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Abstract

State-of-the-art techniques for vision-based relative navigation rely on images acquired in the visible spectral band. Consequently, the
accuracy and robustness of the navigation is strongly influenced by the illumination conditions. The exploitation of thermal-infrared
images for navigation purposes is studied in the present paper, as a possible solution to improve navigation in close proximity with a
target spacecraft. Thermal-infrared images depend on the thermal radiation emitted by the target, hence, they are independent from light
conditions; however, they suffer from a poorer texture and a lower contrast with respect to visible ones. This paper proposes pixel-level
image fusion to overcome the limitations of the two types of images. The two source images are merged into a more informative one,
retaining the strengths of the distinguished sensing modalities. The contribution of this work is twofold: firstly, a realistic thermal infra-
red images rendering tool for artificial targets is implemented; secondly, different pixel-level visible-thermal infrared images fusion tech-
niques are assessed through qualitative and quantitative performance metrics to ease and improve the subsequent image processing step.
The work presents a comprehensive evaluation of the best fusion techniques for on-board implementation, paving the way to the devel-
opment of a multispectral end-to-end navigation chain.
� 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The possibility of operating in proximity of an uncoop-
erative orbiting artificial object received great attention
from researchers in the last few years, with a particular
focus on on-board reconstruction of the chaser-target state
vector through imaging. Such capability plays a crucial role
for incoming missions as formation flying missions (FF)
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with fractionated scientific payloads, on-orbit servicing
demonstrators (OOS), and active debris removal, paving
the way to regular in-orbit services, as reported by Starek
et al. (2016). These are hot topics in our decade, which still
need a significant technology development burst to become
feasible. The close proximity manoeuvring requirement
necessarily entails a guidance, navigation, and control
chain solved autonomously onboard to ensure timeliness,
reactivity, effectiveness, and robustness both in nominal
and off-nominal operations. The first ring of that chain is
indeed the relative state reconstruction and navigation.
Artificial uncooperative targets are here considered, being
the most challenging scenario and constraining towards a
robust solution leaning on the chaser capabilities only, as
eration of fused visible and thermal-infrared images for uncooperative
.org/10.1016/j.asr.2023.03.022
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pointed out by Opromolla et al. (2017). In that operational
context, imaging with passive sensors is the best option to
collect meaningful measurements. Solutions related to vis-
ible (VIS) cameras have been widely studied, e.g. a compre-
hensive review is provided by Sharma and D’Amico (2016);
for instance, VIS images-based navigation has been practi-
cally applied in the context of uncooperative/cooperative
rendezvous, as in Leinz et al. (2008), Castellini et al.
(2015). Instead, one of the first applications of a visual-
based relative navigation system for uncooperative targets
was during the Hubble Space Telescope Servicing Mission
4 as reported by Naasz et al. (2009).

However, visible imaging strongly depends on illumina-
tion conditions as it can be noticed in Fig. 1 from Bechini
et al. (2022a), where the Tango spacecraft from PRISMA
mission (presented by D’Amico et al. (2013)) is only par-
tially visible (inside the red circle) with low contrast with
respect to the background, constraining the mission opera-
tion planning. Therefore, OOS missions are severely lim-
ited if illumination constraints for correct VIS imaging
are included in the close proximity operations design and
definition: target orbit beta angle and attitude history, solar
aspect angle provoked by the chaser feasible fly-around,
and the camera axis might lead to limited opportunity to
properly detect and track the target itself with unacceptable
either mission length or risk increase. Illumination bottle-
necks rise as significant for targets in LEO orbit, which
experience long eclipses, as highlighted in Fehse (2014).

Degraded performances of VIS cameras in case of low-
illumination conditions are well-known issues. At an early
stage, this problem was solved by installing visible light
emitters on spacecraft (e.g. during the docking in the 7th
mission of the Engineering Test Satellite Program, as
reported in Oda and Inaba (2000)). This solution is not sui-
ted for relative navigation scenarios due to the limited
validity range. This research exploits thermal infrared
Fig. 1. Target low visibility scenario in synthetic noiseless validated VIS
image.
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(TIR) sensors leveraging their insensitivity to the illumina-
tion conditions, relying only on the emitted radiance, to
overcome the limitations imposed by imaging sensors oper-
ating in the visible spectrum. The idea of using TIR images
for highly challenging scenarios is not new and was first
addressed in the context of active debris removal by
Yilmaz et al. (2017b), while methods for features extraction
from TIR images have been investigated by Gansmann
et al. (2017) and Yilmaz et al. (2017a). For an extensive sur-
vey on monocular pose estimation architectures for nonco-
operative spacecraft also involving TIR images, the readers
are referred to Pasqualetto Cassinis et al. (2019).

However, TIR sensors are characterized by a smaller
array size if compared to visible ones, and TIR images pre-
sent a lower resolution and poorer contrast with respect to
VIS ones, which in turn negatively affects image processing
algorithms, as highlighted in Shi et al. (2017). To retain the
complementary advantages of the different spectral bands,
Deodeshmukh et al. (2003) proposed to apply tracking
algorithms to both VIS and IR images and then fuse the
result in a Kalman filter to achieve robustness in person
motion tracking. The same concept was then applied to
spacecraft tracking by Palmerini (2014) and tested on-
ground for vision-based navigation for uncooperative tar-
gets rendezvous by Schnitzer et al. (2017). Subsequently,
the idea of fusing the information extracted from VIS
and TIR images was adopted for relative navigation and
mapping of asteroids and unknown spacecraft by
Piccinin et al. (2021) and Civardi et al. (2021), respectively.
A different approach is proposed here since this work
employs pixel-level image fusion to obtain a more informa-
tive image subsequently fed to the Image Processing (IP)
step. The fusion methods are extensively assessed through
both qualitative and quantitative criteria to identify the
most efficient techniques to be adopted within a multispec-
tral navigation chain. The pixel-level fusion was explored
by Jiang et al. (2022) in the context of debris surveillance
and identification. Jiang et al. (2022) proposes a new con-
volutional sparse representation-based image fusion algo-
rithm and provides a comparison against deep-learning-
based and hybrid multi-scale-based fusion methods in sev-
eral scenarios. Pixel-level VIS-TIR image fusion, to the best
of the authors’ knowledge, has never been presented before
within the context of spacecraft relative navigation tech-
niques. The image fusion here is proposed to be performed
before the IP. As a consequence, differently from the sce-
nario in Jiang et al. (2022), the timeliness of the fusion step
needs to be ensured to provide measurements to the navi-
gation filter at a high rate. Some analyses regarding the
execution time of a visual-odometry pipeline on space-
qualified processors are reported in the work of Lentaris
et al. (2018), in which the authors highlight the high com-
putational burden of vision-based navigation algorithms.
Since the image fusion process is an additional IP step at
the beginning of the navigation chain, its computational
cost shall be as low as possible. Furthermore, the research
here presented delves into synthetic TIR image rendering
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since no open-source tools are available for synthetic ther-
mal infrared rendering purposes tailored to artificial
targets.

