵 = 0;

• a system of self-balanced forces (P) generates two opposite moments in the plane of the flanges (in Fig. 6c) and, consequently, 𝐵 = 𝑃ℎ 𝑏.

2.2. H-shaped members with unequal flanges

Let us consider a H-shaped cross-section having a constant thickness (t), a total height equal to h and different width of the flanges 𝑏1 and 𝑏2.
he distributions of 𝜔0, 𝜔s and d𝜔𝑠/ds are displayed in Fig. 7, together with 𝜔𝑚𝑒𝑎𝑛.

A couple of forces applied on points D and D’ (at a distance 𝑏1, Fig. 8a) generating a bending moment 𝑀𝑧, leads to a bimoment that can be
appraised via different strategies, leading to the same results:

(1) in accordance with Eq. (7d):

𝐵 = 𝑃𝜔 ′ + 𝑃𝜔 = 𝑃𝑎
𝑏1 − 𝑃 (−𝑎

𝑏1 ) = 𝑃 𝑎𝑏 (13a)
𝑠,𝐷 𝑠,𝐷 2 2 1

6
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Fig. 7. Distribution of 𝜔0, 𝜔𝑠 and d𝜔𝑠/ds for a monosymmetric H-shaped section.

Fig. 8. Different cases of longitudinal forces on a 𝑇 section.

(2) in accordance with Eq. (8), since 𝑦𝑠 is nil (i.e. 𝑀𝑦𝑦𝑠 = 0) and 𝑧s = (g-a)∶

𝐵 =
[

−𝑃
(

−
𝑏2
2

(ℎ − 𝑔) −
𝑏1
2
𝑔
)

+ 𝑃 (−
𝑏2
2

(ℎ − 𝑔) +
𝑏1
2
𝑔)
]

−
[

𝑃𝑏1 (𝑔 − 𝑎)
]

− 𝑃
[

𝑏2
2

(ℎ − 𝑔) −
𝑏2
2

(ℎ − 𝑔)
]

= 𝑃𝑏1 𝑎 (13b)

(3) in accordance with Eq. (11), by considering that in the top flange the derivate of the sectorial area with respect to the abscissa is constant
and equal to a:

𝐵 = 𝑀
(

𝛥𝜔𝑠
𝛥𝑠

)

𝑘
= 𝑃𝑏1 𝑎 (13c)

Other two cases of interest for practical design purposes are presented in parts (b) and (c) of Fig. 8. In particular:

• a couple of forces P lying on the web plane, i.e. where the sectorial area is always nil (Fig. 8b), does not generate bimoment;
• a system of self-balanced forces P generating two opposite moments in the plane of the flanges (Fig. 8c) leads to 𝐵 = 𝑃𝑏2 ℎ.

. The transformation matrix alternatives

In this paper, for the sake of simplicity, only first-order elastic analysis is considered by using the 7DOFs beam element. Attention is herein
ainly focussed on the sole assemblage phase to form the global stiffness matrix obtained from the local one associated with each FE beam, by
sing the transformation matrix.
7
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As well known, in the first-order elastic analysis, the effect of the deformed shape of members is neglected and the relationship between global
generalised displacement {u} and generalised internal forces {F} depends on the sole global elastic stiffness matrix [𝐾]𝐸,𝑔 :

{𝐹 } = [𝐾]𝐸,𝑔 {𝑢} (14)

Using j and p to identify the nodes of the beam element, the linear algebraic system can be rewritten as:
[

{𝐹 }𝑗

{𝐹 }𝑝

]

=
⎡

⎢

⎢

⎣

[𝐾]𝐸,𝑔
𝑗𝑗 [𝐾]𝐸,𝑔

𝑝𝑗

[𝐾]𝐸,𝑔
𝑗𝑝 [𝐾]𝐸,𝑔

𝑝𝑝

⎤

⎥

⎥

⎦

[

{𝑢}𝑗

{𝑢}𝑝

]

(15)

here [𝐾]𝐸,𝑔
𝑗𝑗 , [𝐾]𝐸,𝑔

𝑝𝑝 , [𝐾]𝐸,𝑔
𝑝𝑗 and [𝐾]𝐸,𝑔

𝑗𝑝 are the 7 × 7 sub-matrices; {𝐹 }𝑗 , {𝐹 }𝑝 and {𝑢}𝑗 , {𝑢}𝑝 are the generalised forces and displacements referred
to the node j or p, defined as:

{𝐹 }𝑗∕𝑝 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑁

𝐹𝑦

𝐹𝑧

𝑀𝑥

𝑀𝑦

𝑀𝑧

𝐵

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

{𝑢}𝑗∕𝑝 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢

𝑣

𝛿

𝜑𝑥

𝜑𝑦

𝜑𝑧

𝜃

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(16a, b)

Therefore, for each beam element, the algebraic linear system must be expressed in the global reference system by means the use of the
ransformation matrix [T], following the rules:

[𝐾]𝐸,𝑔 = [𝑇 ] [𝐾]𝐸,𝑙[𝑇 ]𝑇 (17a)

{𝐹 } = [𝑇 ]𝑇 {𝐹 }𝑙 (17b)

{𝑢} = [𝑇 ] {𝑢}𝑙 (17c)

where the vectors with superscript l are intended in the local reference system.
With reference to the beam element of length L, by considering its cross-section properties in terms of area (Ag), second moments of area along

principal axes (𝐼z and 𝐼y), de Saint Venant’s torsional and warping constants (𝐼t and 𝐼w, respectively) and by assuming E and G for Young and
Tangential material modulus, respectively, the elastic stiffness matrix [𝐾]𝐸,𝑙 is defined as:

[𝐾]𝐸,𝑙 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎 . . . . . . −𝑎 . . . . . .

. 𝑏1 . . . 𝑐1 . . −𝑏1 . . . 𝑐1 .

