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1. Motivations. Parametrized partial differential equations (PDEs) arise in several con-
texts such as inverse problems, control, optimization, uncertainty quantification, and risk
assessment. In most of these applications, the number of parameters may become very large,
so that an efficient numerical approximation of parametric PDEs represents a challenging
computational issue (see, e.g., [2, 6, 7, 3]). Parametric model order reduction aims at reducing
the computational effort associated with a parametric modeling, for instance, in many-query
and real-time tasks, where the occurrence of the curse of dimensionality raises the necessity to
propose numerical methods to sustain the computational cost.

Many of the model reduction techniques currently employed in engineering practice
exploit the offline/online paradigm to efficiently reduce the numerical effort. This is the case,
for instance, of the well-known reduced basis method [17, 33], where, during the offline
phase, a reduced basis is precomputed by solving a high-fidelity model (the “truth”) for
certain samples of the parameter, while, in the online phase, the reduced model is evaluated
to predict a new scenario (i.e., for a value of the parameter not previously sampled). From a
practical viewpoint, the offline stage remains the bottleneck of an offline/online decomposition,
especially when many samples are needed like for multiparametric problems.

To tackle this issue, we propose to replace the “truth” with a reduced order model which
exhibits a high accuracy although characterized by a contained computational demand. For
this purpose, we employ the reduced solution provided by a Hierarchical Model (HiMod)
discretization [12, 28, 31, 26] as high fidelity model.
HiMod reduction proved to be an effective tool to model partial differential problems character-
ized by a privileged dynamics aligned with the dominant dimension of the domain (e.g., flows
of fluid in channels, pipes or vessels), which may be locally modified by secondary dynamics
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evolving along the transverse sections [29, 15, 8]. Analogously to other model reduction
procedures [34, 9, 16, 14, 10, 24], a HiMod discretization moves from a standard separation of
variables and approximates the mainstream and the secondary dynamics by means of different
numerical methods. In the seminal papers, the main direction of the flux is discretized by
one-dimensional (1D) finite elements, while the transverse dynamics are recovered by using
few degrees of freedom, via a suitable modal basis. This separate discretization yields a system
of coupled 1D problems, whose coefficients include the effect of the transverse dynamics. The
reliability exhibited by HiMod is considerably higher compared with standard 1D reduced
models, whereas the computational effort remains absolutely affordable. Indeed, HiMod
reduction is characterized by a linear dependence of the computational cost on the number of
degrees of freedom, in contrast to a standard finite element model which demands a suitable
power of such a number.

In this paper, we focus on two different ways to combine Proper Orthogonal Decomposi-
tion (POD) [21, 22, 20, 19, 36] with HiMod reduction, setting what we define as HiPOD model
reduction. The first approach is very straightforward and it has been introduced in [4]. The
second variant, which represents the actual novelty of the paper, is more complex and takes
advantage of the separation of variables implied by a HiMod approximation. Independently of
the adopted procedure, the HiMod discretization significantly reduces the computational effort
of the offline phase without compromising its reliability. At the same time, the online phase
relies on the efficiency of a POD formulation, so that a system of very small dimensionality is
solved to approximate the parametric problem at hand.

From a different viewpoint, we can conceive HiPOD as a new method to construct HiMod
approximations, which differs from the classical approach proposed in [12, 28]. The HiMod
approximation is now built by resorting to a reduced basis generated by a data-driven procedure.
This choice significantly lowers the computational costs without compromising the quality of
the reduced solution.

The paper is organized as follows. Section 2 applies the HiMod discretization to a refer-
ence parametric advection-diffusion-reaction problem and numerically assesses the reliability
of the high-fidelity model. Section 3 introduces the two HiPOD model reduction procedures,
and provides an extensive numerical verification to investigate the robustness of the proposed
approaches with respect to the truncation of the POD basis, the extrapolation, and the possibil-
ity to explore multi-parametric settings. In Section 4 we look for possible settings where one
of the two HiPOD approximations outperforms the other. Finally, some conclusions are drawn
in the last section, and possible future developments of the current work are provided.

2. HiMod reduction: the basic. HiMod reduction is performed under the specific
assumption that the computational domain, Ω ⊂ Rd with d = 2, 3, can be expressed as a
Cartesian product,

⋃
x∈Ω1D

{x} × Σx, where Ω1D is a 1D horizontal supporting fiber, while
Σx ⊂ Rd−1 denotes the transverse section at the generic point x along Ω1D [12, 28, 31,
26]. The reference geometry is a pipe, where the dominant dynamic is parallel to Ω1D,
whereas the transverse dynamics occur along fibers Σx. For the sake of simplicity, we select
Ω1D ≡ (a, b) ⊂ R. For the general case where Ω1D coincides with a bent centerline, we refer
to [25, 29, 8]. Then, via an invertible map Ψ : Ω→ Ω̂, we change the physical domain Ω into
a reference domain Ω̂ = Ω1D × Σ̂, which shares the same supporting fiber as in Ω, and where
Σ̂ ⊂ Rd−1 denotes the reference fiber. In particular, for any point z = (x,y) ∈ Ω, there exists
a point ẑ = (x̂, ŷ) ∈ Ω̂, such that ẑ = Ψ(z), with x̂ ≡ x and ŷ = ψx(y), where ψx : Σx → Σ̂
is the map between the generic and the reference transverse fiber. Hereafter, we assume ψx to
be a C1-diffeomorphism for all x ∈ Ω1D, and Ψ to be differentiable with respect to z. The
reference domain Ω̂ represents the setting where the computations are actually performed, and
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where all the constants can be explicitly computed. More details about maps Ψ and ψx are
available in [28].

As a reference problem, we choose a parametrized elliptic PDE, defined on Ω, which can
be recast into the following weak form: given the parameter α ∈ P ,

(2.1) find u(α) ∈ V s.t. a(u(α), v;α) = f(v;α) ∀v ∈ V,

where P ⊂ Rp is the set of the admissible parameters; V ⊆ H1(Ω) is a Hilbert space
depending on the PDE problem and on the selected boundary conditions, with standard
notation for function spaces [11]; a(·, ·;α) : V × V × P → R and f(·;α) : V × P → R
denote a parametrized bilinear and linear form, respectively, where the linearity property holds
with respect to all the variables but α. Suitable hypotheses are imposed on the problem data to
guarantee the well-posedness of formulation (2.1), for any α ∈ P . Moreover, we assume an
affine parameter dependence [17, 33].

We focus on a scalar linear advection-diffusion-reaction (ADR) problem completed, for
the sake of simplicity, with full homogeneous Dirichlet boundary conditions, so that the
bilinear and the linear forms in (2.1) are

(2.2) a(w, z;α) =

∫
Ω

µ∇w · ∇z dΩ +

∫
Ω

(
b · ∇w + σw

)
z dΩ, f(z;α) =

∫
Ω

fz dΩ,

with w, z ∈ V = H1
0 (Ω). The parameter α coincides with one or several of the problem data,

chosen among the viscosity µ, the advective field b = [b1, . . . , bd]
T , the reaction coefficient σ,

the source term f , or a boundary value when boundary conditions, more general with respect
to the homogeneous Dirichlet data, are assigned.

HiMod reduction performs a different discretization along the supporting and the trans-
verse directions. For this purpose, we introduce a 1D discrete space, V1D ⊂ H1

0 (Ω1D) with
dim(V1D) = Nh < +∞, of functions vanishing at a and b, and a modal basis {ϕk}k∈N+ of
functions defined on Σ̂ which are orthonormal with respect to the L2(Σ̂)-scalar product and
which satisfy the data assigned on ΓL = ∪x∈Ω1D

∂Σx. For further details about the choice of
the modal basis, also in the presence of general boundary data on ΓL, we refer to [1, 15, 28].
Concerning V1D, a standard choice is the finite element space [12, 28, 31, 26, 30, 32] or an
isogeometric discretization when Ω is not rectilinear [29, 8]. Thus, the HiMod reduced space
can be defined as

Vm =
{
vm(x,y;α) =

m∑
k=1

Nh∑
j=1

ṽαk,jϑj(x)ϕk(ψx(y)), for x ∈ Ω1D,y ∈ Σx, α ∈ P
}
,

with {ϑj}Nh
j=1 a basis for the space V1D, so that ṽk(x;α) =

∑Nh

j=1 ṽ
α
k,jϑj(x) ∈ V1D denotes

the frequency coefficient of vm associated with the k-th modal function ϕk.
The modal index m ∈ N+ establishes the level of detail of the HiMod approximation in

the hierarchy, {Vm}m, of reduced spaces. This index is selected by the user through some
preliminary (geometric or physical) information about the problem at hand, or via an automatic
procedure based on an a posteriori modeling error analysis [30, 32]. Additionally, index m
can be the same in the whole Ω, or it can be locally tuned along the domain to match possible
heterogeneities of the solution. We refer the interested reader to [31, 26], where a survey about
the different criteria to choose m is provided.