The two major contributions of the paper can be then
summarized as follows:

� Development of a flexible and accurate physically-based
thermal infrared images rendering chain to test and
develop TIR-based IP algorithms capable of rendering
airless celestial bodies and artificial targets;

� Assessment and comparison of pixel-level VIS-TIR
image fusion techniques to ease IP within the context
of uncooperative spacecraft relative navigation. This
includes also the assessment of pre-processing tech-
niques needed to deal with noisy images at a different
resolution, representing a real case scenario.

The paper is organized as follows: Section 2 presents an
overview of already available image rendering tools and
multispectral image fusion techniques; Section 3 details
the new rendering chain implemented and the image noise
models adopted; the selected image fusion algorithms are
described in Section 4 together with the adopted perfor-
mance metrics. Section 5 presents the results of the image
fusion experiments, with applications to realistic noisy
images at different resolutions. The metrics tailored to
describe the efficiency of the fusion algorithms in case of
noisy inputs are also reported. Conclusions resuming the
main outcomes and the best-suited techniques for image
preprocessing and fusion identified in this paper are
reported in Section 6.

2. State of the art rendering tools and image fusion

algorithms

2.1. Spacecraft images rendering

Synthetic VIS image rendering is a well-known task that
is achieved via ray tracing. Ray tracing is a rendering tech-
nique that relies on the concept of evaluating and simulat-
ing the path of view lines which starts from the observer
camera and ends on generic virtual objects that, together
with the light rays simulated from the light sources to the
virtual object, allow the computation of the color intensity
of the related pixels. As pointed out in Shirley and Morley
(2008), by simulating the physics of the light, ray tracing
techniques can generate artificial images with a high degree
of accuracy. Several available tools provide a user-friendly
environment to develop 3D scenes to generate images via
ray tracing, both commercial, as PANGU (Planet and
Asteroid Natural Scene Generation Utility) presented by
Parkes et al. (2004), and opensource, like POV-Ray (Persis-
tence of Vision Raytracer) by Plachetka (1998) and Blen-
der, developed by Blender Online Community (2018).
Blender is the software used for this paper due to its high
flexibility and high-quality outputs. Please notice that a
pinhole camera model has been employed for the presented
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work. Concerning spaceborne synthetic yet validated and
realistic image datasets, they are constituted of only VIS
images and the only currently publicly available (both
qualitatively and quantitatively) are the SPEED (Space-
craft Pose Estimation Dataset) from Kisantal et al.
(2019), its improved version, SPEED+, from Park et al.
(2021) and the multi-purpose datasets in Bechini et al.
(2022a,b,c) presented in the work from Bechini et al.
(2023). Other spacecraft image datasets were released after
SPEED and listed by Musallam et al. (2021)), but among
them, only the dataset published by Proença and Gao
(2020) has been qualitatively validated against actual
spacecraft images. However, an algorithm tailored to the
VIS-TIR image fusion requirements is still needed, hence
it has been decided to develop both the VIS image render-
ing tool together with the TIR image rendering one. Con-
cerning the TIR images, TIR-based navigation is still an
emerging topic for spaceborne applications, and thus
thermal-infrared rendering has not been widely investi-
gated within the research community. Few approaches
exist, that tackle the problem in different ways. One of
the simplest methods is to convert visible images into ther-
mal images by simply scaling the image data into radiance
data, similarly to the study presented by Cosine Research
for ESA (2022). Such an approach has two main problems.
The first one is that the actual temperature field is not com-
puted, meaning that the object temperature features are
neglected. Indeed, as reported in the executive summary
from Cosine Research for ESA (2022), a dedicated texture
must be applied to simulate the conduction effects and to
eliminate all the visible features, such as shadows, that
are not present in the thermal image. Secondly, to simulate
the thermal inertia, multiple light sources are introduced to
achieve a fake transient effect. Hence, due to the difficulties
in creating representative TIR images from thermal mock-
up highlighted by Schnitzer et al. (2017) and a valid ther-
mal model for the target, there is a lack of publicly avail-
able TIR image datasets. It is acknowledged that Avilés
et al. (2016) generated a synthetic dataset of both VIS
and TIR images using a commercial software named
ASTOS Camera Simulator without disclosing the images.
On the contrary, Jiang et al. (2022) made the VIS and
TIR dataset generated via the commercial software named
Vega Prime software publicly available.

Among commercial software, PANGU v6 includes a
tool for TIR image rendering through a lookup table-
based thermal image rendering model for natural scenarios,
including physics-based features such as thermal lag and
local variations in emissivity and absorptivity. Instead,
for artificial bodies the thermal rendering is equation-
based with a model that accounts for thermal energy from
solar, planetary reflectance, planetary emission, back-
ground radiation, and internal heat sources as reported
by Martin et al. (2021) and STAR-Dundee (2022). The
methodology adopted in PANGU consists of using ther-
mal contributions to calculate temperatures at the pixel
level and can generate thermal radiance images, using
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Planck’s law to convert temperatures to radiance image
pixel intensities. A different approach for rendering thermal
images of natural bodies is adopted in the work of Piccinin
et al. (2021), in which a simplified thermal model of aster-
oids is used to perform a thermal simulation of the body.
The output of the thermal simulation is then processed to
produce a radiance image and converted into a thermal
image employing the model of an uncooled microbolome-
ter. Concerning natural bodies, a comparison between
PANGU and the work in Piccinin et al. (2021) can be
made. The former tool is capable to generate almost real-
time thermal images, which is a powerful capability to per-
form closed-loop tests of vision-based GNC algorithms;
moreover, by employing mission data fitting, very accurate
images can be obtained for similar conditions. On the other
hand, the latter approach has a broader generality, as it is
not limited to already explored natural bodies and the pro-
posed rendering chain is end-to-end, starting from the ther-
mal simulation up to the radiance image and sensor’s
model.

Building on the approach in Piccinin et al. (2021), the
new image generation pipeline introduced in this paper
focuses on artificial spacecraft and improves the accuracy
of the thermal model of the object using the high detail
finite volume thermal model presented in Quirino et al.
(2021). Furthermore, the new method introduces the
detailed view factors between the camera and the object
in order to compute the actual radiative flux received by
the camera sensor, thus providing realistic features as out-
put. Thus, in the context of spacecraft thermal images, the
differences between our tool and PANGU are again the
computational time, which is almost real-time in PANGU,
and the thermal analysis, which in the here proposed
approach relies on accurate finite volume thermal models.
The here employed rendering engine is Blender.

2.2. Image fusion

Visible images are typically characterized by high tex-
ture detail, while they suffer from overexposure or chal-
lenging illumination conditions. On the other hand,
thermal infrared images are insensitive to such disturbances
but typically have poor texture and low resolution. Image
fusion is a technique whose aim is to exploit the strengths
of sensors operating in different spectra to generate a
robust and informative image that can ease the subsequent
processing phase. Fusion algorithms have been used in a
wide range of application fields: Singh et al. (2008) deal
with object recognition, Kumar et al. (2006) use fused
images for surveillance purposes, Simone et al. (2002)
apply image fusion to remote sensing. However, to the best
of the authors’ knowledge, image fusion has never been
applied in the context of spaceborne navigation. Different
pixel-level image fusion algorithms exist and they can be
grouped according to their baseline theory, as highlighted
by Ma et al. (2019). The main categories are multi-scale
transform, sparse representation, neural network, subspace
4

and saliency-based methods, hybrid models, and other
methods. With regards to this work, neural network and
sparse representation-based methods have been discarded
since they both require a large image database to be imple-
mented, which is not currently available, and introduce in
the whole navigation chain a huge computational over-
head. The most promising methodologies for an online
space application, are here presented.