. . 𝑏2 . −𝑐2 . . . . −𝑏2 . −𝑐2 . .

. . . 𝑑 . . −𝑒 . . . −𝑑 . . −𝑒

. . −𝑐2 . 𝑓2 . . . . 𝑐2 . 𝑔2 . .

. 𝑐1 . . . 𝑓1 . . −𝑐1 . . . 𝑔1 .

. . . −𝑒 . . ℎ . . . 𝑒 . . 𝑖

−𝑎 . . . . . . 𝑎 . . . . . .

. −𝑏1 . . . −𝑐1 . . 𝑏1 . . . −𝑐1 .

. . −𝑏2 . 𝑐2 . . . . 𝑏2 . 𝑐2 . .

. . . −𝑑 . . 𝑒 . . . 𝑑 . . 𝑒

. . −𝑐2 . 𝑔2 . . . . 𝑐2 . 𝑓2 . .

. 𝑐1 . . . 𝑔1 . . −𝑐1 . . . 𝑓1 .

. . . −𝑒 . . 𝑖 . . . 𝑒 . . ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

𝑎 =
𝐸𝐴𝑔

𝐿
; 𝑏1 =

12𝐸𝐼𝑧
𝐿3

; 𝑏2 =
12𝐸𝐼𝑦
𝐿3

; 𝑐1 =
6𝐸𝐼𝑧
𝐿2

; 𝑐2 =
6𝐸𝐼𝑦
𝐿2

; 𝑑 =
𝐺𝐼𝑡
𝐿

+
{

12𝐸𝐼𝑤
𝐿3

+
𝐺𝐼𝑡
5𝐿

}

; 𝑒 =
{

6𝐸𝐼𝑤
𝐿2

+
𝐺𝐼𝑡
10𝐿

}

𝑓1 =
4𝐸𝐼𝑧
𝐿

; 𝑓2 =
4𝐸𝐼𝑦
𝐿

; 𝑔1 =
2𝐸𝐼𝑧
𝐿

; 𝑔2 =
2𝐸𝐼𝑦
𝐿

;ℎ =
{

4𝐸𝐼𝑤
𝐿

+
2𝐺𝐼𝑡𝐿
15

}

; 𝑖 =
{

2𝐸𝐼𝑤
𝐿

−
𝐺𝐼𝑡𝐿
30

}

(19)

The cross-section of the FE beam is referred to a global reference system axis (X,Y,Z), having its origin in point 𝑂, as showed in Fig. 9. The
entroid of the cross-section, O, that is the origin of the local (beam) reference system, is eccentric (𝑦𝑜, 𝑧𝑜) with respect to the global reference
ystem. The shear centre is identified by point S (ℎ , 𝑏 ). The eccentricity between the centroid and the shear centre is identified by 𝑦 and 𝑧 . Term
𝑠 𝑠 𝑠 𝑠

8
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s
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g
b
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Fig. 9. Arbitrary position of the cross-section beam element in global system (X, Y, Z).

𝛼 expresses the angle between the principal axes of the cross-section in the local reference system and the axes of the global reference system. The
generic loaded point is, in the following, identified with 𝑦𝑖 and 𝑧𝑖.

As previously introduced (Fig. 1b), the nodal parameters are defined with respect to the shear centre or to the centroid in the local reference
ystem. For the assembly phase it is necessary, to referred them to the global reference system. It is worth noting that, for the generic node of a
eam element with non-symmetric cross-section, after the transformation from the local to the global reference system, shear forces and bending
oments depend on the 𝛼 angle, as it follows:

𝑁𝑂 = 𝑁𝑂 (20a)

𝐹𝑦𝑂 = 𝐹𝑦 cos 𝛼 + 𝐹𝑧 sin 𝛼 (20b)

𝐹𝑧𝑂 = −𝐹𝑦 sin 𝛼 + 𝐹𝑧 cos 𝛼 (20c)

𝑀𝑦𝑂 = 𝑀𝑦 cos 𝛼 +𝑀𝑧 sin 𝛼 −𝑁𝑂𝑧𝑖 (20d)

𝑀𝑧𝑂 = −𝑀𝑦 sin 𝛼 +𝑀𝑧 cos 𝛼 +𝑁𝑂𝑦𝑖 (20e)

The torsional moment in the global reference system has to include also the contribution of the shear forces eccentricities with respect to the
cross-section shear centre:

𝑀𝑥𝑂 = 𝑀𝑥 + 𝐹𝑦[−(ℎ𝑠 − 𝑧𝑖) cos 𝛼 + (𝑦𝑖 − 𝑏𝑠) sin 𝛼] − 𝐹𝑧[(𝑦𝑖 − 𝑏𝑠) cos 𝛼 + (ℎ𝑠 − 𝑧𝑖) sin 𝛼] (20f)

As to the bimoment, it is evaluated in commercial 7DOFs beam FEAPs, by means of two different alternatives, in the following identified as
lternative 1 (Alt. 1) and alternative 2 (Alt. 2).

In Alt. 1, the bimoment in the global reference system, is expressed in term of the bimoment referred to the shear centre plus the bimoment
enerated from the axial force and bending moments contributions, in accordance with the first and second Vlasov’s theorems. As a consequence,
y considering Eq. (8), it results that:

𝐵𝑂 = 𝐵 −𝑁𝑂𝑊 −𝑀𝑦
[(

𝑦𝑖 − 𝑏𝑠
)

cos 𝛼 + (ℎ𝑠 − 𝑧𝑖) sin 𝛼
]

+𝑀𝑧[(ℎ𝑠 − 𝑧𝑖) cos 𝛼 + (𝑦𝑖 − 𝑏𝑠) sin 𝛼] (21a)

where term W is defined as: 𝑊 = 𝜔0
(

𝑦𝑖, 𝑧𝑖
)

