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Abstract—Edge systems are required to autonomously make real-time
decisions based on large quantities of input data under strict power,
performance, area, and other constraints. Meeting these constraints is
only possible by specializing systems through hardware accelerators
purposefully built for machine learning and data analysis algorithms.
However, data science evolves at a quick pace, and manual design
of custom accelerators has high non-recurrent engineering costs: gen-
eral solutions are needed to automatically and rapidly transition from
the formulation of a new algorithm to the deployment of a dedicated
hardware implementation. Our solution is the SOftware Defined Ar-
chitectures (SODA) Synthesizer, an end-to-end, multi-level, modular,
extensible compiler toolchain providing a direct path from machine
learning tools to hardware. The SODA Synthesizer frontend is based
on the multilevel intermediate representation (MLIR) framework; it in-
gests pre-trained machine learning models, identifies kernels suited for
acceleration, performs high-level optimizations, and prepares them for
hardware synthesis. In the backend, SODA leverages state-of-the-art
high-level synthesis techniques to generate highly efficient accelerators,
targeting both field programmable devices (FPGAs) and application-
specific circuits (ASICs). In this paper, we describe how the SODA Syn-
thesizer can also assemble the generated accelerators (based on the
finite state machine with datapath model) in a custom system driven by
a distributed controller, building a coarse-grained dataflow architecture
that does not require a host processor to orchestrate parallel execution
of multiple accelerators. We show the effectiveness of our approach by
automatically generating ASIC accelerators for layers of popular deep
neural networks (DNNs). Our high-level optimizations result in up to
74x speedup on isolated accelerators for individual DNN layers, and our
dynamically scheduled architecture yields an additional 3x performance
improvement when combining accelerators to handle streaming inputs.

1 INTRODUCTION

Next-generation edge systems will operate under conditions
where exporting all the acquired data for centralized pro-
cessing is inconvenient or impossible [1]. Monitoring infras-
tructure for highly dynamic systems (e.g., sensor networks)
will need to operate in low power settings with limited
bandwidth available for communication [2]. Autonomous
vehicles will need to make critical decisions in real-time in
a distributed setting. Experimental instruments such as the
ones owned by the US Department of Energy (e.g., particle
accelerators, mass spectrometers, and electron microscopes),

already generate volumes of data that are impossible to
store or transfer without pre-processing [3]]. Such extreme
conditions require highly specialized processing systems
to support autonomous learning and artificial intelligence,
optimized along a variety of metrics that include energy,
performance, latency, size, and more. Designing and imple-
menting domain-specific systems is challenging and expen-
sive due to the extreme diversity and fast-paced growth of
applications and algorithms, especially in the field of ma-
chine learning (ML). There is no “one-size-fits-all” solution,
and developing specialized accelerators requires significant
efforts by large teams of expert hardware designers.

To address these problems, we have developed the SOft-
ware Defined Architectures (SODA) Synthesizer [4], [5],
[6]: an open-source, multi-level, modular, extensible, no-
human-in-the-loop hardware compiler that translates high-
level ML models into domain-specific accelerators. Our tool
generates highly specialized designs in a hardware descrip-
tion language (HDL), which can be synthesized with both
commercial and open-source tools on field programmable
gate arrays (FPGAs) or as application-specific integrated cir-
cuits (ASICs). The SODA Synthesizer comprises a compiler-
based frontend that leverages the Multi-Level Intermediate
Representation (MLIR) framework, and a compiler-based
backend that integrates state-of-the-art high-level synthesis
(HLS) methodologies. The SODA Synthesizer allows for the
exploration of design metrics through compilation passes
and parameters and enables identification of optimal trade-
offs depending on the target application requirements.