2.2.1. Multi-scale transform-based methods

As outlined in Dogra et al. (2017), these methods typi-
cally comprise three steps: the source images are first
decomposed into components at different scales, using
methods such as pyramid transformation, wavelet trans-
form, or edge-preserving filters. The multi-scale representa-
tions of the VIS and TIR images are then fused according
to a given fusion rule. Lastly, the fused image is obtained
using the inverse multi-scale transform on the fused repre-
sentations. These methods can be extremely versatile
according to the selected decomposition technique and
fusion rule. On the other hand, the computational time
associated to multi-scale methods rapidly increases with
the number of decomposition levels.

2.2.2. Subspace-based methods

Subspace-based methods aim to project a high-
dimensional input image into low-dimensional spaces or
subspaces. Images are often composed of redundant infor-
mation, and thus a low-dimensional subspace can be used
to capture the intrinsic structure of an image, with the ben-
efit of a high computational efficiency. Some of the most
common techniques are Principal Component Analysis
(PCA) and Independent Component Analysis (ICA),
which transform correlated variables into uncorrelated
ones called principal components. Other methods exist,
such as Non-negative Matrix Factorization (NMF), how-
ever, it is time-consuming and has a low computational effi-
ciency, and thus it has been discarded. For the interested
reader, a comprehensive classification of subspace-based
methods is presented in Mitchell.

2.2.3. Saliency-based methods

According to Toet (2011), visual saliency is defined as
the subjective perceptual quality which makes some pixels
stand out from their neighbors and thus attract our atten-
tion. According to the working principles of human visual
perception, saliency-based fusion methods can preserve the
integrity of the salient object region and thus they can effec-
tively extract any bright regions from the thermal-infrared
image. Within the field of multispectral image fusion, visual
saliency can be used either to compute fusion weights or to
extract salient objects from the background, for instance
for target detection and recognition purposes. Methods
based on image saliency are able to retain a high level of
detail in the fused image, however, all these techniques tend
to be sensitive to the amount of noise present in the source
images.
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2.2.4. Hybrid methods

All the aforementioned methods present both strengths
and weaknesses, and thus it is desirable to combine their
advantages to improve image fusion performance. Differ-
ent ways of combining existing principles exist, such as
hybrid multi-scale transform and saliency or multi-scale
transform and sparse representation. For example, Liu
et al. (2015) proposed a fusion framework in which
multi-scale transform is used to decompose the source
images, while sparse representation is exploited to obtain
the fusion coefficients.

3. Thermal infrared rendering

The goal of the paper concerning the generation of ther-
mal images is to introduce a novel approach that can pro-
vide a high level of geometrical accuracy and at the same
time high accuracy in the generated temperature field. As
stated in Section 2, when converting a visible image to
obtain an infrared one, the geometrical accuracy is pre-
served but the temperature field accuracy is degraded.

Thus the newly presented approach uses the high-detail
finite volume thermal model by Quirino et al. (2021) to pro-
vide the details needed concerning both the temperature
field and the geometry. The approach is foreseen to over-
come the limits of the current methods available in the lit-
erature for thermal image generation, taking into account
the relative position of the thermal sensor receiving the
radiation. That is a difficult task, which is not present in
the current literature as the view factors of the scene must
be computed and used to compute the actual radiation
received by the thermal sensor.

The high-detail finite volume thermal model of the
object is reported in Fig. 2. In order to replicate the thermal
sensor output, the temperature field must be converted into
its corresponding infrared radiosity field, that is the actual
energy received by the sensor. Neglecting all the reflections
of the object, the expression for the radiant flux emitted by
Fig. 2. Example of temperature field.
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one face of the object mesh and received by one pixel of the
thermal sensor reads:

Qf�p ¼ Af F f�p erT 4
f ð1Þ

where Af is the area of a generic mesh facet, F f�p is the
view factor between a facet of the object mesh and a gen-
eric pixel of the camera, T f is the temperature at the centre
of the mesh facet, e is the infrared emissivity of the object
and r is the Stephan–Boltzmann constant. Considering
the radiant flux over the area of the respective face of the
mesh, the expression can be rewritten as:

qf�p ¼
Qf�p

Af
¼ F f�p erT 4

f ð2Þ

The view factor F f�p can be computed through the numer-
ical evaluation of the following double integral:

F f�p ¼ 1

Af

Z
Ap

Z
Af

n̂f � sfp
� �

n̂p � spf
� �

pS2
dAf dAp ð3Þ

In which n̂ is the surface normal vector, sij ¼ rj � ri rep-
resents the relative position vector between points belong-
ing to the j-th and i-th surface respectively, while S is its
magnitude. The computation must be performed for each
external face of the mesh of the finite volume thermal
model. It is assumed the camera is far enough from the
object so there is no difference in the view factor between
one face of the mesh and the different pixels of the camera.
Thus it is only necessary to iterate over the number of the
object mesh faces.

All the mesh face normal unit vectors and areas are
computed, thus with the thermal camera position and ori-
entation the view factors are calculated for each face with
the discrete form of Eq. 3:

F f�c �
n̂c � scf
� �

n̂f � sfc
� �

pS2
Ac ð4Þ

where Ac is the area of the thermal camera and the rest of
the terms as described for Eq. 3. The p subscript is substi-
tuted by c as the thermal camera is considered one whole
surface (i.e. all pixels have the same view factor for the sin-
gle mesh face in exam). The resulting view factor field com-
puted for a camera position facing the back panel of Tango
(i.e. the one opposite to the solar panels) is reported in
Fig. 3.

Once the view factors are computed it is possible to take
the temperature of each face (from the temperature field)
along with the corresponding view factor and compute
the radiance emitted by each face towards the thermal cam-
era with Eq. 2. The radiance field is then rendered in Blen-
der and the results are reported in Fig. 4 for the same
camera position used to retrieve the view factors reported
in Fig. 3. The output is qualitatively correct as it is possible
to see on the antennas (i.e. cylindrical shapes at the cor-
ners) that the radiant flux decreases on the edges as the
view factor values drop for the considered camera pose.



Fig. 3. View factors for camera position normal to back panel.

Fig. 4. Radiance field for camera normal to back panel.
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It must be pointed out that Fig. 4 is not the image that is
provided to the fusion algorithms but it is a rendered image
with proper lighting. Indeed, for the generation of TIR
images, the radiance field is mapped over the object as a
texture based on the model of a Lambertian emitter, get-
ting rid of the need for light sources, that would imply
the erroneous presence of visible features such as shadows.
The same ray-tracing techniques exploited to obtain the
synthetic VIS images are finally used for the conversion
of the radiant flux field into the respective digital number
(DN) in the rendering process, emulating the working prin-
ciple of a real thermal camera. An accurate calibration of
the thermal sensor gain and offsets based on the expected
temperature field will be included in the image generation
pipeline to accurately set the conversion to DN, which is
for now done by tuning the flux scale. Nonetheless, the out-
put of the workflow is a valid input for the image fusion
techniques that are assessed in Section 4. An example of
the final result used for the fusion algorithms is reported
in Fig. 7.
6

Since one of the goals of this paper is to prove the fea-
sibility of the approach, the object is assumed to be gray
and diffuse, thus the emissivity is constant for the whole
object. However, thanks to the full accessibility to the
Finite Volume Method (FVM) code, it is possible to intro-
duce different values of emissivity for the different regions
of the object. Introducing different materials is not
expected to negatively affect the performance of the fusion
algorithms since this should allow having more details in
the final image. It is expected that regions with different
materials have a significant difference in temperature
ranges as the contact resistance in vacuum is very high.
In the image, such phenomena should create more contrast
between the regions with different materials. Nevertheless,
further assessments through dedicated analyses need to
be performed.