− 𝜔𝑚𝑒𝑎𝑛.
In Alt. 2, the bimoment in the global reference system is assumed to be coincident with the one acting on the shear centre of the cross-section,

.e. expressed in the local reference system:

𝐵𝑂 = 𝐵 (21b)

It is hence possible to derive the transformation matrix [T], which depends by the considered alternatives, owing to the different strategies
adopted to transform the bimoment.
9
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- The Alt.1 it considers the coupling between bending moments, axial force and bimoment. The transformation matrix is:

[𝑇 ]𝐴𝑙𝑡.1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −𝑧𝑖 𝑦𝑖 −𝑊

0 cos 𝛼 sin 𝛼 −(ℎ𝑠 − 𝑧𝑖) cos 𝛼 + (𝑦𝑖 − 𝑏𝑠) sin 𝛼 0 0 0

0 − sin 𝛼 cos 𝛼 −(𝑦𝑖 − 𝑏𝑠) cos 𝛼 − (ℎ𝑠 − 𝑧𝑖) sin 𝛼 0 0 0

0 0 0 1 0 0 0

0 0 0 0 cos 𝛼 sin 𝛼 −(𝑦𝑖 − 𝑏𝑠) cos 𝛼 − (ℎ𝑠 − 𝑧𝑖) sin 𝛼

0 0 0 0 − sin 𝛼 cos 𝛼 (ℎ𝑠 − 𝑧𝑖) cos 𝛼 + (𝑦𝑖 − 𝑏𝑠) sin 𝛼

0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22a)

- The Alt.2 neglects the coupling between bending moments and bimoment. The transformation matrix is:

[𝑇 ]𝐴𝑙𝑡.2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −𝑧𝑖 𝑦𝑖 0

0 cos 𝛼 sin 𝛼 −(ℎ𝑠 − 𝑧𝑖) cos 𝛼 + (𝑦𝑖 − 𝑏𝑠) sin 𝛼 0 0 0

0 − sin 𝛼 cos 𝛼 −(𝑦𝑖 − 𝑏𝑠) cos 𝛼 − (ℎ𝑠 − 𝑧𝑖) sin 𝛼 0 0 0

0 0 0 1 0 0 0

0 0 0 0 cos 𝛼 sin 𝛼 0

0 0 0 0 − sin 𝛼 cos 𝛼 0

0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22b)

As highlighted in the following section, the choice of the transformation matrix, i.e. the use of matrix (22a)) or Eq. (22b), could lead to
emarkably different results in term of structural response. More details related to practical applications of these matrices can be found in Appendix,
here one of the cases discussed in the next session is reproduced.

. Numerical applications on mono-symmetric cross-section members

As already discussed, the transformation matrices associated with alternative 1 (Eq. (22a) or 2 (Eq. (22b) allow for accounting the coupling
etween flexural moments and bimoment in two different ways to pass from the local to the global reference system. To appraise the differences
ssociated with their use, reference has been made to practical cases related to a cantilever beam fully fixed at one end and loaded at the free one.
our different loading conditions have been considered, namely:

• shear force parallel to the web;
• bending moment along a plane parallel to the web;
• bending moment along a plane parallel to the flanges;
• eccentric axial force.

This basic structure was selected so as to allow for a direct reproduction of the results both theoretically, via the mixed torsion theory,
nd numerically, via refined FE shell models. The two transformation matrices have been implemented in a finite element analysis open-source
rogramme developed by the Authors for academic research and already used in previous papers [26]. Several FE formulations have been added
ver the years and the last one is represented by the 7DOFs beam element developed in accordance with [4]. As to the FE models via shell elements,
he commercial analysis software ABAQUS [16] has been used by accurately meshing the member with S4R elastic shell elements. Furthermore, in
rder to reproduce the cantilever boundary conditions, a mask at the fixed end was applied via the use of wire elements connected to the section
entroid. Moreover, at the free end the load (i.e. a force or bending moment) was applied to the cross-section centroid, which was connected only
o the web, to allow for free warping.

As to the theory, an external torsional moment 𝑀𝑥 (𝑥) can be split into the Saint-Venant, 𝑀𝑡 (𝑥), and the warping torsion, 𝑀𝜔 (𝑥), contributions.
iven that, in the proposed examples there is not applied a distributed torsional moment, the torsion is expressed as:

𝑀𝑥 (𝑥) = 𝑀𝜔 (𝑥) +𝑀𝑡 (𝑥) = 𝐺𝐼𝑡
𝑑𝜑𝑥
𝑑𝑥

− 𝐸𝐼𝑤
𝑑3𝜑𝑥

𝑑𝑥3
(23)

where E and G are the Young and the shear modulus, respectively.
The general solution of Eq. (23) is:

𝜑𝑥(𝑥) = 𝐶1 + 𝐶2 sinh
(

𝜆𝑇 𝑥
)

+ 𝐶3 cosh
(

𝜆𝑇 𝑥
)

+ 𝜑𝑖𝑝 (24)

where C1, C2 and C3 are integration constants depending on the boundary conditions; 𝜑𝑖𝑝 is the particular solution associated with the assigned
load conditions and 𝜆𝑇 is the relative torsional slenderness defined as:

𝜆𝑇 =

√

𝐺𝐼𝑡
𝐸𝐼𝑤

(25)

The two boundary conditions that are valid for all the cases herein considered are:

• no torsion at the fixed end, i.e. 𝜑𝑥 (0) = 0
• no warping at the fixed end, i.e. 𝜑′ 0 = 0
𝑥 ( )

10
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Table 1
Geometrical data of the considered cross-sections.