The HiMod approximation to problem (2.1) becomes

(2.3) find um(α) = um(x,y;α) ∈ Vm s.t. a(um(α), vm;α) = f(vm;α) ∀vm ∈ Vm,
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for a given parameter α ∈ P and for a selected modal index m ∈ N+. Following [28], we add
a conformity and a spectral approximability assumption on the HiMod space, Vm, to ensure
the well-posedness of formulation (2.3), along with a standard density assumption on space
V1D to guarantee the convergence of the HiMod approximation um(α) to the full solution
u(α) in (2.1). From a computational viewpoint, after applying the HiMod expansion to the
solution um(α) in (2.3) and choosing the test function vm as the generic product ϑtϕq, with
q = 1, . . . ,m and t = 1, . . . , Nh, the HiMod formulation turns into the system

(2.4) Am(α)um(α) = fm(α),

of m 1D coupled problems, where Am(α) ∈ RmNh×mNh and fm(α) ∈ RmNh are the HiMod
stiffness matrix and right-hand side, while

um(α) =
[
ũα1,1, . . . , ũ

α
1,Nh

, ũα2,1, . . . , ũ
α
2,Nh

, . . . , ũαm,1, . . . , ũ
α
m,Nh

]T ∈ RmNh

is the vector describing the solution,

(2.5) um(x,y;α) =

m∑
k=1

Nh∑
j=1

ũαk,jϑj(x)ϕk(ψx(y)),

discretized via the HiMod approach, where {ũαk,j}
m,Nh

k=1,j=1 are the modal coefficients (see [12,
28] for additional computational details).

When the mainstream dominates the transverse dynamics (i.e., for small values of m),
the HiMod procedure has been shown to considerably reduce the computational burden
associated with a standard discretization of problem (2.1), without affecting the accuracy of
the simulation [23, 15, 8].

2.1. Reliability check of the HiMod reduction. The numerical assessment of this paper
focuses on the two-dimensional (2D) setting. In this section, we qualitatively investigate the
reliability of the HiMod reduction on two ADR problems completed with different boundary
conditions, and we disregard the role played by the PDE parameters at this stage. For the
HiMod discretization, we resort to linear finite elements (FE) along Ω1D, whereas we describe
the transverse dynamics with a sinusoidal modal basis. For a quantitative analysis as well as
for a three-dimensional (3D) verification of the HiMod approximation, we refer the reader
to [28, 1, 15, 8].

2.1.1. Test case 1. We define the domain Ω as the rectangle (0, 3) × (0, 1), while the
problem data in (2.2) are

(2.6) µ(x, y) = 1, b(x, y) = [3, 0]T , σ(x, y) = 0, f(x, y) = 1− 2x+ 3y.

The image at the top of Figure 2.1 shows the reference (full) solution computed with linear FE
on a uniform unstructured grid of 260058 triangles. The chosen data justify the diffusive trend
of the solution, which alternates a maximum to a minimum area.

With regards to the HiMod approximation, we subdivide the supporting fiber [0, 3] into
60 uniform subintervals and we discretize the transverse dynamics by gradually increasing
the number, m, of modal basis functions. The bottom panels in Figure 2.1 show the HiMod
approximations form = 1 (left) andm = 2 (right). It is evident that two modes are enough for
ensuring a qualitatively good accuracy to the reduced solution, with a considerable reduction
in terms of degrees of freedom (dofs) (120 dofs for the HiMod approximation to be compared
with 373464 dofs for the FE model).
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Fig. 2.1: HiMod verification (test case 1): reference FE (top) and HiMod (bottom) solution for
m = 1 (left) and m = 2 (right).

2.1.2. Test case 2. The domain Ω is now taken as the rectangle (0, 6)× (0, 1) and we
select the problem data as

(2.7)
µ(x, y) = 0.24, b(x, y) = [5, sin(6x)]T , σ(x, y) = 0.1,

f(x, y) = 10χC1
(x, y) + 10χC2

(x, y),

where χω denotes the characteristic function associated with the generic region ω ⊂ R2, while
C1 and C2 identify the ellipsoidal areas {(x, y) : (x − 0.75)2 + 0.4(y − 0.25)2 < 0.01}
and {(x, y) : (x − 0.75)2 + 0.4(y − 0.75)2 < 0.01}, respectively. The ADR problem is
completed with a homogeneous Neumann data on ΓN = {(x, y) : x = 6, 0 ≤ y ≤ 1} and by
a homogeneous Dirichlet condition on ΓD = ∂Ω \ ΓN , so that V ≡ H1

ΓD
(Ω) in (2.1). The

top panel of Figure 2.2 displays the contour plot of the approximation obtained with linear FE
on a uniform and unstructured mesh consisting of 3200 elements. We draw the attention of the
reader to the oscillatory dynamics induced by the sinusoidal field, and the presence of the two
localized sources in C1 and C2. Moreover, no stabilization is applied, despite the convection
overcomes the diffusion. HiMod reduction is applied by introducing a uniform subdivision
of Ω1D into 120 subintervals and by employing an increasing number of modes. We do not
introduce any stabilization also for the HiMod discretization. Figure 2.2, second-fourth row,
shows the HiMod approximation for m = 2, m = 3 and m = 5, respectively. At least five
modes have to be employed to obtain a qualitatively reliable HiMod solution. As expected, the
number of HiMod dofs is considerably lower compared with the FE case (600 versus 305171
dofs).

3. HiPOD techniques. The goal of the HiPOD techniques is to build a HiMod approxi-
mation for problem (2.1) at a computational cost lower with respect to the one characterizing
the HiMod system (2.4). For this purpose, we resort to a POD approach, by adopting the of-
fline/online paradigm [21, 22, 20, 19, 36]. In particular, during the offline phase, we discretize
problem (2.1) via HiMod for different choices of α, to extract the POD (reduced) basis; in the
online phase, we employ such a basis to approximate the HiMod solution to (2.1) for a value,
α = α∗, of the parameter not yet sampled.

In this paper we explore two different HiPOD approaches. The first one is the most
straightforward procedure, where the online phase is carried out by resorting to a standard
projection [4]. In the second approach, we drive the online phase by means of interpolation,
following [37]. This second variant takes advantage of the separation of variables implied by
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Fig. 2.2: HiMod verification (test case 2): reference FE (first row) and HiMod solution for
m = 2 (second row), m = 3 (third row) and m = 5 (fourth row).

a HiMod discretization.
The leading feature of a HiPOD technique is to contain the computational burden typical of
an offline phase. Actually, the POD is applied to solutions which have already been reduced
via HiMod, in contrast to standard approaches where full solutions (e.g., finite element
approximations) are employed to sample the phenomenon at hand. Finally, we notice that
HiPOD methods are fully general since, a priori, any model reduction technique may replace
the HiMod discretization during the offline phase.