HLS tools typically generate highly-specialized, power-
efficient hardware designs using the finite state machine
with datapath (FSMD) paradigm, which is particularly
suited for extracting instruction-level parallelism. However,
the FSM controller has a notable limitation: it is not scalable
enough to deal with multiple, parallel, execution flows
(e.g., in presence of coarse-grained parallelism). In these
conditions, which are common for compute and memory-
intensive ML algorithms (e.g., deep neural networks), the
complexity of a centralized, statically scheduled FSM con-
troller grows exponentially, leading to significant area and
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performance overheads [7]. A system-on-chip (SoC) can use
a central general-purpose microcontroller to drive multiple
accelerators implementing different layers of an ML model;
however, in such a system the data movement between
the host microcontroller, the accelerators, and the memory
quickly becomes a performance bottleneck. In this work, we
have extended the SODA Synthesizer to enable automatic
generation of a second type of system: a dynamically sched-
uled architecture where custom ML accelerators (based on
the FSMD model) are composed in a dataflow system and
are driven by a distributed controller. In this architecture,
multiple accelerators can perform computations in paral-
lel on different portions of streaming input data, without
requiring orchestration from the host microcontroller, and
can communicate with each other without going through
external memory.

In a previous work [8], we implemented a solution to
synthesize parallel C code, annotated with OpenMP-like
directives, into a similar dataflow architecture, with support
for spatial parallelism, resource reuse, and memory access
parallelism. That approach could identify certain degrees of
parallelism by analyzing program dependencies, but it was
constrained by conservative alias analysis: user-provided
annotations were needed to simplify the dependency analy-
sis and to expose dynamic parallelism. ML frameworks, in-
stead, naturally represent models as computational graphs
describing how the data flows across operators, and MLIR
directly interfaces with ML frameworks, offering promising
opportunities for domain-specific optimizations. By lever-
aging the MLIR framework, the SODA Synthesizer can
take advantage of such optimization opportunities. MLIR
representations capture hierarchy and parallelism of com-
putational graphs, facilitating generation and mapping to
dataflow architectures. Knowing precisely how the data
flows across operators and memory regions removes the
need for complex alias analysis.

In summary, the contributions of this paper are:

e an automated, modular, multi-level, compiler-based
design flow from high-level ML frameworks to op-
timized FPGA or ASIC accelerators implemented
following the FSMD model;

e asearch and outlining methodology to automatically
extract accelerators and their dependencies from an
MLIR input specification;

e a system integration methodology to assemble
FSMD accelerators into a coarse-grained, dynam-
ically scheduled dataflow architecture with dis-
tributed control;

e a comparison between a standard SoC design with
a centralized microcontroller and a custom system
built with our distributed controller methodology.

The rest of the paper is structured as follows: we summa-
rize related work in Section [2} the SODA Synthesizer is in-
troduced in Section[3] and detailed in Sections We show
experimental results in Section [|and draw conclusions for
the paper in Section [/

2 RELATED WORK

A large number of designs (including several based on the
dataflow model) have been proposed as specialized ML
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accelerators, and existing HLS tools have been extended
with dataflow concepts before. In this section, we summa-
rize relevant previous works and highlight the differences
between existing approaches and our work.

2.1 Hardware acceleration for machine learning

Available commercial solutions offer acceleration of ML
algorithms through specialized functional units (e.g., the
Tensor Cores in NVIDIA GPUs) or entire chips based on
tensor processing (e.g., Google TPU [9]). Some of them,
including SambaNova, GraphCore, and Cerebras, exploit
the dataflow paradigm, with varying degrees of generality
in their processing elements. Research and industry also
proposed many FPGA-based accelerators for ML inference
[10], [11]], often supporting specialized numeric formats to
reduce resource utilization and increase efficiency.

One challenge is to design an accelerator that can sup-
port multiple classes of algorithms, rather than focusing
solely on deep neural networks (DNNSs) [12]. Efforts in this
direction include the PuDianNao [13] and SpiNNaker [14]
architectures, or the Tabla [15] and Eyeriss [16] frameworks
for the generation of accelerators. DNNBuilder [17] and the
related design space exploration flow DNNExplorer [18]
employ configurable and composable layer-wise acceler-
ators to implement several types of DNNs. SIGMA [19]
exploits reconfigurable interconnect with specialized matrix
multiplication units. Other designs with reconfigurable in-
terconnect also support dataflow models [20], [21]. Rather
than proposing yet another accelerator design, we provide a
methodology to design and implement new FPGA/ASIC
accelerators starting from a high-level description of the
input ML algorithm. By leveraging high-level and low-level
(HLS) compiler-based tools, SODA provides a more general
solution: in fact, it can generate hardware designs for vir-
tually any computational pattern, as long as a lowering to
MLIR is available.