Ag [mm2] 4.92⋅102 26.00⋅102

t [mm] 2.0 5.0

𝐼y [mm4] 86.76⋅104 34.79⋅104

𝐼z [mm4] 29.65⋅104 15.85⋅104

𝐼t [mm4] 656 22.36⋅103

𝐼w [mm9] 50.0⋅107 14.1⋅109

𝑦s [mm] 52.57 0.0

𝑧s [mm] 0.0 94.70

|𝜔𝑠,𝑚𝑎𝑥| [mm2] 21.41⋅102 104

𝜆T 7.10⋅10−4 7.72⋅10−4

Fig. 10. Cantilever beam with the shear force applied in the cross-section centroid, point O.

The third boundary condition depends on the load case under consideration, as detailed in the following.
By considering the torsional effects, the maximum lateral and vertical displacements at the free end (𝛿 (𝐿) and 𝑣 (𝐿) , respectively) are obtained

y combining the classic flexural contribution with the torsional one:

𝛿 (𝐿) = 𝛿𝐹 (𝐿) + 𝛿𝜔(𝐿) (26a)

𝑣 (𝐿) = 𝑣𝐹 (𝐿) + 𝑣𝜔(𝐿) (26b)

For each load case, two different mono-symmetric cross-sections have been considered: an equal flange plain channel (EFC) and an unequal
lange I-shaped profile (UFI). Table 1 contains the main geometrical data of these cross-sections and presents the values of the main cross-sectional
roperties together with the thickness (t) and the maximum value of the sectorial area (𝜔𝑠,𝑚𝑎𝑥). Furthermore, the eccentricities between the

cross-section centroid and the shear centre together with the torsional slenderness (𝜆𝑇 ), are reported too.
The geometrical data presented in Table 1 have been evaluated directly by using the simplified procedure reported in Appendix C of the

EC3-1-3 [27]. In particular, each cross-section has been meshed via suitable sets of points and segments. It is worth noting that the degree of
accuracy in predicting geometrical cross-section data is more than acceptable, as discussed also by Ziemian et al. [28], which generally agree with
the same geometrical data obtained from closed form theoretical expressions. As to the material properties, it has been assumed 𝐸 = 210,000 MPa
nd 𝑣 = 0.3 and the constitutive law has been considered perfectly elastic, due to the scope of this research.

.1. Shear force parallel to the web

The beam is loaded by a vertical force equal to 𝐹z = 1.0 kN, parallel to the web and applied on the centroid of the free end cross-section of the
antilever beam (Fig. 10). In EFC member, there is an eccentricity between the shear centre and the loaded point. Consequently, a torsional moment
cts at the free end, equal to 𝑀 𝐿 = 𝐹 ⋅ 𝑦 . For the UFI cross section member, torsion is nil, being the shear centre on the load application line.
𝑥 ( ) 𝑧 𝑠

11
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𝐸

Fig. 11. Deformed shape of EFC with FE shell elements.

Table 2
Key results of the first-order elastic analysis with a shear force applied.

For the EFC member, the particular solution is:

𝜑𝑖𝑝 =
𝐹𝑧 ⋅ 𝑦𝑠
𝐺 ⋅ 𝐼𝑡

𝑥 (27)

The third necessary condition to evaluate the set of the general solution constants (C1, C2 and C3) is represented by a bimoment, 𝐵 (𝑥) =
𝐼𝑤𝜑′′

𝑥 (𝑥) , nil at the free end, reflecting in the condition: 𝜑′′
𝑥 (𝐿) = 0.

The expression of the torsional rotation is thus:

𝜑𝑥(𝑥) =
𝐹𝑧𝑦𝑠
𝜆𝑇𝐺𝐼𝑡

[

𝜆𝑇 𝑥 +
sinh(𝜆𝑇 (𝐿 − 𝑥))

cosh(𝜆𝑇𝐿)
− tanh(𝜆𝑇𝐿)

]

(28)

The bimoment distribution along the cantilever is:

𝐵 (𝑥) = −
𝐹𝑧𝑦𝑠
𝜆𝑇

⋅
sinh(𝜆𝑇 (𝐿 − 𝑥))

cosh(𝜆𝑇𝐿)
(29a)

Therefore, at the fixed end cross-section, i.e. with 𝑥 = 0, the bimoment is maximum and equal to:

𝐵 (0) = −
𝐹𝑧𝑦𝑠
𝜆𝑇

⋅ tanh
(

𝜆𝑇𝐿
)

(29b)

Finally, at the free end, the maximum vertical displacement (𝛿) referred to cross-section centroid is expressed as:

𝛿 (𝐿) = 𝛿𝐹 (𝐿) + 𝛿𝜔(𝐿) =
𝐹𝑧𝐿3

3𝐸𝐼𝑦
+ 𝑦𝑠𝜑𝑥 (𝐿) =

𝐹𝑧𝐿3

3𝐸𝐼𝑦
+ 𝑦𝑠

𝐹𝑧𝑦𝑠
𝜆𝑇𝐺𝐼𝑡

[

𝜆𝑇𝐿 − tanh
(

𝜆𝑇𝐿
)]

(30)

Therefore, with the load on the centroid, EFC response is governed by the torsional rotation. On the contrary, the UFI profile is in simple
bending. The deformed shape of ECF obtained from the FE shell model is reported in Fig. 11. The relevance of the torsion of the beam can be noted
at its free end.

Main results related to the two alternative FE approaches together with the ones associated with the theoretical solution and with the FE shell
models are reported in Table 2. In particular, the bimoment, B(0), is reported at the fixed end, whereas for the free end reference is made to the
values of the total torsional moment, 𝑀𝑥(L), the torsional rotation, 𝜑𝑥 (L), and the vertical displacement, 𝛿(L).

It can be noted that both results associated with the FE beam alternatives are equivalent and differences with the theory are never greater than
0.1%. Furthermore, the more than satisfactory correspondence between the data in the table and the ones obtained via FE shell models confirm
the accuracy of the mesh as well as of the strategies adopted to model the restraints and the load application. Focussing attention on the EFC
cantilever, the non-negligible influence of the bimoment on the overall behaviour can be appreciated also by considering the normal stresses
12
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Fig. 12. Bending (𝜎F), warping (𝜎w) and total stresses (𝜎 = 𝜎F+𝜎w) distribution on EF-C cross-section at the fixed end cross section of the cantilever beam (x=L).