3.1. The basic HiPOD approach. We start the offline phase by assembling the snapshot
(or response) matrix S. To this aim, we select p different values, αi, of the parameter α, and
we compute the HiMod approximation to the associated problem (2.1), for i = 1, . . . , p. We
employ the same discretization along Ω1D and the same modal expansion for the transverse
dynamics, so that, according to representation (2.5), each HiMod solution is identified by the
mNh coefficients {ũαi

k,j}
m,Nh

k=1,j=1 or, likewise, by vector

(3.1) um(αi) =
[
ũαi

1,1, . . . , ũ
αi

1,Nh︸ ︷︷ ︸
k=1

, ũαi
2,1, . . . , ũ

αi

2,Nh︸ ︷︷ ︸
k=2

, . . . , ũαi
m,1, . . . , ũ

αi

m,Nh︸ ︷︷ ︸
k=m

]T ∈ RmNh ,

collecting the modal coefficients by mode. Thus, we assemble the snapshot matrix

(3.2) S =
[
um(α1),um(α2), . . . ,um(αp)

]
∈ R(mNh)×p,
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and the matrix

V = S − 1

p

p∑
i=1

[
um(αi),um(αi), . . . ,um(αi)

]
∈ R(mNh)×p

characterized by a null average. Matrix V is the array actually employed to extract the POD
basis. For this purpose, we apply the Singular Value Decomposition (SVD) to V , to obtain

(3.3) V = ΦΣΨT ,

where Φ ∈ R(mNh)×(mNh) and Ψ ∈ Rp×p are the unitary matrices gathering the left and the
right singular vectors of V , while Σ = diag (σ1, . . . , σγ) ∈ R(mNh)×p is the pseudo-diagonal
matrix of the singular values of V , with σ1 ≥ σ2 ≥ · · · ≥ σγ ≥ 0 and γ = min(mNh, p) [13].
In the numerical assessment below, we always assume γ = p.

The decomposition (3.3) allows us to define the POD orthogonal reduced basis, being the
set of the first l most significant left singular vectors, {φi}li=1, of V , so that the reduced POD
space is V lPOD = span{φ1, . . . ,φl}, with dim(V lPOD) = l and, in general, l� mNh.
As to the choice of the integer l, different criteria can be adopted. For instance, one can
analyze the trend of the spectrum Σ or introduce a control on the variance, by selecting the
first l ordered singular values such that

(3.4) Rl =

∑l
i=1 σ

2
i∑p

i=1 σ
2
i

≥ ε,

for a positive user-defined tolerance ε [36].

REMARK 3.1. As an alternative to the procedure above, the POD basis can be derived
by applying the spectral decomposition to the covariance matrix C = VTV ∈ Rp×p, being
assumed p � mNh. In particular, it holds that λi = σ2

i , and φi = λ−1
i Sci, where {λi, ci}

denotes the generic {eigenvalue, eigenvector} pair associated with C, for i = 1, . . . , p [36].
REMARK 3.2 (Snaphot choice). The choice of representative values for the parameter α

in (3.2) is a critical issue to make POD effective in practice. In general, it strictly depends on
the problem at hand. In particular, the model reduction is effective if the selected snapshots
cover the whole parameter space. This aspect is beyond the goal of this work, albeit extremely
interesting.

Now, the online phase approximates the HiMod solution to problem (2.1) for the value
α∗ of the parameter, with α∗ 6= αi for i = 1, . . . , p, at a lower computational cost with respect
to directly solving the HiMod system (2.4) for α = α∗. For this purpose, we project system
(2.4) onto the POD space, V lPOD, by computing the POD stiffness matrix and right-hand side,
(3.5)
APOD(α∗) = (ΦlPOD)TAm(α∗) ΦlPOD ∈ Rl×l, fPOD(α∗) = (ΦlPOD)T fm(α∗) ∈ Rl,

respectively, where matrix ΦlPOD = [φ1, . . . ,φl] ∈ R(mNh)×l collects the POD basis vectors
by column, while Am(α∗) and fm(α∗) are the HiMod stiffness matrix and right-hand side in
(2.4). Then, we solve the POD system of order l

(3.6) APOD(α∗)uPOD(α∗) = fPOD(α∗),

with uPOD(α∗) = [uα
∗

POD,1, . . . , u
α∗

POD,l]
T ∈ Rl. This allows us to approximate the HiMod

solution um(α∗) in (2.4) by using the POD basis as

um(α∗) ≈ ulHiPOD(α∗) =

l∑
s=1

uα
∗

POD,sφs ∈ RmNh ,
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Fig. 3.1: Basic HiPOD reduction: singular values of matrix V for test case 3 (left) and 4
(right).

after solving a system of order l instead of mNh. Finally, thanks to expansion (2.5), we obtain
the HiPOD approximation ulHiPOD(α∗) to um(x,y;α∗).
The assembly of Am(α∗) and fm(α∗) in (3.5) constitutes the bottleneck of the basic HiPOD
method, although this represents a computational burden typical of any projection-based POD
procedure. Nevertheless, the employment of a reduced rather than a full model when building
matrix S leads to a considerable reduction of the computational effort, especially when m is a
small value.

3.1.1. Numerical assessment. The basic HiPOD procedure is assessed on the test
problems in Section 2.1.

Test case 3. To perform the offline phase, we assume an affine dependence of the problem
data in (2.2) on the independent variables, x, y, so that

µ(x) = µ0 + µxx+ µyy, b(x) = [b0 + bxx, b1 + byy]T ,

σ(x) = σ0 + σxx+ σyy, f(x) = f0 + fxx+ fyy.

Then, we hierarchically reduce 30 different problems, by setting µ0 = 1, σx = σy = 0,
f0 = 1, and by randomly varying the remaining nine parameters as

µx ∈ Pµx
= [0, 2], µy ∈ Pµy

= [0, 2], σ0 ∈ Pσ0
= [0, 3],

b0 ∈ Pb0 = [0, 3], b1 ∈ Pb1 = [0, 3], bx ∈ Pbx = [0, 2],

by ∈ Pby = [0, 2], fx ∈ Pfx = [−2, 2], fy ∈ Pfy = [−2, 2],

so that the parameter in (2.1) coincides with the vector α = [µx, µy, σ0, b0, b1, bx, by, fx, fy]T

∈ R9 varying in P = Pµx
× Pµy

× Pσ0
× Pb0 × Pb1 × Pbx × Pby × Pfx × Pfy .

The HiMod discretization uses linear FE along the mainstream, associated with a uniform
partition of Ω1D into 60 subintervals, and a modal expansion based on 10 sinusoidal modes.
Figure 3.1, left shows the spectrum of matrix V , where the vertical lines identify the dimension
l for the POD space adopted in the online phase. The singular values decrease rather slowly
until a drop occurs at l = 17 (being rank(V)=17). This can be ascribed to the large number of
parameters involved, which limits the redundancy across the snapshots. During the online
phase we approximate the same problem as in Section 2.1.1, for

α∗ = [0, 0, 0, 3, 0, 0, 0,−2, 3]T ∈ P,

so that the reference HiMod solution is the one in Figure 2.1, bottom-right. Starting from
the spectrum on the left side of Figure 3.1, we pick l = 2, 4, 7, 15, 17. The corresponding
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Fig. 3.2: Basic HiPOD reduction (test case 3): HiPOD approximation for l = 2 (top), l = 7
(middle) and l = 15 (bottom).

value for the ratio Rl in (3.4) is given by 0.9352, 0.9832, 0.9952, 0.9999, 1, respectively.
Figure 3.2 provides the contour plots of ulHiPOD(α∗) for l = 2, 7, 15. Solutions u2

HiPOD(α∗)
and u7

HiPOD(α∗) exhibit a good accuracy if we take into account that they are obtained by
solving a system of dimensionality 2 and 7, respectively and that we are varying 9 parameters,
contemporarily. The quality of the HiPOD approximation gradually improves by increasing
the dimension of the POD space, as confirmed also by the values in Table 3.1 which gathers
the L2(Ω)- and of the H1(Ω)−norm of the relative modeling error obtained by replacing the
HiMod solution u10(α∗) with the HiPOD approximation ulHiPOD(α∗), for different values
of l. The modeling error quickly reduces by increasing l. From a qualitative viewpoint, the
HiPOD approximation u15

HiPOD(α∗) is fully comparable with the HiMod approximation in
Figure 2.1, bottom-right with a reduction of the wall-clock time from 1.44 to 0.04 seconds*

(the time associated with the HiPOD approximation refers to the online phase only).

l = 2 l = 4 l = 7 l = 15 l = 17
L2(Ω)-norm 3.23e-01 5.98e-02 3.51e-02 2.70e-03 1.71e-03
H1(Ω)-norm 4.50e-01 1.23e-01 6.21e-02 7.61e-03 4.81e-03

Table 3.1: Basic HiPOD reduction (test case 3): relative modeling error for different HiPOD
approximations.