The workflow chain for the TIR image rendering is
depicted in Fig. 5. In order to follow such chain it is
mandatory to have full access to the mesh topology and
temperature field. For this reason, the FVM open-source
code OpenFOAM has been used as it guarantees the acces-
sibility to the case and the flexibility needed.

It is important to highlight that the rendering chain is
very flexible and can be adopted for any type of spacecraft,
space debris, and celestial object. The only limitation to the
presented rendering chain is the computational power
available to face the problem, especially for the celestial
objects where the number of cells in the simulation is very
high in order to grasp the texture of the terrain and have
realistic images. For artificial targets (e.g. spacecraft and
space debris), the computational power requested for the
thermal simulation is reduced. On the other hand, they
are usually made of multiple parts and materials, thus it
requires a bigger effort in the simulation setup with respect
to the celestial objects which are made of one material with
averaged thermophysical properties.

The adopted TIR and VIS camera characteristics used
to render the images in Figs. 6,7, are reported in Table 1.
The two cameras have the same Field of View (FoV),
due to the fusion requirement of image alignment. The
other parameters have been obtained by merging the
parameters given in Kisantal et al. (2019) and cropped to
the array size considered in Bechini et al. (2023). The
TIR array size has been assumed to be half of the VIS one.
3.1. Noise modeling

Images obtained via VIS monocular cameras are mostly
affected by electronic noise (similarly to all electronic
devices) and blurring due to the fixed depth of field of real
cameras, as reported in Boie and Cox (1992). To increase
the accuracy in reproducing real spaceborne images, the
noise-free VIS images obtained from the previously out-
lined pipeline are processed by adding a white Gaussian
noise with r2 ¼ 0:0022 and blurred with a Gaussian blur-
ring characterized by r ¼ 1 and zero mean. These values



Fig. 5. TIR rendering workflow.

Fig. 6. Example of rendered VIS image. Fig. 7. Example of rendered TIR image.

Table 1
Cameras characteristics.

VIS TIR

Array Size 1024 � 1024 px 512 � 512 px

FoV 35:45 � 35:45 35:45� � 35:45�

Focal Length 17.6 mm 17.6 mm
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have been obtained from the validation of the SPEED
dataset images against real Tango images from Prisma mis-
sion as described in Kisantal et al. (2020), and adopted also
for the validation in Bechini et al. (2023). With regards to
thermal imaging sensors, Gao et al. (2011) demonstrated
that microbolometers are mostly affected by two sources
of noise: the thermal noise and the 1=f noise. The former
is a characteristic of all electronic devices and it is modeled
as an additive white Gaussian noise, assuming the same
characteristics adopted for VIS images. The 1=f noise,
which is also referred to as flicker noise or pink noise, is
instead dominant at low frequencies, as demonstrated by
Brageot et al. (2014). An additive pink noise can be numer-
ically obtained by applying a suitably shaped low-pass filter
to a white Gaussian noise. A two-dimensional Fourier
transform is used to decompose white noise into the fre-
7

quency domain. The amplitude (A) of each frequency is
then scaled such that the higher the frequency, the lower
the amplitude using the following relationship:

A0 ¼ A
1

f 2
x þ f 2

y

� �a=2
ð5Þ

where f x and f y are the spatial frequencies and a is an

exponent which determines the spectral slope (a ¼ 1 for
flicker noise). The inverse Fourier transform is then applied
to convert the filtered result back to the spatial domain.
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The variance of the White Noise to be filtered is here
assumed to be r2 ¼ 0:0022. Similar to VIS images, also
the TIR images are blurred with a Gaussian blurring char-
acterized by r ¼ 1 and zero mean. Notice that, as already
done in Bechini et al. (2023), it has been decided to add
the noise after the image rendering and to do not include
the noise generation directly in the rendering process in
order to maintain the high flexibility of the rendering pipe-
line. Hence, the noises are imposed by applying first the
Gaussian Blur to the noiseless images. The additive Gaus-
sian and the flicker noise are obtained by computing pixel-
intensity noise maps of the same size as the original image.
The additive white Gaussian noise map is obtained by ran-
domly sampling pixel intensity values by following Gaus-
sian distribution with the prescribed mean and standard
deviation. Then, the computed noise map is added to the
blurred image. The same holds for the flicker noise, but,
as described above, the noise map is filtered (see Eq. 5)
before being added to the blurred image. After that, the
noised images are clipped to the correct range of values
([0.0, 1.0] for normalized images, [0, 255] otherwise). The
most dominant noises in both VIS and TIR images can
be characterized for the sensor actually adopted during a
validation campaign and then added to the noiseless syn-
thetic images generated by the proposed pipeline as dis-
cussed above, tailoring those images to the mission
scenario of interest.
4. Image fusion techniques

This section is devoted to the description of the imple-
mented image fusion techniques, which can be classified
according to the criteria presented in Section 2. All the pre-
sented methods but the last one share the same assumption,
i.e. the source images should have the same resolution. All
the presented fusion methods require that the source
images are perfectly aligned.
4.1. Fusion methods

4.1.1. Fusion through Fast Global Smoothing Decomposition

and Target Enhanced Parallel Gaussian Fuzzy Logic

(TEPGFL)

A representative multi-scale-based fusion method is here
considered. The method employs multi-scale image decom-
position, as described in Section 2.2.1, and saliency detec-
tion to determine the fusion weights. In particular, the
work presented in Duan et al. (2022) is taken as a reference.
An edge-preserving smoothing method, namely the fast
global smoother (FGS) of Min et al. (2014), is employed
as the multi-scale decomposition tool in this technique.
Base layers are often fused according to a simple average
rule. However, this approach suffers from a negative effect,
that is, the loss of contrast in the fused image. The selected
algorithm performs base layers fusion through a Gaussian
fuzzy logic-based weighting rule that is based on the con-
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cept of the Gaussian membership function. To perform
detail layer fusion, the visual saliency map is obtained
using the Scharr gradient algorithm, due to its robustness
to noise, and a choose-max coefficient rule is employed to
select the fusion weights.

4.1.2. Anisotropic diffusion-based fusion (ADF)
The ADF algorithm can be regarded as a PCA-based

technique, which falls into the broad class of subspace-
based methods outlined in Section 2.2.2. This implementa-
tion is largely based on the one described in Bavirisetti and
Dhuli (2016a). Anisotropic diffusion is used to decompose
images due to its capability of preserving edge information.
Two layers are obtained, namely approximation and detail
layer. The fused-based layers are obtained as a weighted
superposition of the source images base layers, while detail
layers are fused with the help of the Karhunen–Loeve (KL)
transform, which is capable of transforming the correlated
image components into uncorrelated ones. The KL trans-
form can be practically implemented through the eigen-
value analysis of the two detail layers. Lastly, the fused
image is reconstructed through a simple linear combination
of fused approximation and detail layer. The method is
expected to have a high computational efficiency due to
the fast image decomposition process.