Fig. 13. Warping influence on EFC member by moving the transversal force.

distribution (Eq. (6)), which are displayed in Fig. 12 with reference to the fixed end cross-section (i.e. x=0). In particular, the bending (𝜎F) and
warping (𝜎w) stresses are plotted together with the total one (𝜎 = 𝜎F+𝜎w) versus the coordinate s, describing the cross-section midline contour. It
is worth noting that in presence of the internal corners D and D’ the stress 𝜎w is about 1.7 times 𝜎F, confirming the inadequacy of traditional 6
DOFs beam formulations in capturing the mono-symmetric cross-section response.

Furthermore, for EFC member Fig. 13 shows the influence of the load application point on the bimoment value at the fixed end. The load
application point, expressed by its distance e from the web, was moved along the upper flanges, with e ranging from 0 (load on the web) to 74 mm
(load on the flange free end). The results are independent of the transformation matrix (Alt. 1 equal to Alt. 2) and the influence of the warping on
the normal stresses and on the displacement increases linearly by moving away from the shear centre.

In the same way, by moving the load application point along the upper flange of the UFI profile, a torsional moment takes place, 𝑀𝑥 (𝐿) = 𝐹𝑧 ⋅𝑒,
without influencing the global vertical displacement (𝛿), which remains a pure flexural displacement due to the cross-section shape. Nevertheless,
the lateral displacement (v), evaluated with respect to the centroid, becomes different from zero and increases as the distance of the load from the
shear centre increases:

𝑣 (𝐿) = 𝑣𝜔(𝐿) = 𝑧𝑠𝜑𝑥 (𝐿) = 𝑧𝑠
𝐹𝑧𝑒

𝜆𝑇𝐺𝐼𝑡

[

𝜆𝑇𝐿 − tanh
(

𝜆𝑇𝐿
)]

(31)

Furthermore, the global deformation obtained from the FE shell model for the UFI profile can be appraised from Fig. 14.
Finally, the influence of the beam length L on the results for the EFC member has been investigated. A vertical load was applied on the centroid

and the total length was changed from 1 m to 6 m. Main results related to the warping influence are displayed in Fig. 15 where the ratios 𝛿 ∕𝛿
𝜔

13
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f

b

Fig. 14. Deformed shape of UFI with FE shell elements and eccentric vertical load.

Fig. 15. Warping influence on EFC member by changing the total length.

Fig. 16. Cantilever beam with the bending moment along the 𝑦-axis centroid, point O.

and 𝛿𝐹 ∕𝛿, i.e. the warping and the flexural contribution over the total displacement are plotted versus L. Furthermore, from the same figure, the
stress ratios 𝜎𝐷,𝜔∕𝜎𝐷 and 𝜎𝐷,𝐹 ∕𝜎𝐷, evaluated with Eq. (6), related to the point D of the cross-section, can be appraised.

It is worth noting that when increasing L warping influence decreases and the flexural contribution acquires more importance for both the
displacements and normal stresses; in any case, it is never negligible for practical design purposes.

4.2. Bending moment along a plane parallel to the web

The cantilever beam’s free end is loaded by a bending moment about the strong (𝑦) axis, applied on the centroid and equal to 𝑀y = 1000 kN mm
or both the cross-section types (Fig. 16).

In this case, the external torque is nil and as a consequence, the particular solution is also nil, i.e. 𝜑𝑖𝑝 = 0. The third boundary condition is the
imoment value, given by. Eq. (8). In accordance with Vlasov’s second theorem, a bimoment is expected for x=L that is nil for UFI member, being
14
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Table 3
First-order elastic analysis with a bending moment about the strong axis.

𝑦𝑠 = 0, and for the EFC one is equal to: 𝐵 (𝐿) = 𝑀𝑦𝑦𝑠. The final expression of the rotation is equal to:

𝜑𝑥(𝑥) =
𝑀𝑦𝑦𝑠

𝜆2𝑇 cosh(𝜆𝑇𝐿)

(

1 − cosh(𝜆𝑇 𝑥)
)

(32)

The bimoment distribution along the member is described by the equation:

𝐵 (𝑥) = 𝑀𝑦𝑦𝑠
cosh(𝜆𝑇 𝑥)
cosh(𝜆𝑇𝐿)

(33a)

At the restrained end, the bimoment assumes its minimum value, that is:

𝐵 (0) = 𝑀𝑦𝑦𝑠
1

cosh
(

𝜆𝑇𝐿
) (33b)

The maximum vertical displacement at the free end is therefore equal to:

𝛿 (𝐿) = 𝛿𝐹 (𝐿) + 𝛿𝜔(𝐿) =
𝑀𝑦𝐿2

2𝐸𝐼𝑦
+ 𝑦𝑠

𝑀𝑦𝑦𝑠
𝜆2𝑇 cosh(𝜆𝑇𝐿)

(

1 − cosh(𝜆𝑇𝐿)
)

(34)

Main results related to the two alternative approaches for the FE beam formulation with the ones obtained via the theoretical solution and via
he FE shell models are reported in Table 3.

As to the UFI members, no differences between the results associated with Alt. 1 and Alt. 2 can be observed, which, as in the previous examples,
ractically coincide with the theoretical ones as well as with the ones associated with the FE shell model. This is due to the fact that, in accordance
ith Eq. (8) the shear centre eccentricity is nil for the considered moment.