Test case 4. As reference setting, we consider now the test case in Section 2.1.2. We
adopt the following dependence on the independent variables for the problem data in (2.1),

µ(x) = µ0 + µxx+ µyy, b(x) = [b0, b1 sin(6x)]T ,

σ(x) = σ0 + σxx+ σyy, f(x) = f1χC1
(x) + f2χC2

(x).

*The computations have been run on a MacBookPro15,3 Intel Core i9 2.40GHz 32 GB desktop computer.
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During the offline phase, we compute the HiMod approximation for 30 different ADR
problems by setting µx = µy = σx = σy = 0, and by randomly varying

µ0 ∈ Pµ0
= [0.1, 10], b0 ∈ Pb0 = [2, 20], b1 ∈ Pb1 = [1, 3],

σ0 ∈ Pσ0 = [0, 3], f1 ∈ Pf1 = [5, 25], f2 ∈ Pf2 = [5, 25],

so that the parameter in (2.1) is provided by the vector α = [µ0, b0, b1, σ0, f1, f2]T taking
values in the set P = Pµ0

× Pb0 × Pb1 × Pσ0
× Pf1 × Pf2 . The HiMod discretization

employs linear FE on a uniform partition of Ω1D into 120 subintervals, combined with 20
sinusoidal modes to discretize the transverse dynamics. Figure 3.1, right shows the trend of the
spectrum for the corresponding matrix V . This is characterized by a very slow decay, without
any significant drop before the 29-th singular value (being rank(V) = 29).

The online phase is employed to approximate the solution to the problem in Section 2.1.2.
This is equivalent to set the parameter to

α∗ = [0.24, 5, 1, 0.1, 10, 10]T ∈ P.

Figure 3.3, top-bottom shows the basic HiPOD approximations u2
HiPOD(α∗), u6

HiPOD(α∗),
u16

HiPOD(α∗). As expected, the ratio Rl becomes closer to 1 when l increases, being R2 =
0.6163, R6 = 0.9158, and R16 = 0.9971. Six POD modes suffice to recognize already the
general trend of the HiMod solution, whereas the HiPOD approximation u16

HiPOD(α∗), which
is obtained by solving a system of order 16, is fully comparable with the HiMod approxima-
tion u5(α∗) in Figure 2.2, bottom, solution to a system of dimension 600. This leads to a
significative saving in terms of computational effort, the wall-clock time reducing from 14.53
seconds for the HiMod approximation to 0.20 seconds when resorting to the basic HiPOD
approach.

Finally, Table 3.2 provides some quantitative information about the accuracy of the basic
HiPOD approximation, by collecting the L2(Ω)- and theH1(Ω)-norm of the relative modeling
error with respect to the HiMod approximation u20(α∗). The error reduction is slightly slower
compared with the values in Table 3.1, the trend of the solution being in such a case less trivial.

l = 2 l = 4 l = 6 l = 8 l = 16 l = 29
L2(Ω)-norm 2.41e-01 2.12e-01 9.83e-02 3.42e-02 3.94e-03 1.23e-03
H1(Ω)-norm 3.23e-01 1.87e-01 1.15e-01 4.93e-02 9.31e-03 2.33e-03

Table 3.2: Basic HiPOD reduction (test case 4): relative modeling error for different HiPOD
approximations.

3.2. The directional HiPOD approach. The directional HiPOD method still combines
HiMod reduction with POD by more deeply exploiting the separation of variables underlying
a HiMod discretization. In particular, the SVD is employed to erase the redundancy along
the main stream and the transverse direction, separately. Then, the online phase is carried out
by interpolating instead of projecting. This relieves us from assembling the HiMod stiffness
matrix and right-hand side associated with the online parameter, as expected by (3.5).

The offline phase starts by collecting the information to build the response matrix. To this
aim, we compute the HiMod discretization to problem (2.1) for p different values, αi, of the
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Fig. 3.3: Basic HiPOD reduction (test case 4): HiPOD approximation for l = 2 (top), l = 6
(center) and l = 16 (bottom).

parameter α, with i = 1, . . . , p. The corresponding modal coefficients, {ũαi

k,j}
m,Nh

k=1,j=1, are
re-ordered by mode into the m vectors

(3.7) Uk(αi) = [ũαi

k,1, ũ
αi

k,2, . . . , ũ
αi

k,Nh
]T ∈ RNh k = 1, . . . ,m,

instead of in a unique vector as in (3.1). Then, we employ vectors Uk(αi) to assemble the
response matrix

U = [U1(α1) · · ·Um(α1) |U1(α2) · · ·Um(α2) | · · · · · · · · · |U1(αp) · · ·Um(αp)]

=


ũα1

1,1 · · · ũα1
m,1 ũα2

1,1 · · · ũα2
m,1 · · · · · · ũ

αp

1,1 · · · ũ
αp

m,1

ũα1
1,2 · · · ũα1

m,2 ũα2
1,2 · · · ũα2

m,2 · · · · · · ũ
αp

1,2 · · · ũ
αp

m,2
...

...
...

...
...

...
...

...
...

...
...

ũα1

1,Nh
· · · ũα1

m,Nh
ũα2

1,Nh
· · · ũα2

m,Nh
· · · · · · ũ

αp

1,Nh
· · · ũ

αp

m,Nh

 .

Matrix U ∈ RNh×(mp) exhibits a block-wise structure associated with the parameters αi such
that, for each block, columns run over modes while rows run over FE nodes. Now, we apply
the SVD to matrix U , thus yielding

(3.8) U = ΞΛKT ,

with Ξ ∈ RNh×Nh and K ∈ R(mp)×(mp) unitary matrices, and Λ ∈ RNh×(mp) a pseudo-
diagonal matrix. The left singular vectors {ξj}Nh

j=1 of U constitute an orthogonal basis for
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RNh , so that each column of U can be expanded as

(3.9) Uk(αi) =

Nh∑
j=1

T kj (αi)ξj k = 1, . . . ,m, i = 1, . . . , p.

In general, we can pick the first, say L with L ≤ Nh, most meaningful singular vectors of
U to identify the POD space, V LPOD,1 = span{ξ1, . . . , ξL}, associated with this first phase
of the directional HiPOD procedure, being dim(V LPOD,1) = L. Thus, vectors Uk(αi) can be
approximated as

(3.10) Uk(αi) ∼=
L∑
j=1

T kj (αi)ξj k = 1, . . . ,m, i = 1, . . . , p,

where equality holds when L = Nh (see (3.9)). Now, we re-organize coefficients {T kj (αi)}
by parameter, into the p vectors Tj(αi) = [T 1

j (αi), . . . , T
m
j (αi)]

T ∈ Rm with i = 1, . . . , p,
and we define the matrix

Sj = [Tj(α1), . . . ,Tj(αp)] =

 T 1
j (α1) . . . T 1

j (αp)
...

...
Tmj (α1) . . . Tmj (αp)

 ∈ Rm×p,

with j = 1, . . . , L. Then, we apply the SVD to each matrix Sj to obtain the L factorizations

(3.11) Sj = RjDjP
T
j ,

with Rj ∈ Rm×m and Pj ∈ Rp×p unitary matrices, and Dj ∈ Rm×p the pseudo-diagonal
matrix collecting the singular values of Sj . Thus, columns Tj(αi) of Sj can be represented in
terms of the POD orthogonal basis {rkj }

µj

k=1, with µj ≤ m, constituted by the most significant
µj left singular vectors of Sj , as

(3.12) Tj(αi) ∼=
µj∑
k=1

Qkj (αi)r
k
j j = 1, . . . , L, i = 1, . . . , p.