One common approach to reduce design efforts of pro-
cessing elements at the register-transfer level is to compile
and map a high-level description of the input algorithm
onto parametrized hardware modules and architecture tem-
plates. VeriGOOD-ML [22] uses the PolyMath compiler [23]
to map ML models in the ONNX format to three different
architecture templates designed for different types of neural
networks. GEMMINI [24] offloads operations from specific
layers of ONNX models to a systolic array connected to a
RISC-V core, after building the systolic array itself start-
ing from a parametrized generator in Chisel. TVM’s VTA
architecture [25] is a configurable FPGA co-processor for
matrix multiplication; the TVM high-level framework then
compiles each ML model into instructions for VTA. All these
solutions can generate specialized accelerators, but they can
only support ML layers and operators that have a direct
mapping to the available hardware templates.

Alternative approaches translate high-level abstractions
into a form that can be ingested by commercial HLS tools
(typically, C/C++ code with tool-specific optimization di-
rectives). PyLog [26] defines a high-level compilation in-
frastructure to transform Python programs into annotated
C/C++ code, which is subsequently fed to Xilinx Vivado
HLS. HeteroCL [27] provides a Python-based domain-
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specific language to partition an algorithm between general-
purpose processor and FPGA, and to insert hardware-
specific information in the code, which is then compiled
into annotated C/C++ for different backend HLS tools. The
hls4ml [28] framework translates input models selecting
operators from a library of C/C++ templates optimized for
Vivado HLS. ScaleHLS [29] aims at facilitating and optimiz-
ing HLS through high-level transformations implemented
in MLIR, exploiting different levels of abstraction and fi-
nally generating annotated C code for Vivado HLS. These
tools provide a bridge between high-level programming
frameworks and hardware generation, but they have limited
flexibility: they only support specific high-level frameworks
and backend HLS tools, and they generate code at a different
(higher) level of abstraction after applying hardware-related
optimizations, potentially losing a considerable amount of
semantic information in the process. With SODA, instead,
we bring together MLIR and HLS to build an integrated
open-source toolchain, optimizing input ML models at ap-
propriate levels of abstractions, without the need to generate
intermediate C/C++, and offering a wide choice of FPGA
and ASIC targets in the backend.

2.2 Generation of dataflow accelerators

Our methodology generates a custom architecture that dy-
namically invokes, in a dataflow fashion, highly optimized,
statically scheduled accelerators based on the FSMD model.
This requires a distributed controller that activates each
module as soon as its inputs are available. Previous HLS
research tried to decompose and distribute the classical
FSM controller to reduce its complexity, restructuring it
in a hierarchical way [30], but this is not very efficient in
managing concurrent execution of independent units.

The Bluespec compiler [31] implements an event-driven
execution paradigm based on rules and atomic transactions
that is similar to our approach. Our approach performs the
synthesis of an event-driven dataflow architecture starting
from outlined kernels in an MLIR description, i.e., from a
high-level abstract representation of the application code.
The Bluespec compiler instead uses as input BSV, a lan-
guage that, while higher-level than Verilog and VHDL, is
closer to a behavioral HDL than to a software description.
Additionally, our kernels are FSMD accelerators, rather
than functional units. Dynamatic [32] proposes an HLS
methodology that generates dynamically scheduled designs
using the dataflow paradigm, mainly focusing on support-
ing dataflow at the instruction level, rather than at the
task/function level. It does not support resource sharing,
and abstracts memory by decoupling it from the accelerator
through a single load/store queue, thus not taking ad-
vantage of memory-level parallelism. Dynamic scheduling
leads to simpler designs when exploiting parallelism across
basic block boundaries; however, FSMDs provide very high
quality of results (both in performance and area) when the
focus is optimizing for instruction-level parallelism inside
a function or a basic block. Dynamatic has been extended
to couple dynamic with static scheduling [33], supporting
resource reuse and a simple memory abstraction, but again
their solution does not consider coarser-grained parallelism
in the input specifications, and it only works on C inputs.
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Fig. 1. The SODA Synthesizer and its interfaces towards external tools,
with details on the components extended for the generation of dataflow
architectures.