Furthermore, if the ECF member is considered, Alt.1 is the sole able to correctly capture the coupling between the bending moments and the
imoment. In fact, the approximations of the rotation and vertical displacement are less than 5% and 3%, respectively, and the bimoment practically
oincides with both theoretical and FE shell results. By using Alt.2, the effects associated with the coupling between torsion and bending cannot
e captured: bimoment is in fact nil and the vertical displacement is 3.5 times less than the effective one. Of course, also the stress distribution
emarkably depends on the considered alternative, as it appears from Fig. 17 where the total normal stresses are plotted versus the co-ordinate s
escribing the perimeter of the cross-section. Differences in the stresses are up to 4 times different and in points D and D’ the effective stress is
ore than two times greater than the one associated with Alt. 2, that considers, for this case, only flexural stresses as the traditional 6DOFs beam

E formulations.
Finally, the influence of the beam length L has been investigated for Alt.1. Key results are proposed in Fig. 18, where the ratios 𝛿𝜔∕𝛿 and 𝜎𝐷,𝜔∕𝜎𝐷

are plotted versus L, ranging from 1 m to 6 m. It should be noted that, by increasing the length of the beam, the warping influence decreases and
the flexural contribution becomes more important for both the displacements and normal stresses. However, also for the maximum length (L=6 m),
the influence of the warping is up to 8% on the stresses and almost 40% on the vertical displacement.

4.3. Bending moment along a plane parallel to the flanges

The third case is related to a cantilever beam subjected to a bending moment applied about the weak (z) axis to the centroid of the free end
cross-section, equal to 𝑀z = 1000 kN mm (Fig. 19). As to the FE beam formulation, bending moment is applied directly to the correspondent
rotational degree of freedom. Key results are proposed in Table 4.

The theoretical expressions are exactly the ones already reported in Section 4.2. The only difference is that, in this case, the vertical displacement,
𝛿, is always nil because of the bending along the weak axis. As a consequence, the transformation matrix correctly acts only on the transversal
displacement, v.

The response of the EFC member is not influenced by the choice of the transformation matrix. Furthermore, in case of UFI beam, Alt.2 is not
able to capture the correct member response, ignoring the presence of the rotation as well as of the bimoment, with the consequence that the
lateral displacement is approximately 1.5 times lower than the effective one.
15
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t

Fig. 17. Total stresses with the two alternatives, bending moment on cantilever beam.

Fig. 18. Warping influence on ECF member by changing the total length.

Fig. 19. The case of the cantilever beam with the bending moment along the 𝑧-axis.

To understand the influence of the warping effects by changing the total length (L) of the UFI beam, Fig. 20 can be considered, where the
otal lateral displacement due to the warping contribution, 𝑣 , over the total displacement, v, and the ratio between the warping stress, 𝜎 , and
𝜔 𝐷,𝜔

16



C. Bernuzzi and M. Simoncelli Thin-Walled Structures 190 (2023) 110951
Table 4
First-order elastic analysis with a bending moment about the weak axis.

Fig. 20. Warping influence on UFI member by changing the total length.

Fig. 21. Cantilever beam with eccentric axial force.

the total stress, 𝜎𝐷, at point D, are plotted versus L. It should be noted that, also in this case, by increasing the length of the beam, the warping
influence decreases and the flexural contribution becomes more important for both the displacements and normal stresses, but it is never negligible
for practical design purposes.

4.4. Eccentric axial force

The last case is related to a cantilever beam subjected to an eccentric axial force, 𝐹x=−1.0 kN, applied at the top flange of the considered
cross-sections (Fig. 21).

As discussed in Section 2, both bimoment and torsional rotation take place, depending on the value of the sectorial area of the specific point
where the eccentric axial force is applied. Consequently, the total vertical displacement (𝛿) is obtained by combining the contribution of the flexure
with the one due to the torsion. In Table 5, key results of the different analyses can be appraised. As in the previous cases, Alt. 2 is inadequate
to capture the effective member behaviour. Conversely, Alt. 1 allows for a correct appraisal of the cantilever response, as demonstrated by the
17
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Table 5
Key results of the first-order elastic analysis with an eccentric axial force applied.

Fig. 22. Test layout scheme of a spatial rack frame (a) and non-dimensional experimental and numerical curves (b) [26].

heoretical as well as FE shell simulation results. The only exception is represented by the B(0) for the UFI member, as the difference against the
heoretical value is approximately 10%, which is however acceptable for practical design purposes.

In Appendix, the EFC case has been developed by using the FE matrices and considering a single finite element beam, in order to allow for a
irect appraisal of the differences associated with the transformation matrices.

. Concluding remarks

This paper is focussed on the 7DOFs FE beam modelling of non-bisymmetric cross section members and deals with the influence of the interaction
etween bending moments and bimoment. Two different transformation matrices, used in few commercial FEAPs, to pass from the local to the
lobal reference system are discussed and applied to basic cases that can be also theoretically reproduced. Research outcomes show that these
atrices cannot be considered as alternatives. The application of the mixed torsion theory clearly demonstrates that Alt. 2 is not adequate for
ractical design purposes, as confirmed also by the results obtained via refined FE shell models.
18