4.1.3. Image fusion using two-scale decomposition and

saliency detection (TSFISD)

This algorithm is a hybrid method that builds on both
multi-scale decomposition and the concept of image sal-
iency, which was described in Section 2.2.3. Our implemen-
tation is inspired by the one presented in Bavirisetti and
Dhuli (2016b), the main difference being the technique
employed to compute the visual saliency maps. While in
the original work, median and mean image filters are
employed, our version uses image convolution with a
Scharr filter. The Scharr gradient reflects the significant
structural features of an image, such as edges, outlines,
and region boundaries and it is resilient with respect to
image noise. A simple average rule is here used to perform
base layer fusion.

4.1.4. Image Fusion with Guided Filtering (GFF & MGFF)

The following algorithms are another example of hybrid
multi-scale-based fusion methods, as pointed out in Sec-
tion 2.2.4. The GFF method introduced by Li et al.
(2013), proposes an approach based on a two-scale decom-
position of the images into base and detail layers with an
average filter. Saliency maps and corresponding initial
weight maps are calculated using Laplacian and Gaussian
operators. A guided-filtering technique is employed to
refine the initial weight maps, which are finally combined
with the respective layers to yield the fused image.

Two of the main problems of the GFF, namely the loss
of image features due to the Laplacian operator and not
exploiting the advantages of a multi-scale decomposition,
are addressed in Bavirisetti et al. (2019), which introduces
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the MGFF algorithm. The guided filter is utilized in the
decomposition process to obtain base and detail layers,
taking advantage of its structure-transferring property. Sal-
iency and weight maps extraction is then performed with
the latter being taken as the normalization of the first
pixel-wise, reducing the computational effort. The whole
process is iterated in a multi-scale decomposition and
lastly, the fused image is reconstructed by combining base
and detail layers with a weighted average.

4.1.5. Infrared and visual image fusion through Infrared

Feature Extraction and Visual Information Preservation

(IFEVIP)

The IFEVIP algorithm does not belong to any of the
aforementioned categories since it is not reliant on classic
fusion methods. Its implementation, mostly based on the
work of Zhang et al. (2017), exploits quadtree decomposi-
tion and Bézier interpolation to firstly reconstruct the
infrared background. The infrared bright features are
extracted by subtracting the reconstructed background
from the infrared image and then refined by reducing the
redundant background information. To inhibit the over-
exposure problem, the refined infrared features are adap-
tively suppressed and then added to the visual image to
achieve the final fusion image.

4.1.6. Different Resolution Image Fusion (DRIF)

The last algorithm here considered is the one developed
by Du et al. (2018) and it allows one to directly fuse images
that have different resolutions. This method formulates the
fusion problem as a total variation minimization problem.
The cost function is composed of a data fidelity term that
constrains the pixel intensity similarity of the downsampled
fused image with respect to the source TIR image, while a
regularization term forces the gradient similarity of the
fused image with respect to the VIS one. To relieve the
computational cost, the fast iterative shrinkage-
thresholding algorithm (FISTA) framework is applied. It
is worth underlying that the resulting fused image has the
same resolution as the source VIS.

4.2. Performance metrics

The performances of image processing algorithms for
vision-based navigation strongly depend on the quality of
the fused images, and thus the performance of the different
fusion techniques should be evaluated both qualitatively
and quantitatively. Subjective evaluation methods assess
the quality of fused images according to the basis of human
visual perception, such as artefacts or image distortion.
Nevertheless, it is necessary to employ quantitative metrics
to obtain a judging index that cannot be biased by obser-
vers or interpretation. In our case, reference-free criteria
are adopted, since it is not possible to compare the fused
image with a reference ground truth image. The perfor-
mance metrics used to evaluate the fusion algorithms are
here briefly described.
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4.2.1. Mutual Information (MI)

The mutual information (MI) index measures the
amount of information that is transferred from the source
images to the fused output. MI measures the dependence of
two random variables. The fusion MI metric is defined as a
simple summation of the MI between the source VIS and
the fused image and the MI between the source TIR and
the fused image, respectively:

MI ¼ MIVIS;F þMITIR;F ð6Þ
being MIVIS;F ;MITIR;F the amount of transferred informa-
tion from the source VIS and TIR images to the fused
image, respectively. Please notice that no weights are added
to the linear summation due to the fact that, in principle, it
is impossible to know apriori the relative contribution of
each source image to the final fused image. The MI
between two random variables is computed through the
Kullback–Leibler measure. Specifically, the MI of between
the fused image F and source image X is defined as follows:

MIX ;F ¼
X
x;f

pX ;F x; fð Þ log pX ;F x; fð Þ
pX xð ÞpF fð Þ ð7Þ

where pX xð Þ and pF fð Þ are the marginal histograms of
source image X and fused image F, respectively, pX ;F x; fð Þ
is the joint histogram of source image X and fused image
F. Further details regarding the theoretical background
of this quality index are available in the work of Qu
et al. (2002) for the interested reader.
4.2.2. Feature Mutual Information (FMI)

The performance metric presented in Haghighat et al.
(2011) is related to image processing tasks. Images are
often represented by their features, such as edges, details,
and contrast, therefore measuring the amount of feature
information that is transferred from source images to the
fused image is directly linked to our visual navigation pur-
poses. FMI is based on MI and feature information and it
can be defined as follows:

FMI ¼ MI
^VIS;bF þMI

^TIR;bF ð8Þ

where bF ; ^VIS; ^TIR denote the feature maps of fused, visible,
and infrared, images, respectively. A large FMI metric gen-
erally indicates that a considerable amount of feature infor-
mation has been transferred from the source images to the
fused one, and thus, the output of the fusion is suitable for
image processing purposes. In particular, we consider edge
information for this metric, due to the importance of edge
strength in the subsequent image processing phase.
4.2.3. Structural Similarity Index (SSIM)
As pointed out in Wang et al. (2004), SSIM models

image loss and distortion. It consists of three contributions,
namely loss of correlation, luminance, and contrast distor-
tion. SSIM is computed as the product of three parts:
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SSIMX ;F ¼ 2lxlf þ C1

l2
x

� 2rxrf þ C2

r2
xr

2
f þ C2

� rxf þ C3

rxrf þ C3

ð9Þ

In which SSIMX ;F denotes the structural similarity between
the source image X and the fused image F ; x and f denote
the image patches of source and fused images in a sliding
window; lx; lf indicate the mean intensity values of source

and fused image, respectively; rx and rf are the image
intensity standard deviation (SD); rxf denotes the covari-
ance of source and fused images and it is computed as:

rxf ¼ 1

N � 1

XN
i¼1

xi � lxð Þ f i � lf

� � ð10Þ

The three constants C1;C2;C3 are numerical stability
parameters. Finally, the structural similarity between the
source images and the resulting fused image is computed
as follows:

SSIM ¼ SSIMVIS;F þ SSIMTIR;F ð11Þ
A high SSIM value indicates a good quality fused image.