Several other research projects are proposing domain-
specific languages and frameworks to generate accelera-
tors that can exploit coarse-grained parallelism by com-
bining dataflow concepts with FSMDs, as we do in our
methodology. For example, Spatial [34] allows to mark
both dataflow modules (akin to our distributed controller)
and FSM modules at different levels of the code hierarchy.
Xilinx Vivado/Vitis HLS tools support dataflow pipelining
mechanisms across functions or loops by annotating the
input C specification with a custom pragma [35]; while
the solution allows overlapping execution of functions and
loops in a pipelined fashion, it only works when a similar
initiation interval for all the functions/loops can be found.
All these approaches still require users to describe to some
extent the behavior and desired features of a circuit in their
code, while the SODA Synthesizer provides a completely
automated path from high-level frameworks to hardware,
with no additional information required.

3 THE SODA SYNTHESIZER

Figure[I|provides an overview of the SODA Synthesizer [4],
[5], [6]; components extended to support the generation of
dataflow architectures are highlighted in blue. The tool is
composed of two main parts: a compiler-based frontend and
a compiler-based hardware synthesis engine. The frontend
is based on MLIR [36], a framework that allows build-
ing reusable compiler infrastructure inspired by (and con-
tributed to) the LLVM project. The SODA Synthesizer fron-
tend interfaces with high-level programming frameworks,
partitions the input applications by identifying key com-
putational kernels for hardware acceleration, and performs
high-level optimizations that improve the subsequent gener-
ation of custom accelerators and systems. The frontend then
generates an LLVM IR as output, which is the starting point
for hardware generation. The SODA backend integrates



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

| From: High-Level Framework |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, J

i Frontend: SODA-OPT f

I
|
! | MLIR Built-in Dialects
|

v

Search & Outline kernel functions |

v

MLIR and SODA Dialects

I
v
I

Isolate Kernel & Host Code

Convert SODA launch
function operations

A—T—4
Task graph

Analysis & high-level
optimization

|
!
|
|
|
|
!
|
!
!
| | MLIR Kernel Code
!
!
|
|
!
|
|
|
|

| LLVMIR | | LLVMIR |

} r To: LLVM for | To: Compose
| | Host [ System |
| | program | |L Architecture |

1 mmooto ]
| To: Backend | |
! for HLS

LI L gt

Fig. 2. Structure of the SODA-OPT high-level compilation frontend,
with emphasis on the components extended for the generation of
dataflow architectures.

Bambu [37], a state-of-the-art open-source HLS tool, to gen-
erate the hardware accelerators. To compile code that will be
executed on a host processor, instead, SODA uses standard
LLVM tools. The frontend compiler and HLS backend are
available at https://gitlab.pnnl.gov/sodalite /soda-opt and
https:/ / github.com/ferrandi/Pand A-bambu, respectively.

3.1 Frontend compiler

SODA-OPT (Figure[2) is the high-level compilation frontend
of the SODA Synthesizer. SODA-OPT performs search, out-
lining, optimization, and dispatching passes on the input pro-
gram, preparing it for hardware synthesis targeting FPGAs
or ASICs. To implement all these functionalities, SODA-
OPT leverages and extends the MLIR framework. MLIR
allows developers to define dialects, i.e., self-contained IRs
that respect MLIR’s meta-IR syntax. Dialects model code at
different levels of abstraction, creating specialized represen-
tations that facilitate the implementation of new compiler
optimizations. For example, dialects that are maintained in
tree along with the MLIR framework include abstractions
for linear algebra, polyhedral analysis, structured control
flow, and others. We will refer to these as built-in dialects
in the rest of the paper.

Built-in dialects are the entry points to the SODA Syn-
thesizer frontend. SODA-OPT introduces new constructs
specific to hardware generation, but it also exploits ex-
isting dialects and optimizations: this enables high-level
programming frameworks to leverage our toolchain just by
providing a translation to built-in MLIR dialects. Several
frameworks already implemented their own specific MLIR
dialects, optimization passes, and lowering methods, in-
cluding TensorFlow, ONNX-MLIR, and TORCH-MLIR. One
entry point to the SODA synthesizer is through the Ten-
sorFlow tf-mlir-translate and tf-opt tools, which
compile ML models defined and trained in TensorFlow into
an MLIR representation.