With each j, we associate the POD space V µj

POD,2,j = span{r1
j , . . . , r

µj

j }, with dim(V
µj

POD,2,j)
= µj . Thus, the directional HiPOD procedure yields (L+ 1) POD bases which, during the
online phase, are employed to predict the HiMod approximation to problem (2.1) for a new
value, α∗, of the parameter, with α∗ 6= αi for i = 1, . . . , p. For this purpose, first we compute
an approximation for the coefficients Qkj (α∗) in (3.12), for j = 1, . . . , L and k = 1, . . . , µj ,
via a suitable interpolation of the (known) values Qkj (αi) for i = 1, . . . , p; successively, we go
through the directional procedure backward, until obtaining an approximation for the vector
Uk(α∗) in (3.7). In particular, thanks to (3.12), we compute the L vectors

(3.13) Tj(α
∗) = [T 1

j (α∗), . . . , Tmj (α∗)]T =

µj∑
k=1

Qkj (α∗)rkj j = 1, . . . , L

in Rm, and then, according to (3.10), we assemble the m vectors Uk
HiPOD(α∗) ∈ RNh as

Uk
HiPOD(α∗) = [uα

∗

POD,k,1, . . . , u
α∗

POD,k,Nh
]T =

L∑
j=1

T kj (α∗)ξj k = 1, . . . ,m.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

HIERARCHICAL MODEL REDUCTION DRIVEN BY A PROPER ORTHOGONAL DECOMPOSITION13

Finally, vectors Uk
HiPOD(α∗) allow us to approximate the HiMod solution um(α∗) as

um(α∗) ≈ uL,ML

HiPOD(α∗) =

m∑
k=1

[ Nh∑
j=1

uα
∗

POD,k,jϑj(x)
]
ϕk(ψx(y)),

with ML = {µj}Lj=1, and where values uα
∗

POD,k,j provide an approximation of the actual
coefficient ũα

∗

k,j in (3.7) with αi = α∗.

REMARK 3.3 (Choice of the interpolation). Different interpolation procedures can
be adopted to compute coefficients Qkj (α∗). Following [37], we adopt a standard linear
interpolation, a piecewise cubic Hermite interpolant and an interpolating radial basis function.
In the next section, we numerically investigate the performances of these three approaches.

3.2.1. Numerical assessment. We numerically assess the reliability of the directional
HiPOD procedure. First, we consider the case where α coincides with a single scalar quantity;
then, we generalize the approach to the vector case, so that α will collect more parameters.

Test case 5. We adopt the solution to Test case 1 as the setting to be approximated during
the online phase. The viscosity coefficient, µ, which is here assumed constant, represents the
parameter driving the offline phase, so that α = µ. In particular, we hierarchically reduce
problem (2.1)-(2.2) for 20 different values of µ, with µ = µi uniformly sampled in the interval
Pµ = [0.15, 3] and µi 6= 1 for i = 1, . . . , 20, while preserving the same values as in (2.6) for
the other problem data. The HiMod discretization is the same as adopted for Test case 3, so
that we employ linear FE, associated with a uniform partition of Ω1D into 60 subintervals, to
discretize the main stream and 10 sinusoidal modes to describe the transverse dynamics.

Concerning the choice of L in (3.10) and of µi in (3.12), we resort to a control analogous
to the one in (3.4). In more detail, for two fixed tolerances, ε1 and ε2, with 0 ≤ ε1, ε2 ≤ 1,
we preserve the first L left singular vectors, ξj , of U and the first µj left singular vectors, rkj ,
of Sj such that

(3.14) RLPOD,1 =

∑L
j=1 λ

2
j∑Nh

j=1 λ
2
j

≥ ε1 and R
µj

POD,2 =

∑µj

k=1 d
2
j,k∑m

k=1 d
2
j,k

≥ ε2,

respectively, with λj the singular value of U associated with ξj and j = 1, . . . , Nh, and with
dj,k the singular value of Sj corresponding to the k-th singular vector rkj and k = 1, . . . ,m.
As a first check, we choose ε1 = ε2 = ε. In particular, Table 3.3 collects the predictions for
L, for the maximum value and for the median of the values µj , for different choices of ε. As
expected, the number of Hi-POD modes retained at both stages increases when ε approaches
1. Moreover, a slightly higher sensitivity of L to the selected tolerance is detected, when
compared with the maximum value and the median of µj’s.

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
L 1 3 5 7 10

maxj µj 4 6 8 9 10
medianµj 2 4 6 8 8

Table 3.3: Directional HiPOD reduction (test case 5): prediction for the POD modes.

The online phase is performed by setting α∗ = µ∗ = 1 ∈ Pµ, and by using a radial basis
function (RBF) interpolation [38]. In Figure 3.4, we compare the HiPOD approximations

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

14 M. LUPO PASINI AND S. PEROTTO

Fig. 3.4: Directional HiPOD reduction (test case 5): HiPOD approximation for ε = 0.6 (top),
ε = 0.9 (middle) and ε = 0.99 (bottom).

associated with three of the selected tolerances. It is noticed that, at the first level of the
procedure, at least three POD modes have to be adopted to have an approximation sufficiently
reliable, which is equivalent to pick ε ≥ 0.9. On average, the wall-clock time required by the
directional HiPOD procedure is 0.08 seconds, which is significantly lower when compared
with the time associated with the HiMod reduction in Section 2.1.1 (1.44 seconds for m = 2).

In Table 3.4, we analyze the convergence of the directional HiPOD approach, by com-
puting the L2(Ω)- and the H1(Ω)-norm of the error yielded by replacing the HiMod solution
u10(α∗) with the HiPOD approximation. The accuracy ensured by the HiPOD approximation
is remarkable if we consider that the values in the table refer to a relative error.

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
L2(Ω)-norm 4.66e-01 4.01e-02 3.11e-03 8.17e-04 1.37e-04
H1(Ω)-norm 4.62e-01 9.43e-02 1.05e-02 3.11e-03 5.71e-04

Table 3.4: Directional HiPOD reduction (test case 5): relative modeling error for different
HiPOD approximations.

Finally, we run the directional HiPOD procedure by distinguishing the tolerances in
(3.14), in order to identify a possible criterion of choice for ε1 and ε2. To this goal, we
repeat the same error analysis as in Table 3.4, varying both ε1 and ε2 in the set of values
{0.6, 0.9, 0.99, 0.999, 0.9999}. Table 3.5 collects the results of this invetigation. It turns out
that the values of ε1 and ε2 have to be, in general, sufficiently close to 1 to have a monotonically
decreasing trend of the error when we fix a tolerance and vary the other one. For this particular
test case, a possible strategy to ensure this monotonicity can be to select ε1 very close to
1 (ε1 = 0.9999) and make ε2 varying, or, as an alternative, we can fix ε2 to 0.99, 0.999 or
0.9999 and gradually reduce the value for ε1. This behaviour is shared by both the norms.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

HIERARCHICAL MODEL REDUCTION DRIVEN BY A PROPER ORTHOGONAL DECOMPOSITION15

ε2 = 0.6 ε2 = 0.9 ε2 = 0.99 ε2 = 0.999 ε2 = 0.9999
ε1 = 0.6 L2(Ω)-norm 2.58e-01 2.58e-01 2.57e-01 2.57e-01 2.57e-01

H1(Ω)-norm 4.61e-01 4.61e-01 4.59e-01 4.59e-01 4.59e-01
ε1 = 0.9 L2(Ω)-norm 5.43e-02 5.43e-02 2.01e-02 2.01e-02 2.01e-02

H1(Ω)-norm 1.50e-01 1.50e-01 5.91e-02 5.88e-02 5.88e-02
ε1 = 0.99 L2(Ω)-norm 3.73e-02 3.47e-02 5.80e-03 5.80e-03 5.80e-03

H1(Ω)-norm 8.90e-02 7.57e-02 2.83e-02 2.83e-02 2.83e-02
ε1 = 0.999 L2(Ω)-norm 3.72e-02 3.46e-02 1.34e-03 6.03e-04 6.03e-04

H1(Ω)-norm 8.85e-02 7.51e-02 4.01e-03 3.10e-03 2.91e-03
ε1 = 0.9999 L2(Ω)-norm 3.72e-02 3.46e-02 1.20e-03 5.57e-04 8.03e-05

H1(Ω)-norm 8.84e-02 7.50e-02 2.81e-03 1.21e-03 3.95e-04

Table 3.5: Directional HiPOD reduction (test case 5): sensitivity to the selected tolerances.

Test case 6. The benchmark configuration is now provided by Test case 2, where the
HiPOD parameter α, coincides with the reactive coefficient σ that we assume constant.

The offline phase involves the hierarchically reduction of problem (2.1)-(2.2) for 30
different values of the reaction, uniformly sampled in the range Pσ = [0.02, 0.4], while all
the other problem data in (2.7) are preserved. The HiMod discretization adopted during this
stage uses linear FE along Ω1D, in correspondence with a uniform partition of the supporting
fiber into 120 subintervals, and 20 sinusoidal modes in the transverse direction, analogously to
what done in Test case 4.