4.2.4. Root Mean Squared Error (RMSE)

The root mean squared error (RMSE) metric for image
fusion is evaluated as:

RMSE ¼ RMSEVIS;F þ RMSETIR;F

2
ð12Þ

and it denotes the dissimilarity between the source images
and the fused image. The RMSE between the source image
X and the fused image F is defined as:

RMSEX ;F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XN
i¼1

XM
j¼1

X i; jð Þ � F i; jð Þð
vuut ð13Þ

where M �N denotes the size of the images and (i,j) are the
image coordinates. A low RMSE metric hints that the
fused image has a small amount of error and distortion.

4.2.5. Average Gradient (AG)

The average gradient (AG) metric quantifies the gradi-
ent information of the fused image, which in turn repre-
sents its detail and texture. For an image f with the size
M � N, the AG metric can be defined as follows:

AG ¼ 1

MN

XM
i¼1

XN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rF 2

x i; jð Þ þ rF 2
y i; jð Þ

2

s
ð14Þ

where i; jð Þ are the image coordinates,rF x andrF y denote
the horizontal and vertical intensity gradient values,
respectively. The larger the AG index, the more gradient
information the fused image contains.

5. Results

This section is devoted to the analysis of the image
fusion results. First of all, the problem of image rescaling
is addressed, selecting the best alternative for either upscal-
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ing TIR images or downscaling VIS ones. Subsequently,
the image fusion techniques are evaluated according to
the metrics discussed in Section 4.2 and according to their
computational cost.

5.1. Selection of image rescaling methods

As already noticed, TIR images present a lower resolu-
tion and poorer contrast with respect to VIS ones, as well
as a higher level of noise; this affects the quality of the fused
image. To select the best image downscaling or upscaling
techniques, the results obtained from fusing directly the
VIS and TIR images at the same resolution (ideal scenario)
against the fused images obtained by preprocessing the
TIR images (e.g. upscaling) or the VIS ones (e.g. downscal-
ing) are compared in this section. To assess the effects of
upscaling and downscaling on noisy images, the additional
evaluation metrics considered are the (peak signal-to-noise)
ratio (PSNRS), the mean square error MSES, and struc-
tural similarity index (SSIMS). The PSNRS is evaluated
between fused images obtained from noiseless VIS-TIR
couples both at the same resolution and the ones obtained
by considering the difference in resolution previously dis-
cussed. The PSNRS is a standard metric widely used to
evaluate the effects of IP chains on the noise in images.
To provide also a metric that can represent the differences
in the structure of the obtained images, which can be high
due to the difference in the resolution, the SSIMS is also
taken into account. Then, as pixel-to-pixel comparison,
also the MSES is considered. As for the PSNRS, also the
SSIMS and the MSES are evaluated between fused images
from noiseless high-resolution VIS-TIR couples and noised
mixed resolutions VIS-TIR couples. Please notice that in
the remainder of this paper the subscript ‘‘S” is used (for
standard) to differentiate the metrics used to compare an
image with respect to a single source image (1:1 compar-
ison), from the metrics adopted to evaluate the fused
images with respect to their VIS and TIR sources (1:2 com-
parison) presented in Section 4.2.

Before delving into the analysis of the fusion techniques
for noised VIS-TIR images at a different resolution, an
evaluation of the interpolation methods to downscale/up-
scale images is here proposed. The methods considered in
this analysis are: area interpolation from Wong and
Herley (1997), bicubic interpolation as in Keys (1981),
and Lanczos resampling from Duchon (1979). The metrics
(MSES, PSNRS, and SSIMS) have been evaluated over
three datasets (namely TIR, VIS ‘‘In Eclipse”, VIS ‘‘In
Light”) of 20 images each. Please notice that for the anal-
yses that are performed, the TIR images have been ren-
dered with resolution of both 512�512 px and
1024�1024 px. The datasets mentioned have been created
with the previously described TIR-VIS image generation
tool. A single sun-target angle is employed in the dataset,
therefore TIR images have been rendered assuming the
same temperature field for Tango, only changing the
chaser-target relative pose. Similarly, for each VIS images



Table 2
Upscaling of TIR images evaluation metrics.

Method MSES PSNRS SSIMS

Area 0.0065 22.13 0.48
Bicubic 0.0063 22.29 0.49

Lanczos 0.0063 22.24 0.48
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dataset only the relative pose is changed and, as a conse-
quence, images correspond to different sun-target-camera
phase angles. The VIS and TIR datasets are generated such
that the camera locations with respect to the target are uni-
Fig. 8. Examples of illumination conditions of noiseless

Table 3
Downscaling of VIS images evaluation metrics for in light and in eclipse illum

In Eclip

Method MSES

Area 0.00075

Bicubic 0.00094
Lanczos 0.00104

In Lig

Method MSES

Area 0.0022

Bicubic 0.0024
Lanczos 0.0025
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formly distributed over an ellipse with major and minor
axis equal to 14.5m and 8m respectively. The ellipse is cen-
tered in geometrical center of the target, with the camera
constrained to point toward the target. The ellipse is tilted
by 45� every 5 frames to have a full coverage of the target.
In such a way, by keeping constant the sun-target angle,
the target illumination conditions result to be well dis-
tributed, as it can be noticed in Fig. 8.

Please notice that the source VIS and TIR images are
perfectly aligned. Moreover, the relative distances has been
kept constrained to low values in order to ease the detec-
rendered VIS images included in the VIS datasets.

ination conditions.

se

PSNRS SSIMS

31.34 0.57

30.34 0.54
29.87 0.51

ht

PSNRS SSIMS

27.19 0.56

26.70 0.53
26.48 0.50



Table 4
Averaged fusion metrics for upscaled TIR images, ‘‘In-Eclipse” dataset.

AG MI FMI SSIM RMSE

ADF 14.66 0.98 0.848 1.96 12.31
GFF 15.35 1.52 0.878 1.94 11.76
IFEVIP 20.35 1.50 0.818 1.26 15.52
MGFF 16.13 1.01 0.837 1.94 12.14
TSIFSD 13.10 0.84 0.835 1.95 11.97
TEPGFL 14.97 0.94 0.784 1.12 18.63
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tion of possible artifacts due to the tested rescaling and
fusion techniques by a qualitative comparison of the
images.

The rescaling algorithms are applied considering an
upscaling factor of 2 and a downscaling factor of 0.5,
and then averaged. The results are reported in Table 2
for TIR upscaling, and in Table 3 for VIS downscaling
applied on both VIS datasets. In Table 2 and Table 3 the
optimum values for each of the three metrics used have
been written in bold. From the results obtained, the bicubic
interpolation is used to rescale VIS images in all the illumi-
nation conditions from 1024�1024 px to 512�512 px,
while for rescaling the TIR images from 512�512 px to
1024�1024 px, the area interpolation method is selected.
By comparing the results reported in Table 2 and Table 3,
it can be noticed that all the interpolations methods used
for rescaling have a noise-reduction effect, with the maxi-
mum PSNRS gain achieved in the downscaling process.
Both these outcomes are expected since the upscaling/-
downscaling procedure is carried out by interpolating adja-
cent pixel values, that has been proven to reduce the noise.
Moreover, the downscaling is performed also by averaging
the pixel intensities, that further increase the PSNR.