SODA-OPT implements analysis and transformation
passes that parse MLIR inputs lowered from high-level
frameworks, identify key operation groups, and outline
them into separate MLIR modules. The operations selected
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for hardware acceleration undergo an optimization pipeline
with progressive lowerings through different MLIR dialects
(1inalg — affine — scf — std — 1lvm), and they are
finally translated into an LLVM IR purposely restructured
for hardware generation. SODA-OPT can lower the remain-
ing operations in two different ways, depending on the
desired target: they can represent the orchestrating code ex-
ecuted by a host microcontroller, or the relationship between
the accelerators in our dataflow architecture. In the first
case, SODA-OPT produces another LLVM IR file including
runtime calls to control the generated accelerators. In the
second case, operations are transformed into a function-
based representation (task graph) that allows Bambu to gen-
erate the required distributed controller logic and memory
interface; accelerators and controller modules will then be
assembled together to form the dataflow architecture.

3.2 High-Level Synthesis backend

The SODA Synthesizer backend, Bambu, leverages state-
of-the-art HLS techniques to synthesize the LLVM IR pro-
duced by the SODA-OPT frontend into an accelerator de-
sign. Bambu includes frontends based on standard open-
source compilers (GCC or Clang), supporting C, C++ and,
among others, LLVM IR inputs. It builds an internal IR and
performs HLS steps such as resource allocation, scheduling,
and binding, and finally generates the designs in a hardware
description language (Verilog or VHDL).

Bambu synthesizes Register-Transfer Level (RTL) de-
signs in Verilog following the finite state machine with
datapath (FSMD) model, and we have extended it with
novel methodologies that enhance modularity and generate
dynamically scheduled accelerators. We enabled the reuse
across an entire design of synthesized modules representing
functions within a larger specification [38], providing op-
portunities for modular and hierarchical designs. We further
extended Bambu to allow the integration of FSMD modules
as processing elements in a coarse-grained dataflow design
[8], and in multithreaded parallel accelerators [39]. We ini-
tially developed these synthesis methodologies by integrat-
ing support for parallel C specifications annotated with a
set of OpenMP directives: users identify parallel sections
in the input code through annotations, allowing Bambu to
generate custom accelerator modules, and to combine them
in a top-level, dynamically scheduled architecture. MLIR
descriptions are naturally parallel and hierarchical, and
the MLIR framework facilitates the implementation of the
required analyses and transformations. Hence, a multi-level,
extensible compiler approach as the one we implemented in
SODA-OPT provides opportunities to significantly improve
system-level design: identifying kernels that need to be ac-
celerated, analyzing their interactions, and composing them
in a system are tasks that are better solved at the MLIR
level, allowing the HLS engine to focus on the generation of
optimized accelerators.

The resource library provides Bambu with RTL descrip-
tions of functional units to implement the operations present
in the IR (adders, subtractors, multipliers, etc.), with dif-
ferent versions for different data types. It also contains the
architectural templates, controller logic, and interfaces that
enable the integration of synthesized modules in a top-level
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design. To effectively drive synthesis algorithms, Bambu
relies on a characterization process for the components in the
resource library in terms of performance (e.g., latency of the
critical path) and area for each target technology or device.

Bambu provides several options to connect accelerators
to memories: for example, it can generate one read and
one store port for a whole module, or read and store ports
for each argument of the module (if they do not alias).
Then it instantiates and connects multi-ported scratchpads
(or BRAMs for FPGAs) to such ports. By default, Bambu
connects a dual-ported scratchpad memory to each couple
of load store ports, assuming a fixed latency of 1 clock cycle
for reads and 2 for stores.

The SODA toolchain interfaces with both commercial
and open-source logic synthesis tools. Bambu supports
FPGA devices from several vendors, and we introduced the
option of targeting ASICs through the OpenROAD flow, em-
ploying the OpenPDK 45 nm cell technology library. Thus,
the SODA toolchain provides a completely open-source,
end-to-end compiler-based hardware generation flow from
high-level programming environments to silicon. We also
added support for the Synopsis Design Compiler, targeting
both the OpenPDK 45 nm and the Global Foundries 12/14
nm technology nodes. For each new tool and technology,
we ran the Bambu characterization process, collecting all
area and performance metrics needed to update the resource
library and the models estimating interconnections cost.