We set α∗ = σ∗ = 0.1 ∈ Pσ in the online phase to recover the setting of interest. The
spectrum truncation in (3.14) is first driven by a unique tolerance, by selecting ε1 = ε2 = ε.

The first row in Table 3.6 provides the number, L, of POD modes selected at the first level
of the HiPOD procedure, for five different choices of ε. The values in the table highlight the
presence of a strong redundancy. Indeed, L is considerably lower with respect to Nh (= 120),
even when ε is very close to 1. For instance, it suffices that the POD space V LPOD,1 has a
dimension equal to 12, to correctly describe the dynamics along the main stream. This is
shown in Figure 3.5 which gathers the contour plots of the HiPOD approximation associated
with the first four values selected for ε. Information about the values predicted for dimensions
µj in (3.12) are also furnished by Table 3.6.

The configuration explored in this test case is more complex with respect to the one in
Test case 5. This is confirmed by the larger number of POD modes (L = 12 versus L = 3)
employed at the first level to ensure a reliable HiPOD solution. Despite that, also for this test
case we have a computational gain with respect to the HiMod discretization in Section 2.1.2
(case m = 5). Indeed, the wall-clock time characterizing the directional HiPOD procedure is
0.33 seconds to be compared with 14.53 seconds for the HiMod reduction.

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
L 2 3 4 12 17

maxj µj 5 8 9 10 10
medianµj 4 5 6 7 7

Table 3.6: Directional HiPOD reduction (test case 6): prediction for the POD modes.
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Fig. 3.5: Directional HiPOD reduction (test case 6): HiPOD approximation for
ε = 0.6, 0.9, 0.99, 0.999 (top-bottom).

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
L2(Ω)-norm 1.93e-01 7.38e-02 1.16e-02 4.82e-04 5.54e-05
H1(Ω)-norm 4.34e-01 1.52e-01 3.08e-02 3.11e-03 3.84e-04

Table 3.7: Directional HiPOD reduction (test case 6): relative modeling error for different
HiPOD approximations.

The accuracy of the directional HiPOD approximation is quantified in Table 3.7, in terms
of the L2(Ω)- and of the H1(Ω)-norm of the POD relative error with respect to the HiMod
solution u20(α∗). The values in the table confirm the effectiveness of the directional HiPOD
procedure.

Also for this test configuration, we explore the accuracy of the directional HiPOD approx-
imation when we select different values for ε1 and ε2. The analysis in Table 3.7 is replicated,
by assigning the values 0.6, 0.9, 0.99, 0.999, 0.9999 to both the tolerances. Table 3.8 provides
the relative modeling error with respect to the reference HiMod solution in terms of the L2(Ω)-
and of the H1(Ω)-norms. Conclusions similar to the ones for Table 3.5 can be drawn also for
this test case. To ensure a monotonic trend for the error norm, it is fundamental to choose ε1
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very close to 1 (ε1 = 0.999 or ε1 = 0.9999) and gradually reduce ε2, or, as an alternative, to
set ε2 to 0.99, 0.999 or 0.999, while diminishing ε1.

ε2 = 0.6 ε2 = 0.9 ε2 = 0.99 ε2 = 0.999 ε2 = 0.9999
ε1 = 0.6 L2(Ω)-norm 2.85e-01 2.85e-01 2.85e-01 2.85e-01 2.85e-01

H1(Ω)-norm 3.81e-01 3.81e-01 3.81e-01 3.81e-01 3.81e-01
ε1 = 0.9 L2(Ω)-norm 3.27e-02 3.27e-02 3.06e-02 3.06e-02 3.06e-02

H1(Ω)-norm 6.49e-02 6.49e-02 6.45e-02 6.45e-02 6.45e-02
ε1 = 0.99 L2(Ω)-norm 1.32e-02 1.21e-02 3.81e-03 3.81e-03 3.81e-03

H1(Ω)-norm 1.47e-02 1.44e-02 1.23e-02 1.23e-02 1.23e-02
ε1 = 0.999 L2(Ω)-norm 9.77e-03 8.75e-03 6.06e-04 6.04e-04 1.96e-04

H1(Ω)-norm 1.27e-02 1.15e-02 1.18e-03 1.16e-03 1.21e-03
ε1 = 0.9999 L2(Ω)-norm 9.73e-03 8.61e-03 5.81e-04 5.78e-04 8.68e-05

H1(Ω)-norm 1.77e-02 1.15e-02 1.38e-03 1.31e-03 6.60e-04

Table 3.8: Directional HiPOD reduction (test case 6): sensitivity to the selected tolerances.

Finally, we use this test case to investigate the sensitivity of the directional HiPOD
reduction procedure to the interpolant used in (3.13) to compute the coefficients Qkj (α∗).
For this purpose, we come back to the configuration analyzed in Table 3.7 (i.e., we pick
ε1 = ε2 = ε) and we consider the four largest values for the tolerance, ε = 0.6 providing
an excessively poor approximation. According to Remark 3.3, we resort to a standard linear
interpolation (LIN), a piecewise cubic Hermite (PCH) interpolant and to an interpolating RBF.
Table 3.9 provides the L2(Ω)- and the H1(Ω)-norm of the relative error associated with the
directional HiPOD approximation with respect to the HiMod solution u20(α∗). For this test
case, the PCH and the RBF interpolants slightly outperform the linear interpolation.

ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
LIN L2(Ω)-norm 7.38e-02 1.16e-02 4.83e-04 6.36e-05

H1(Ω)-norm 1.52e-01 3.08e-02 3.11e-03 3.85e-04
PCH L2(Ω)-norm 7.38e-02 1.16e-02 4.83e-04 5.54e-05

H1(Ω)-norm 1.52e-01 3.08e-02 3.11e-03 3.84e-04
RBF L2(Ω)-norm 7.38e-02 1.16e-02 4.82e-04 5.54e-05

H1(Ω)-norm 1.52e-01 3.08e-02 3.11e-03 3.84e-04

Table 3.9: Directional HiPOD reduction (test case 6): sensitivity to the interpolant operator.

Test case 7. We analyze here the robustness of the directional HiPOD procedure in terms
of extrapolation, to predict a scenario associated with a value, α∗, of the parameter out of the
corresponding range P . For this check, we select as reference configuration the solution to the
ADR problem in (2.1)-(2.2) for the set of data

(3.15)
µ(x, y) = 0.24, b(x, y) = [5, sin(6x)]T , σ(x, y) = 0,

f(x, y) = 10χC1(x, y) + 10χC2(x, y),

with C1 and C2 defined as in (2.7). From a qualitative viewpoint, the linear FE approximation
to this problem is essentially identical to the solution in Figure 2.2, top, the reaction σ provid-
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ing a negligible contribution to the solution trend.
Parameter α now coincides with the diffusivity coefficient µ. The offline phase involves the
hierarchically reduction of problem (2.1)-(2.2) for ten different values of the viscosity, uni-
formly sampled in the range Pµ = [1/30, 1], all the other problem data being preserved. The
HiMod discretization adopted during this stage uses linear FE along Ω1D, in correspondence
with a uniform partition of the supporting fiber into 120 subintervals, and 20 sinusoidal modes
along the transverse direction.
We pick α∗ = 1/60 /∈ Pµ as parameter characterizing the online stage. For comparison
purposes, we adopt both the PCH and the RBF interpolations to compute coefficients Qkj (α∗)
in (3.13). This choice is motivated by the higher reliability exhibited, in general, by these two
interpolants in terms of extrapolation properties. Table 3.10 compares the modeling relative
error associated with the two interpolants, in terms of the L2(Ω)- and the H1(Ω)-norms.
PCH and RBF procedures are fully comparable, with a slightly better performance for the
second interpolant. Figure 3.6 shows the contour plots of the reference HiMod solution,
u20(α∗), and of the directional HiPOD reduction when resorting to the RBF interpolant and
for ε1 = ε2 = ε = 0.9 and 0.99 (tolerances ε = 0.999, 0.9999 provide contour plots very
similar to the bottom panel). The challenge intrinsic into an extrapolation justifies the large
values adopted for the tolerance. The matching between HiMod and HiPOD approximations
is fulfilling.

ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
PCH L2(Ω)-norm 2.75e-01 1.01e-01 9.79e-02 9.78e-02

H1(Ω)-norm 5.46e-01 2.13e-01 1.92e-01 1.92e-01
RBF L2(Ω)-norm 2.67e-01 5.31e-02 4.70e-02 4.68e-02

H1(Ω)-norm 5.36e-01 1.44e-01 1.02e-01 9.97e-02

Table 3.10: Directional HiPOD reduction (test case 7): robustness to extrapolation.

Test case 8. In this section we extend the HiPOD directional approach to the case when a
multiple parameter has to be varied during the offline phase. The use of a vector of parameters
leads us to modify the interpolation step of the procedure in Section 3.2. In particular, in order
to recover coefficients Qkj (α∗) in (3.13), we resort now to a two-dimensional interpolant.

As a reference differential setting, we adopt the ADR problem in Test case 7, where we
identify the parameter with the vector α = [µ, b1]T which collects the diffusivity coefficient
and the x-component of the advective field, b = [b1, b2]T , the y-component being preserved
as in (3.15) (i.e., b2 = sin(6x)). The set of the admissible parameters is P = Pµ ×Pb1 , with
Pµ = [1/30, 1] and Pb1 = [0.5, 10].

Due to the higher dimensionality of the parameter space, we extend the sampling during
the offline phase, by hierarchically reducing the reference ADR problem for p = 600 different
choices of the parameter α. In particular, the interval Pµ is sampled with 30 uniformly
distributed points, whereas we pick 20 uniformly spaced points along the interval Pb1 . The
HiMod approximation coincides with the one adopted for Test case 7, which employs a
linear finite element discretization associated with a uniform subdivision of Ω1D into 120
subintervals along the mainstream, enriched by 20 sinusoidal modal functions to approximate
the transverse dynamics.

The POD truncation is carried out by identifying the two tolerances in (3.14), and by
setting ε = ε1 = ε2 = 0.6, 0.9, 0.99, 0.999, 0.9999.
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Fig. 3.6: Directional HiPOD reduction (test case 7): robustness to extrapolation. HiMod
reference solution (top) and HiPOD approximation for ε = 0.9 (center) and ε = 0.99 (bottom).

The online phase is run to approximate the HiMod solution corresponding to the choices
α∗1 = [0.6, 5.1]T and α∗2 = [0.06, 9.3]T for the parameter. Concerning the interpolation
step, we adopt both the linear (LIN) and the piecewise cubic Hermite (PCH) bidimensional
interpolant operators. In Figures 3.7 and 3.8 we compare the reference HiMod solutions,
u20(α∗1) and u20(α∗2), with the approximation provided by the directional HiPOD reduction
when combined with the PCH interpolation, and for the different tolerances. A tolerance
sufficiently close to 1 has to be selected to obtain a reliable HiPOD solution. In particular, the
choice α∗2 for the parameter turns out to be more challenging for the HiPOD procedure. This
is confirmed also by a cross-comparison between the values in Tables 3.11 and 3.12, which
gather the L2(Ω)- and the H1(Ω)-norm of the relative modeling error associated with the
directional HiPOD approximation, together with other quantitative data. For the first choice
of the parameter, α∗1 = [0.6, 5.1]T , it is not immediate to appreciate a remarkable difference
between the two interpolants, at least until the tolerance becomes very close to 1. Slightly
better performances characterize the PCH interpolation for parameter α∗2 = [0.06, 9.3]T , in
particular with respect to the L2(Ω)-norm.

4. Basic versus directional HiPOD approach. This section has to be meant as an
attempt of comparison between the two HiPOD procedures in Sections 3.1 and 3.2. This
task turns out to be not so straightforward due to the strong heterogeneity between the two
approaches. The actual goal is to identify specific configurations where one of the two HiPOD
methods outperforms the other, rather than establishing which is the best formulation ever.

To make the comparison as fair as possible, we test the HiPOD reduction procedures by
selecting the same parameters and corresponding range of variation. In particular:

i) we apply the basic HiPOD approach to the settings in Test cases 5 and 6;
ii) we replicate Test case 8 with the basic HiPOD approach for the choice α∗1;
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Fig. 3.7: Directional HiPOD reduction (test case 8) for α∗1 = [0.6, 5.1]T : HiMod solution
(first row) and HiPOD approximation associated with the PCH interpolant, and for ε = 0.6
(second row), ε = 0.9 (third row), ε = 0.99 (fourth row).

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
L 2 6 16 32 41

maxj µj 7 13 19 20 20
medianµj 5 10 16 19 20

LIN L2(Ω)-norm 1.81e-01 5.13e-02 3.81e03 6.33e-04 5.71e-04
H1(Ω)-norm 3.90e-01 1.37e-01 1.74e-02 2.10e-03 6.34e-04

PCH L2(Ω)-norm 1.82e-01 5.13e-02 3.72e-03 2.78e-04 4.23e-05
H1(Ω)-norm 3.90e-01 1.37e-01 1.74e-02 2.01e-03 2.51e-04

Table 3.11: Directional HiPOD reduction (test case 8): relative modeling error for different
HiPOD approximations and sensitivity to the interpolant operator for α∗1 = [0.6, 5.1]T .

iii) we customize a specific test case which highlights the potentialities of the directional
method when the two levels of the procedure are properly exploited.

i). Test cases 5 and 6 are run with the basic HiPOD reduction procedure to approximate
the HiMod solution in Section 2.1.1 and 2.1.2, respectively. In both cases, we deal with
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Fig. 3.8: Directional HiPOD reduction (test case 8) for α∗2 = [0.06, 9.3]T : HiMod solution
(first row) and HiPOD approximation associated with the PCH interpolant, and for ε = 0.6
(second row), ε = 0.9 (third row), ε = 0.99 (fourth row), ε = 0.999 (fifth row) and ε = 0.9999
(sixth row).
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ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999
L 2 6 16 32 41

maxj µj 7 13 19 20 20
medianµj 5 10 16 19 20

LIN L2(Ω)-norm 2.92e-01 5.89e-02 1.49e02 1.25e-02 1.25e-02
H1(Ω)-norm 5.34e-01 1.73e-01 4.48e-02 2.76e-02 2.76e-02

PCH L2(Ω)-norm 2.93e-01 5.76e-02 9.22e-03 4.30e-03 4.14e-03
H1(Ω)-norm 5.24e-01 1.70e-01 3.62e-02 1.21e-02 9.53e-03

Table 3.12: Directional HiPOD reduction (test case 8): relative modeling error for different
HiPOD approximations and sensitivity to the interpolant operator for α∗2 = [0.06, 9.3]T .

l = 2 l = 4 l = 7 l = 10 l = 15 l = 17
L2(Ω)-norm 1.91e-01 1.01e-02 9.29e-05 2.97e-07 9.24e-02 1.19e-01
H1(Ω)-norm 2.11e-01 1.14e-02 1.19e-04 5.22e-07 1.58e-01 1.89e-01

Table 4.1: Basic HiPOD reduction (test case 5): relative modeling error for different HiPOD
approximations.

a single parameter setting which identifies α with the viscosity coefficient µ and with the
reactive coefficient σ, respectively. We exploit the offline phase of the directional approach,
by computing the HiMod solution for 20 and 30 values of the viscosity and of the reaction
uniformly distributed in Pµ = [0.15, 3] and in Pσ = [0.02, 0.4], respectively. The parameter
α∗ characterizing the online phase is α∗ = µ∗ = 1 for Test case 5 and α∗ = σ∗ = 0.1 for
Test case 6.