The upscaling and downscaling methods, previously
selected as best suited, have been applied to resize the
images to the correct resolution, before performing the
fusion test with all the methods discussed in Section 4
between noisy VIS and TIR images originally at a different
resolution.
5.2. Fusion performances analysis

The last part of the pipeline to generate VIS-TIR fused
images, starting from the clean images at a different resolu-
tion, involves then the application of the noise to the VIS
and TIR source images separately, the application of VIS
Fig. 9. Illustration of the image
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downscaling or TIR upscaling by using the methods iden-
tified here as optimal, and finally the image fusion. A sche-
matic outline of the different image fusion strategies is
reported in Fig. 9

All the presented fusion techniques have been applied to
the datasets previously discussed (see Section 5.1), with two
the different alternatives for scaling: VIS downscaling and
TIR upscaling. For each fused image, the evaluation of
the performance metrics has been carried out. The perfor-
mance metrics described in Section 4 have been considered
together with the averaged MSES, PSNRS, and SSIMS

over the dataset to better understand the behavior of the
proposed image fusion algorithms in presence of noises.
To evaluate the metrics related to noise, fused images gen-
erated with noiseless VIS-TIR images at the same resolu-
tion by using the same method under analysis have been
considered as references. Table 4 and Fig. 10 show the per-
formance metrics average values and for each image pair
respectively, obtained from VIS and upscaled TIR source
images for the ‘‘In-Eclipse” dataset. From a qualitative
inspection of the fusion results (an examle for a single
image is reported in Fig. 11), it is evident that the GFF
algorithm assigns a low fusion weight to TIR images, thus
producing a very dark image as output. The outliers in the
MI metrics for GFF are related to images which are almost
identical to the source VIS image; in fact, by analyzing the
fusion schemes investigated.



Fig. 10. Quantitative comparison of the metrics and run time on the ‘‘In-Eclipse” dataset, with TIR upscaling.
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MI values in detail, it can be noticed that the MIVIS;F is very
high, while the MITIR;F is close to zero. This effect is instead
not present when an intermediate score is achieved, as the
total MI between the source VIS and TIR images and the
fused image is lower in absolute value but made up of two
similar contribution. On the other hand, MGFF only pre-
sents one outlier value, that is linked to a very high weight
assigned to the TIR image during the fusion process. As for
TEPGFL, it can be noticed that the method introduces
halo effects and artefacts around the edges, and thus it
should be discarded. This effect is also mirrored in the
AG metrics, which presents outliers whenever halo and
13
artefacts are predominant. The other methods are instead
capable of preserving the texture information of the solar
panels from the VIS image while retaining the higher pixel
intensity of the source TIR.

Table 5 and Fig. 12 show the performance metrics aver-
age values for each image pair respectively, obtained from
TIR and downscaled VIS source images. Once again, it is
possible to notice from Fig. 13 the halo and artefacts intro-
duced by TEPGFL. In this case, the GFF algorithm is cap-
able of preserving the pixel intensity of the TIR image,
meaning that this method is sensitive to the upscaling pro-
cess. Nevertheless, GFF cannot retain the texture informa-



Fig. 11. Fusion results of representative algorithms on the ‘‘In-Eclipse” dataset, with TIR upscaling.

Table 5
Averaged fusion metrics for downscaled VIS images, ‘‘In-Eclipse” dataset.

AG MI FMI SSIM RMSE

ADF 14.56 1.232 0.867 0.976 12.04
GFF 15.39 1.51 0.927 1.00 11.62
IFEVIP 16.67 1.91 0.906 1.03 14.72
MGFF 13.74 1.05 0.900 1.160 11.90
TSIFSD 10.89 0.842 0.893 1.076 11.7
TEPGFL 12.94 0.873 0.831 0.437 17.6
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tion of the solar panels from the VIS images, thus reducing
the overall detail level of the fused image. Qualitative per-
formances of the other methods remain unchanged.

From the quantitative evaluation parameters, it appears
that IFEVIP still retains the highest gradient information
with respect to the other fusion methods. However, it tends
to produce saturated images in the ‘‘In-Light” dataset as
shown in the example reported in Fig. 14, and thus it is a
misleading indicator in this case. By analyzing the perfor-
mances of ADF and TSIFSD, it can be noticed that they



Fig. 12. Quantitative comparison of the metrics and run time on the ‘‘In-Eclipse” dataset, with VIS downscaling.
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both yield a low RMSE for the fused image while having
good performance scores in terms of FMI and MI. MGFF
and GFF always have intermediate scores, however, as
pointed out before, GFF is sensitive to image upscaling.
Please notice that a qualitative analysis of the fusion results
still plays a major role in the final decision, especially for a
dataset of a limited size as the one we have at the moment.
Indeed, if a larger dataset is employed, the presence of out-
liers would be mitigated, and thus it would be possible to
rank the methods according to the total points scored for
the metrics.
15
The metrics used to evaluate the effects of the fusion on
the noise (averaged MSES, PSNRS, and SSIMS) are
reported in Table 6, for all the cases tested.

Evaluating the effects of the fusion on a synthetic real
case scenario with noisy images at different resolutions
offers another perspective on the evaluation of the best-
suited methods to fuse VIS-TIR spaceborne images. The
results obtained by fusing noisy VIS-TIR images both at
high resolution are also reported in Table 6 for compari-
son. The case of the same resolution is an ideal case but
offers a good comparison since, as it can be noticed from



(a) Source VIS. (b) Source TIR.

(c) TEPGFL. (d) GFF. (e) IFEVIP.

(f) MGFF. (g) TSIFSD. (h) ADF.

Fig. 13. Fusion results of representative algorithms on the ‘‘In-Eclipse” dataset, with VIS downscaling.
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Table 6, it represents the optimal performance achievable
as almost all the fusions applied with downscaling or
upscaling one of the input images achieve lower perfor-
mances on average.

With regards to the best way of dealing with inputs at
different resolutions, from Table 6 it can be concluded that
upscaling the TIR images offers the optimal performances
for all the methods, achieving metric scores close to the
optimal achieved for images at the same resolution. Hence
it can be concluded that by upscaling the TIR images, the
16
fused image is less sensitive to input noise, as the output is
closer to the ideal noiseless case (high performances in
noise metrics). By averaging the scores obtained by each
method, it can be also concluded that the TSIFSD and
the ADF achieve by far the best performances among the
methods considered here. By coupling these results with
the insights given by the performance metrics previously
discussed it can be concluded that both methods are valid
and that they should be preferred among the others tested
here. From the scores obtained and reported in Table 6, it



Fig. 14. Example of a saturated target in image fused with IFEVIP
method, ‘‘In-Light” dataset.

Fig. 15. Example of fused image obtained by applying DRIF method,
‘‘In-Light” dataset.

Table 7
Averaged run time of selected fusion methods.

Method Average run time [s]

Downscaled VIS Upscaled TIR
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appears that also the direct fusion at different resolutions
can be an applicable method but the obtained images have
poor quality in terms of accuracy and fidelity of the tex-
tures (see example in Fig. 15), hence it should be discarded
from the possible options.
ADF 0.012 0.045
GFF 0.153 0.549
IFEVIP 0.024 0.094
MGFF 0.136 0.536
TSIFSD 0.013 0.056
TEPGFL 0.241 1.040
5.3. Computational time analysis and final methods selection

A summary of run time analysis of the different fusion
methods already shown in Fig. 10 and Fig. 12 for all the
Table 6
Averaged metrics for all fusion methods applied on noisy inputs.