Finally, the SODA toolchain also provides verification
features to ensure that the generated designs are function-
ally correct. Bambu includes a suite of tools that enable
automatic testbench generation and validation of results,
supporting external open-source and commercial simula-
tors. One of these is the open-source tool Verilator [40],
which generates optimized models for the accelerators that
it simulates, and drives them through C++ or SystemC
top modules. The SODA frontend feeds simulation inputs
to Bambu; Bambu, in turn, generates testbenches, scripts,
and glue code to drive the execution of Verilator, and au-
tomatically verifies that the output values of the simulated
accelerators correspond to the results from the execution of
the original application with the same inputs.

4 KERNEL SELECTION AND OPTIMIZATION

As mentioned at the beginning of Section (3] the SODA-
OPT frontend performs search, outlining, optimization, and
dispatching passes to select relevant kernels from the input
model, and prepare them for hardware generation. We
exploit existing and custom MLIR dialects, leveraging the
possibility of working at different levels of abstraction in dif-
ferent stages of the compilation process. For example, high-
level built-in dialects such as 1inalg and tosa maintain
semantics from the input specification (e.g. ML operators)
that simplify the identification of kernels, while lower-level
abstractions such as affine and scf (also built-in) provide
opportunities for code optimizations. We introduced the
soda dialect to partition input ML models into kernels
that will be translated into hardware accelerators, and logic
that controls their execution. Table [1| describes the soda
dialect operations; in the following we will detail the search

TABLE 1
THE sopa DIALECT OPERATIONS

Operation Semantic

Marks MLIR operations to be outlined and
extracted into a kernel.

soda.launch

soda.terminator Indicates the end of the operations to be out-

lined and extracted.

Holds the list of outlined operations, it will
become a unique accelerator module.

soda.module

soda. func Defines an outlined function with its interface.
soda.return Indicates the end of an outlined function.
soda.launch_func Calls the outlined function from the control

logic partition of the code.

and outlining processes that use them, and the subsequent
optimization and dispatching phases.

4.1 Search phase

SODA-OPT automatically identifies operations that are well
suited for acceleration by matching key patterns at the
earliest stages of the compilation process (search phase).
Searched patterns are mostly linear algebra operations or
affine structures wrapping arithmetic operations, selected
among the most common computation units in ML appli-
cations. Users can easily extend SODA-OPT by adding new
patterns of interest beyond ML, as could happen when the
input is a scientific computing application lowered from a
domain-specific framework. Search passes wrap a soda.
launch operation around the operations to be outlined, and
inject a soda.terminator operation at its end. Looking at
Figure representing a small portion of a CNN, a user
might decide to separately accelerate each node in the com-
putational graph (one reshape operation, one convolution,
one bias add, and one ReLu activation function). When the
model is lowered to the MLIR 1inalg dialect, each of them
is represented by a 1inalg.generic construct (Figure ,
which SODA-OPT can mark with launch and terminator op-
erations. When targeting the dataflow architecture, SODA-
OPT individually marks for outlining all operations in the
MLIR file, so that each of them will be synthesized as a
dataflow stage.

4.2 Outline phase

Then, at the beginning of the outlining phase, SODA-OPT
extracts each region of code within marks into a separate
MLIR module, inlining any functions invoked inside it.
SODA-OPT adds an attribute to the module to indicate the
target architecture (centralized or dataflow), and to later se-
lect the corresponding backend compilation/synthesis flow.
The outlining process proceeds by analyzing use-def chains
of values inside each module to generate the interface of the
top-level kernel functions, adding to their arguments also
memory buffers allocated outside the soda . launch region,
but referenced inside it. Constant values are instead pulled
inside the kernel. The process ends with the generation of
a soda.module containing a soda. func replacing each
soda.launch block. Outlined kernels are finally substi-
tuted by soda.launch_func operations in the top-level
code that will orchestrate their execution (Figure 3d).
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Fig. 3. Intermediate steps in the SODA compilation process, from ML model to accelerator architecture.

TABLE 2
High-level optimizations in SODA-OPT and their effect on the hardware generation process.