C. Bernuzzi and M. Simoncelli Thin-Walled Structures 190 (2023) 110951
It is worth noting that the considered applications have been focussed on cantilever beams because of the need of proposing examples that
could be easily reproduced by readers both theoretically and numerically. The non-negligible influence of the transformation matrix stressed in
the paper can also be expected for spatial frames, for which the theoretical approaches cannot be directly applied. In order to allow for a concrete
appraisal of these differences, which are expected to influence remarkably the FE output data for design verification checks, the spatial frame
depicted in Fig. 22a has been considered. The structure is a steel storage pallet rack with two bays and four load levels experimentally tested in
the framework of research project [29]. Bay length and inter-storey height are 4 m and 2 m, respectively. The vertical members (uprights) are
lipped channels with rears, characterised by the presence of a cross-section with a sole axis of symmetry (Fig. 22b). The beams have a thin-walled
boxed cross-section and both beam-to-column joints and base-plate connections are semi-rigid, as it results from the component tests carried out in
accordance with the rack standard provision EN15512 [30]. Overall full-scale frame tests have been carried out by pushing rack in the down-aisle
direction by means of a hydraulic jack. Loads have been suitably applied on each storage level in order to simulate an inverse triangular pattern
reproducing the deformed modal shape associated with the fundamental period of vibration. Tests were carried out by increasing the value of the
applied horizontal forces until collapse was achieved and/or the deformed shape of the rack was in the softening branch and beyond the range of
interest for engineering purposes due to the large values of horizontal displacements. For this rack, the numerical responses (Fig. 22c) associated
with the transformation matrices have been compared with experimental one (solid line), by considering the non-dimensional relationship between
the displacement (d*=d/dy) and the resulting of the lateral forces (F*=F/Fy) applied during the pushover test. In particular, the total lateral force
(F) has been divided by the yielding one (𝐹y) and the top displacement (d) has been divided by the one corresponding to the yielding force
(𝑑y). The influence of the transformation matrices can be appraised by considering the dashed numerical curves: it can be noted that Alt. 2 leads
to overestimate both the stiffness and the frame load carrying capacity. Furthermore, with reference to the presence of the sole gravity load, this
influence also reflects in different values of the elastic buckling load multiplier 𝛼cr : using Alt. 2 the multiplier is 15% greater than the one associated
with Alt. 1. From ref. [26] it can be observed that the results obtained with Alt. 2 are practically coincident with the ones obtained by using a
6DOFs beam elements (i.e. no warping effects).

Finally, it can be concluded that the presence of the bimoment can never be neglected in the structural design of steel or concrete thin-walled
elements [31]. Nevertheless, also by using 7DOFs, the results could be inaccurate as they strictly depend on the transformation matrix being
adopted. To this purpose, the examples discussed in the paper can be used by the software developers as benchmarks.
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Appendix. Finite element application

The application discussed in Sub-Section 4.4 is herein reproduced by using a single 7DOF beam finite element, due to the need of allowing for a
direct appraisal of the differences associated with the transformation matrices. For the sake of simplicity, the origin of the global reference system
coincides with the cross-section centroid and 𝛼 = 0 (that is the angle between the main local axes and the ones of the global reference system,
see Fig. 9). The force 𝐹x = −1000 N is applied to the point D’ which has co-ordinate (−22.26 mm, −49 mm). In the following, the lengths are
expressed in millimetres and the forces in newtons (see Fig. A.1).

By considering the sectorial area distribution Fig. 5, the result is:

𝑊 = 𝜔0
(

𝑦𝐷′ , 𝑧𝐷′
)

− 𝜔𝑚𝑒𝑎𝑛 = −𝑏ℎ
2
+ (𝑏 + 𝑎) ℎ

2
= 𝑎ℎ

2
= 1090.7mm2 (A.1)

with 𝑎 = 22.26 mm.

Fig. A.1. Cantilever beam with eccentric axial force.
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Each node has 7 DOFs and thus the local element stiffness matrix has a range of 14. In accordance with Eq. (18), [𝐾]𝐸,𝑙 can be expressed with
the associated numerical values as:

[𝐾]𝐸,𝑙 =
⎡

⎢

⎢

⎣

[𝐾]𝐸,𝑙
𝑗𝑗 [𝐾]𝐸,𝑙

𝑝𝑗

[𝐾]𝐸,𝑙
𝑗𝑝 [𝐾]𝐸,𝑙

𝑝𝑝

⎤

⎥

⎥

⎦

(A.2a)

[𝐾]𝐸,𝑙
𝑝𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5.2 ⋅ 104 0 0 0 0 0 0

0 93 0 0 0 −9.3 ⋅ 104 0

0 0 273 0 2.7 ⋅ 105 0 0

0 0 0 1.9 ⋅ 105 0 0 1.6 ⋅ 108

0 0 −2.7 ⋅ 105 0 3.6 ⋅ 108 0 0

0 −9.3 ⋅ 104 0 0 0 1.2 ⋅ 108 0

0 0 0 −1.6 ⋅ 108 0 0 2.2 ⋅ 1011

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.2b)

[𝐾]𝐸,𝑙
𝑗𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−5.2 ⋅ 104 0 0 0 0 0 0

0 −93 0 0 0 −9.3 ⋅ 104 0

0 0 −273 0 2.7 ⋅ 105 0 0

0 0 0 −1.9 ⋅ 105 0 0 1.6 ⋅ 108

0 0 −2.7 ⋅ 105 0 1.8 ⋅ 108 0 0

0 9.3 ⋅ 104 0 0 0 6.2 ⋅ 107 0

0 0 0 −1.6 ⋅ 108 0 0 1.1 ⋅ 1011

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.2c)

The local matrix must be referred to the global system by means the transformation matrix, which for the two discussed alternatives is defined
as:

[𝑇 ] =

[

[𝑇 ]𝑗𝑗 [𝑇 ]𝑝𝑗

[𝑇 ]𝑗𝑝 [𝑇 ]𝑝𝑝

]

(A.3a)

[𝑇 ]𝐴𝐿𝑇 1𝑝𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −49 22.5 −1102

0 1 0 0 0 0 0

0 0 1 52.57 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 52.57

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; [𝑇 ]𝐴𝐿𝑇 2𝑝𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −49 22.5 0

0 1 0 0 0 0 0

0 0 1 52.57 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.3b,c)

A fixed end is located at node j and all the corresponding degrees of freedom are locked, i.e. all the corresponding columns and rows are deleted
from the final matrix. As a consequence, the elastic stiffness matrix referred to the global system has a range of 7 and it is thus equal to:

[𝐾]𝐸,𝑔 = [𝑇 ] [𝐾]𝐸,𝑙 [𝑇 ]𝑇 (A.4a)

By applying the two alternatives, the result is:

[𝐾]𝐸,𝑔𝐴𝐿𝑇 1
𝑝𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

5.2 ⋅ 104 0 0 0 −2.5 ⋅ 106 1.1 ⋅ 106 −5.6 ⋅ 107

0 9.3 ⋅ 101 0 0 0 −9.3 ⋅ 104 0

0 0 2.7 ⋅ 102 1.4 ⋅ 104 2.7 ⋅ 105 0 1.4 ⋅ 107

0 0 1.4 ⋅ 104 9.4 ⋅ 105 1.4 ⋅ 104 0 9.2 ⋅ 108

−2.5 ⋅ 106 0 2.7 ⋅ 105 1.4 ⋅ 107 4.9 ⋅ 108 −5.6 ⋅ 107 2.2 ⋅ 1010

1.1 ⋅ 106 −9.3 ⋅ 104 0 0 −5.6 ⋅ 107 1.5 ⋅ 108 −1.3 ⋅ 109

7 7 8 10 9 12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(A.4b)
⎣
−5.6 ⋅ 10 0 1.4 ⋅ 10 9.2 ⋅ 10 2.2 ⋅ 10 −1.3 ⋅ 10 1.3 ⋅ 10

⎦
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d

[𝐾]𝐸,𝑔𝐴𝐿𝑇 2
𝑝𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5.2 ⋅ 104 0 0 0 −2.5 ⋅ 106 1.1 ⋅ 106 0

0 9.3 ⋅ 101 0 0 0 −9.3 ⋅ 104 0

0 0 2.7 ⋅ 102 1.4 ⋅ 104 2.7 ⋅ 105 0 0

0 0 1.4 ⋅ 104 9.4 ⋅ 105 1.4 ⋅ 107 0 1.6 ⋅ 108

−2.5 ⋅ 106 0 2.7 ⋅ 105 1.4 ⋅ 107 4.9 ⋅ 108 −5.6 ⋅ 107 0

1.1 ⋅ 106 −9.3 ⋅ 104 0 0 −5.6 ⋅ 107 1.5 ⋅ 108 0

0 0 0 1.6 ⋅ 108 0 0 2.2 ⋅ 1011

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.4c)

The external load vector in the global reference system contains only one term, i.e. the one corresponding to the applied axial force (−1000 N),
ifferent from zero.

The global displacement can be evaluated as:

{𝑢}𝑝 =
(

[𝐾]𝐸,𝑔
𝑝𝑝

)−1
{𝐹 }𝑝 (A.5a)

{𝑢}𝑝𝐴𝐿𝑇 1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

8.8 ⋅ 10−5 −7.1 ⋅ 10−4 −1.3 ⋅ 10−3 1.5 ⋅ 10−5 1.5 ⋅ 10−6 −7.1 ⋅ 10−7 −1.8 ⋅ 10−8

−7.1 ⋅ 10−4 4.3 ⋅ 10−2 −7.8 ⋅ 10−17 1.8 ⋅ 10−18 1.1 ⋅ 10−19 3.2 ⋅ 10−5 2.4 ⋅ 10−21

−1.3 ⋅ 10−3 6.0 ⋅ 10−19 5.4 ⋅ 10−2 −7.4 ⋅ 10−4 −3.9 ⋅ 10−5 6.0 ⋅ 10−22 5.4 ⋅ 10−7

1.5 ⋅ 10−5 1.5 ⋅ 10−20 −7.4 ⋅ 10−4 1.4 ⋅ 10−5 5.4 ⋅ 10−7 1.5 ⋅ 10−23 −1.0 ⋅ 10−8

1.5 ⋅ 10−6 −4.7 ⋅ 10−22 −3.9 ⋅ 10−5 5.4 ⋅ 10−7 4.4 ⋅ 10−8 −4.7 ⋅ 10−25 −6.2 ⋅ 10−10

−7.1 ⋅ 10−7 3.2 ⋅ 10−5 −1.2 ⋅ 10−19 2.3 ⋅ 10−21 1.1 ⋅ 10−22 3.2 ⋅ 10−8 −2.1 ⋅ 10−24

−1.8 ⋅ 10−8 −1.8 ⋅ 10−23 5.4 ⋅ 10−7 −1.0 ⋅ 10−8 −6.2 ⋅ 10−10 −1.8 ⋅ 10−26 1.2 ⋅ 10−11

⎤

⎥

⎥

⎥

⎥
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{𝑢}𝑝𝐴𝐿𝑇 2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6.2 ⋅ 10−5 −7.1 ⋅ 10−4 −5.4 ⋅ 10−4 2.9 ⋅ 10−20 5.4 ⋅ 10−7 −7.1 ⋅ 10−7 −7.1 ⋅ 10−25

−7.1 ⋅ 10−4 4.3 ⋅ 10−2 1.3 ⋅ 10−17 3.2 ⋅ 10−19 −7.0 ⋅ 10−21 3.2 ⋅ 10−5 5.8 ⋅ 10−24
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It should be noted that, the generalised displacements associated with the two alternatives are practically coincident with the corresponding
ones reported in Table 5, despite the use of a single finite element. Finally, the internal forces have been appraised from the displacement vector
and referred to the local reference system by using the complete algebraic linear system (range 14). For the two alternatives, the result is:

{𝐹 }𝑙 = [𝐾]𝐸,𝑙 ([𝑇 ] {𝑢}) (A.6a)
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These data stress confirm a very important result: with Alt. 2 there is no bimoment (terms 7 and 14 of {𝐹 }𝑙 vectors) associated with the axial
force (Vlasov’s first theorem). Conversely, Alt. 1 leads to a bimoment value (555 kN mm2) at the fixed end that is approximately 22% lower than
the theoretical one (Table 5). This discrepancy is due to the use of a single finite element, which is not enough to describe the effective bimoment
distribution. It is worth noting that by adding more FE beams (at least four) the end bimoment tends towards the right value.
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