Fusion Method Input Type MSES PSNRS SSIMS

Eclipse Light Eclipse Light Eclipse Light

ADF VIS Downscaled 0.0028 0.0038 25.58 24.35 0.48 0.48
TIR Upscaled 0.0012 0.0012 29.20 29.12 0.46 0.46

Same Resolution 0.0012 0.0012 29.36 29.32 0.47 0.47
GFF VIS Downscaled 0.0064 0.0055 22.22 22.82 0.48 0.48

TIR Upscaled 0.0036 0.0023 24.91 26.67 0.49 0.50
Same Resolution 0.0015 0.0013 28.56 29.13 0.50 0.50

IFEVIP VIS Downscaled 0.0078 0.0105 21.21 20.00 0.32 0.32
TIR Upscaled 0.0025 0.0025 26.10 26.06 0.31 0.31

Same Resolution 0.0026 0.0026 25.86 25.84 0.29 0.29
MGFF VIS Downscaled 0.0033 0.0042 24.96 23.89 0.47 0.46

TIR Upscaled 0.0013 0.0013 28.84 28.73 0.44 0.44
Same Resolution 0.0014 0.0014 28.58 28.45 0.41 0.41

TSIFSD VIS Downscaled 0.0028 0.0037 25.69 24.50 0.52 0.52
TIR Upscaled 0.0010 0.0010 29.97 29.85 0.48 0.47

Same Resolution 0.0009 0.0009 30.44 30.26 0.51 0.51
TEPGFL VIS Downscaled 0.0080 0.0069 21.14 21.81 0.35 0.36

TIR Upscaled 0.0041 0.0025 23.97 26.21 0.23 0.29
Same Resolution 0.0035 0.0023 24.64 26.55 0.27 0.31

DRIF Different Resolution 0.0019 0.0024 27.12 26.30 0.44 0.42

17
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tested image pairs, is reported by considering the average
values for all the runs performed in Table 7 considering
upscaled TIR and downscaled VIS images respectively.
All the algorithms mentioned above are implemented in
MATLAB and run on an Intel� Core

TM

i7-8750H CPU,
clocked at 2.20 GHz. As expected, the average run time
of the fusion algorithms is reduced by almost one order
of magnitude when the resolution of the source images is
halved. The most computationally efficient methods are
IFEVIP, TSIFSD, and ADF, which always have a run time
below 0.1s. It can be concluded that all three methods are
good candidates for on-board implementation (even if tests
with hardware in the loop should be performed to properly
assess the feasibility), while the others might be too compu-
tationally intensive. As for DRIF, with an average compu-
tational time of 6s, it can be concluded that the method is
too computationally intensive for spaceborne applications,
and thus it will not be considered any further.

Following the outcomes of the analyses discussed before
and the computational time on CPU detailed above, it can
be concluded that the best way of performing pixel level
image fusion with source VIS and TIR images at different
resolution, is to upscale the TIR images by using bicubic
interpolation, and then fusing the source images by using
TSIFSD or ADF.

6. Conclusions

Relying on images acquired in the visible band of the
spectrum for spacecraft relative navigation purposes is a
widely explored possibility. Despite the strong advantages
with respect to more complex and expensive navigation
suites, it has been highlighted a strong dependency from
the target illumination conditions. In case of low illumina-
tion, the target can be almost non visible in the images,
jeopardizing the VIS-based navigation chain. To deal with
that, this paper proposes to fuse at pixel level two source
images of the same scene acquired in different spectral
bands (i.e. the visible and the thermal-infrared), and to
use the fused VIS-TIR image as input of the image process-
ing and navigation algorithms.

A lack of tools capable of generating synthetic but accu-
rate TIR spaceborne images has been identified hence, in
order to test the feasibility of the proposed approach, a
new physically-based TIR images rendering method has
been developed and included in a tool capable of generat-
ing both VIS and TIR images. Subsequently, the synthetic
images generated by the tool have been used has input to
perform an extensive analysis of VIS-TIR image fusion
techniques in a realistic representative scenario. To ensure
the high fidelity of the rendering tool with actual thermal-
infrared images, it has been developed by taking as input
both a thermal simulation of the scene to be captured
and also the relative pose (attitude and position) between
the camera and the target. These inputs are used to get
the radiant flux scaled by using the camera to target facets
view factors. The TIR images are rendered by using the
18
radiant flux map as emitting texture. Then, the VIS-TIR
image generator is used to assess the performances of
image fusion methods for close proximity navigation,
hence it has been used to generate images of a simplified
model of Tango from PRISMA mission. It is here
acknowledged that the simulation of a proper model of
actual thermal-infrared camera sensors is still missing in
the image generator and should be included in the next
steps. It is also acknowledged that the images do not have
Earth in the background. Whilst the VIS image generation
is already capable to include Earth in the background, the
TIR image generation tool it is cable to do that as well but
further analyses on this point need to be performed.

Concerning the image fusion methods, the analyses pre-
sented comprise the most widely used techniques, based on
several different architectures, hence representative of a
wide range of methodologies. The performances has been
evaluated by using both qualitative and quantitative met-
rics, that are state-of-the-art in the computer vision field.
Analysis have been conducted, comparing the fusion meth-
ods in different illumination conditions and for different
relative poses between target and camera, addressing the
problem of dealing with noisy input images at different res-
olution, which is representative of a real-case application
scenario with TIR cameras resolution usually lower than
VIS cameras. The performed analyses have a major focus
on the comparison of a wide variety of fusion methods.
For this reason, the analyses present some limitations
regarding the used dataset, which has a reduced size. In
particular, they are considered only one spacecraft target,
a single thermal simulation and the number of different
illumination conditions present in the dataset is reduced.
Future work can be done to investigate such aspects
through an image dataset representative of a wider range
of scenarios, restricting to the most promising methods
found here. From the outputs of the analyses performed,
it has been pointed out the sensitivity of few fusion meth-
ods to both illumination conditions of VIS images and
image upscaling/downscaling, resulting in both halos and
white-color saturation in the fused images, hence in extre-
mely poor textures. On the other side, both the perfor-
mance metrics, the noise rejection metrics and also the
preliminary evaluations of the CPU wall-clock time for
the image fusion step, highlight that TSIFSD and ADF
are the best methods, due to the extremely low computa-
tional time, optimal performance metrics, high tolerance
to noisy inputs, and high visual quality of produced images
both in light and in eclipse conditions. On the contrary, it
has been demonstrated here that directly fusing noisy
images at different resolutions performs poorly for space-
craft navigation purposes, resulting in almost textureless
targets in the fused image. The outcomes of this paper rep-
resent the first step towards the development and testing of
innovative multispectral image-based navigation tech-
niques. As future work, further analyses shall deeply inves-
tigate the influence of the sun-target-camera phase angle
over the fusion methods, verifying their robustness to illu-
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mination changes. Moreover,the computational effort of
applying fusion methods shall be evaluated using represen-
tative hardware.
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