Goal Implications for HLS

Optimization Passes

Single basic block containing the
compute intensive part of the kernel

Increased instruction-level
parallelism

Increased data level parallelism ] f
access different memory units

No unnecessary reads from kernel
arguments

Reuse read and compute results

No redundant or unnecessary
operations

More freedom to schedule operations

Schedule multiple independent compute operations on the same
cycle, as soon as their inputs are available

Schedule multiple memory operations on the same cycle, if they

Reduce expensive accesses to external memory

Keep values loaded from memory and intermediate results in regis-
ters, rather than repeatedly accessing memory

Avoid wasting resources and cycles

Tiling, Unrolling

Unrolling

Tiling, Unrolling, Temporary buffer
allocation, Alias analysis

Temporary buffer allocation, Alloca
buffer promotion

Scalar replacement of aggregates

Common sub-expression elimina-
tion, Dead code elimination

4.3 Optimization phase

After outlining, each kernel is optimized separately, pass-
ing through progressive lowering steps that transform its
code into LLVM IR. SODA-OPT exploits several dialect-
specific optimization passes from built-in dialects, together
with some custom, HLS-oriented transformations. It pro-
vides a modular optimization pipeline that restructures the
kernels so that the final low-level IR is well suited for
hardware synthesis. The main available optimizations are
summarized in Table 2} loop unrolling increases instruction-
level parallelism, loop tiling can balance computation and
data movement, alias analysis adds opportunities for data-
level parallelism, and other typical compiler optimizations
remove unnecessary operations (scalar replacement of ag-
gregates, dead code elimination, common sub-expression
elimination). Temporary buffer allocation and alloca buffer
promotion are custom SODA-OPT optimizations that re-
duce expensive accesses to external memory by generating
registers or memories internal to the kernel that allow to
reuse values from input arguments. The optimized LLVM IR
presents simpler dependency chains, few or no redundant
instructions, and regular load-compute-store patterns: such
characteristics improve the resource allocation and static
scheduling of operations performed by the HLS engine,

resulting in significant performance gains. The pipeline is
not monolithic: developers can easily enable, disable, reuse,
or modify optimizations, providing ample opportunities to
customize the process for different applications and imple-
ment automated exploration strategies. In fact, optimiza-
tions significantly influence the generated hardware designs
in terms of performance, area, and power, and they are all
implemented as compiler passes: users can thus perform an
exhaustive exploration of the design space without manual
interventions on the code.

4.4 Dispatch phase

Dispatching separates the kernels from the logic that or-
chestrates their execution: at the end of the compilation,
SODA-OPT generates a separate file for each kernel that
does not contain references to the rest of the code, and
collects all orchestrating logic in another file. Bambu gen-
erates an FSMD accelerator for each of the IR files con-
taining the kernels, later integrated in one of two possible
system-level architectures. We currently target two types
of architectures: a conventional system-on-chip where a
microcontroller drives one or more accelerators connected
through a bus (centralized architecture, Figure Bd), and a
single accelerator where kernels are connected together in a
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Fig. 4. Execution Manager (EM) components, interfacing with Resource
Manager (RM)

dynamically scheduled dataflow architecture (Figure [3¢). In
the first case, the orchestrating logic extracted by SODA-OPT
will contain function calls for the outlined kernels, which
will be substituted by driver calls to the corresponding
accelerators in the compiled host program. Instead, when
targeting the dataflow architecture, SODA-OPT generates a
task graph representing interactions between the kernels,
containing information that will be used to assemble the
accelerators and the distributed controller. In particular,
the task graph includes the name of each kernel with the
direction (input/output) of its arguments, and the sizes
of exchanged data structures retrieved by leveraging the
memref dialect.

5 DATAFLOW ARCHITECTURE GENERATION

The process to generate the dynamically scheduled dataflow
architecture starts by instantiating Distributed Controller
(DC) components, that will activate FSMD accelerators at
runtime. The DC starts the execution of each FSMD (synthe-
sized from the kernels outlined by SODA-OPT) according to
data dependencies described in the task graph (also gener-
ated by SODA-OPT). The generation process then continues
by instantiating a Hierarchical Memory Interface (HMI) that
manages concurrent memory access to a shared memory
from multiple accelerators. The designs of the DC and of the
HMI derive from the ones presented in [8], but they are now
integrated in the SODA Synthesizer where the generation
process can take advantage of the outlining, analysis, and
transformations performed by SODA-OPT.