Tables 4.1 and 4.2 show the trend of the relative modeling error between the basic HiPOD
approximation and the reference HiMod solutions, i.e., u10(α∗) for Test case 5 and u20(α∗)
for Test case 6, when gradually increasing the dimension l of the POD basis.
Values in Table 4.1 highlight the performance of the basic HIPOD approach which allows us to
gain some order of accuracy with respect to the directional procedure (see Tables 3.4 and 3.5),
with a relative small number (l = 10) of POD modes. We observe also an unusual increment
of both the errors for l = 15 and l = 17. This finds a justification in Figure 4.1 which shows
the spectrum of matrix V in (3.3). Actually, the singular values in Σ drop to machine precision
around the index 14-15, meaning that matrix V is numerically rank deficient. This implies that
a POD reduction with truncated SVD with at most 15 components is enough to capture all the
features of the parameter space. Additional components would disadvantage the reconstruction
by injecting spurious terms due to numerical instabilities.
As far as Table 4.2 is concerned, we detect the expected decreasing monotonic trend of the error
when measured in both the L2(Ω)- and the H1(Ω)-norm. A cross-comparison with Tables 3.7,
3.8 and 3.9 highlights that the directional HiPOD reduction outperforms for this case setting.
Finally, the basic and the directional HiPOD procedures are essentially comparable in terms of
computational effort, the wall-clock time being equal to 0.04 and 0.20 seconds for the basic
approach to be compared with 0.08 and 0.33 seconds for the directional procedure, for Test
case 5 and 6, respectively.

ii). We move to a multiparameter context, by considering Test case 8. We apply the
basic HiPOD approach to approximate the HiMod solution associated with the parameter
α∗1 = [µ∗, b∗1]T = [0.6, 5.1]T . We set up the offline phase as before for the directional
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Fig. 4.1: Basic HiPOD reduction (test case 5): singular values of matrix V .

l = 2 l = 4 l = 6 l = 8 l = 10
L2(Ω)-norm 7.33e-01 5.05e-01 7.36e-02 8.84e-03 7.54e-03
H1(Ω)-norm 8.33e-01 6.72e-01 8.09e-02 9.84e-03 9.34e-03

Table 4.2: Basic HiPOD reduction (test case 6): relative modeling error for different HiPOD
approximations.

l = 2 l = 10 l = 20 l = 100 l = 400 l = 600
L2(Ω)-norm 3.01e-01 2.22e-02 6.41e-03 5.80e-03 6.60e-04 2.43e-04
H1(Ω)-norm 4.56e-01 4.86e-02 8.12e-03 7.44e-03 9.48e-04 4.12e-04

Table 4.3: Basic HiPOD reduction (test case 8): relative modeling error for different HiPOD
approximations for α∗1 = [0.6, 5.1]T .

procedure, based on the HiMod solution to 600 different ADR problems, when uniformly
varying parameter α = [µ, b1]T in the set of admissible parameters P = Pµ × Pb1 =
[1/30, 1]× [0.5, 10]. To assess possible benefits of the basic approach in terms of accuracy, we
compute the relative modeling error between the basic HiPOD approximation and the HiMod
reference solution, u20(α∗1), for increasing values of l until all the POD modes are employed
(namely, until l = 600). In Table 4.3, we collect the L2(Ω)- and the H1(Ω)-norm of such
an error. A good accuracy is ensured also by the basic HiPOD procedure, provided that a
sufficiently large number of POD modes is adopted. Nevertheless, the directional approach
based on the PCH interpolant allows us to obtain an accuracy improvement by an order of
magnitude with respect to the L2(Ω)-norm and without resorting to the full POD spectrum
(see Table 3.11).

iii). Some comment on the role played by the two levels in the directional approach
are in order to settle the new test case. The singular value decomposition of matrix U in
(3.8) mixes information about the HiMod coefficients at different finite element nodes at the
first level; on the other hand, the singular value decomposition of matrices Sj’s in (3.11), at
the second level, reveals a possible redundancy of information for the coefficients needed to
describe the changes of the HiMod solution over different parameter configurations. Therefore,
one would expect that mild changes of the HiMod coefficients across different values of the
parameter lead to rank deficient matrices Sj’s. This would translate into a potentially little

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

24 M. LUPO PASINI AND S. PEROTTO

loss of accuracy when a dimensionality reduction is performed accordingly.
To support this conjecture, we set up a dedicated numerical test. At the i-th run of the

offline phase, we solve in the domain Ω = (0, Lx) × (0, Ly) a Poisson problem completed
with homogeneous Dirichlet boundary conditions, so that the exact solution is

ui(x, y) = x
(
x− Lx

) i∑
m=1

sin
(mπy
Ly

)
.

The parameter governing the offline phase is the number i of HiMod modes used to reconstruct
the solution ui in exact arithmetic and, clearly, the complexity of the solution increases with
i. Because solutions of different problems require a different number of HiMod modes, the
accuracy of the HiPOD approximation is expected to be highly sensitive to the dimensionality
reduction performed.
Now, we employ the online phase to recover the solution ui∗ , for a random value of the
parameter i with i = i∗, via the directional HiPOD reduction, and we measure the associated
(relative) error with respect to both the L2(Ω)- and the H1(Ω)-norm. Table 4.4 collects the
results of such an analysis. The accuracy obtained with the HiPOD approximation is not
sensitive to the threshold on the first level, but it is with respect to the threshold at the second
level. This is reasonable, as the second level retains information about the importance of the
HiMod modes in reconstructing the solution and how these modes vary through the parameter
space spanned in the offline phase. Moreover, it can be noticed that matrices Sj’s exhibit un
upper triangular pattern, due to the growing complexity of the solution.

ε2 = 0.6 ε2 = 0.9 ε2 = 0.99
ε1 = 0.6 L2(Ω)-norm 8.97e+00 2.54e+00 3.29e-04

H1(Ω)-norm 9.16e+01 4.41e+01 4.99e-02
ε1 = 0.9 L2(Ω)-norm 8.97e+00 2.54e+00 3.29e-04

H1(Ω)-norm 9.16e+01 4.41e+01 4.99e-02
ε1 = 0.99 L2(Ω)-norm 8.97e+00 2.54e+00 3.29e-04

H1(Ω)-norm 9.16e+01 4.41e+01 4.99e-02

Table 4.4: Directional HiPOD reduction: relative modeling error for different choices of the
tolerances to investigate the role of the two levels.

The basic HiPOD reduction is not conceived to work in such a combined way. Actually,
by replicating the same test case, it can be checked that the error does not ever decrease below
5.52e-01 and 7.25e-01 with respect to the L2(Ω)- and the H1(Ω)-norm, respectively even
when resorting to all the available POD modes.

5. Conclusions and developments. The numerical assessment in Sections 3.1.1 and
3.2.1 corroborates the reliability of the HiPOD reduction procedures. We have carried out a
more extensive investigation on the directional approach, since it represents the main novelty
of the paper. In particular, we have analyzed the performances of the directional HiPOD
procedure in terms of convergence, selection of the tolerances driving the truncation of the
POD bases, choice of the interpolant operator, and robustness with respect to extrapolation.
Additionally, the numerical check carried out in the last section seems to suggest that the
directional approach outperforms the basic one when dealing with phenomena characterized
by a significative horizontal dynamics (i.e., in the considered test cases, by an advection field
that dominates the diffusivity process).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

HIERARCHICAL MODEL REDUCTION DRIVEN BY A PROPER ORTHOGONAL DECOMPOSITION25

Despite both the HiPOD procedures deserve a more thorough investigation in 3D and
on more generic geometries, we believe that HiPOD model reduction represents a promising
tool to effectively manage, for instance, multi-query contexts such as inverse problems,
optimization strategies, data assimilation techniques, parameter estimation algorithms. This
makes HiPOD a potential competitor against well-established techniques, such as the reduced
basis method and the Proper Generalized Decomposition (PGD) (we refer to [27], where a
first attempt of comparison between HiMod/HiPOD reduction and PGD is carried out).

Additionally, we highlight that the techniques here proposed are data-driven approaches
so that they do not depend on the specific problem at hand. This could be of great usefulness
with a view to complex applications. Moreover, HiPOD reduction procedures can be easily
generalized by employing any reliable reduced model as the “truth”, or by adopting methods
other than POD to generate the reduced basis. In such a direction, in [39] the authors apply a
reduced basis approach to collect the high-fidelity information and use a greedy algorithm to
extract the essential information.

As for the possible future research topics, we mention the proposal of rigorous estimators
to drive the POD selection ([18, 35]), the generalization of the HiPOD procedures to a nonlinear
framework ([5, 17, 33]), the application of such techniques to concrete contexts, such as in
hemodynamic modeling to help clinicians in taking operative decisions [8, 23].
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