5.1 Distributed controller

The DC employs dedicated hardware components to check,
at runtime, when to start the execution of the FSMD acceler-
ators, allowing concurrent execution of multiple modules
even when their latency depends on the inputs, or they
simultaneously access a shared memory. In this way, the
DC allows pipelined execution of kernels, which is essential
to run ML inference on streaming inputs with low latency.
The DC generation flow instantiates a dedicated com-
ponent named Execution Manager (EM, Figure @) for each
FSMD accelerator. The EM collects token signals and trig-
gers the execution of FSMD accelerators once the activating
conditions for an operation are verified. Specifically, EMs
are composed of three parts: the Activation Manager (AM),
the Operation Manager (OM), and the Status Manager (SM).
The AM is responsible for collecting token signals denoting
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completion of producer operations and verifying whether
they correspond to an activating condition. Activating con-
ditions for each FSMD accelerator are derived from the data
dependencies between operators in the task graph provided
by SODA-OPT: once all necessary tokens are received, the
AM notifies the OM to start execution. In case the asso-
ciated module is shared among multiple operations, the
OM checks for resource availability by interacting with a
dedicated arbiter, the Resource Manager (RM). When execu-
tion of and FSMD accelerator starts, the SM sends required
control signals to the accelerator, and prevents the RM from
accepting new requests until the operation is completed, i.e.,
when a completion signal (FU-done in Figure {4) is received
from the module itself. Each FSMD accelerator produces
the completion signal which notifies that the output of the
operation is ready for its consumers.

The FU-done signal is received by all EMs bound to the
same shared module; however, it is ignored if the SM does
not indicate the operation is running. This procedure allows
each EM to discriminate between the end of their associated
operation and the end of other operations mapped on the
same module. Finally, the EM emits OP-done token signals
to notify the end of the execution to EMs associated with
consumer operations. All EM components are based on
combinational logic, so they do not add delay cycles to the
execution time of the FSMD modules.

In statically scheduled designs, operations that execute
concurrently are not allowed to share the same hardware
module, thus avoiding resource conflicts. Instead, in our
dataflow design, RMs dynamically resolve resource con-
flicts at runtime. During the synthesis process, the mod-
ule binding phase maps operations to resources: in our
case, operations are neural network layers (or other coarse-
grained linear algebra algorithms), and resources are the
statically scheduled FSMD accelerators. Module binding
aims at heuristically reducing the number of resource con-
flicts stalling the execution. Binding is implemented with an
heuristic algorithm that solves the clique covering problem
on a Weighted Compatibility Graph (WCG) [41] where
nodes represent operations, and edges represent compati-
bility relations (i.e., if two operations are connected, they
can share a hardware resource). While clique covering is an
NP-complete algorithm, we use a well-known heuristic on
relatively small graphs: nodes in our approach correspond
to layers in a neural network, or in any case to large portions
of the input application. Typically the size of the graphs is at
most in the hundreds of nodes, allowing the module binding
phase to complete in few minutes on the largest cases.

After binding, the distributed controller generation pro-
cess defines tie-breaking rules for the RMs, determining how
to resolve structural conflicts that may occur at runtime if
operations concurrently request the same module. When
operations require the same module at different times, there
is no competition and RMs simply process the requests
following the order of arrival. Our implementation defines
the tie-breaking rules based on the topological order of the
operations in the input task graph. A different method may
lead to a different execution order, but the execution output
would remain the same because the system is built to respect
dependencies between operations.

The high regularity of the DC architecture facilitates
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Fig. 5. Dataflow accelerator schematic for the model of Figure 3]

the automated synthesis process. The synthesis process
allocates one RM for each shared module, according to
the results of module binding. Then, it traverses the call
graph, instantiating an EM for each operation, with custom
AMs synthesized according to the operation dependencies.
Figure[p|shows a schematic of the overall architecture design
for the ML model of Figure[3| After SODA-OPT optimization
and dispatching, the task graph contains four calls to the
different kernel functions. Bambu synthesizes the four ker-
nel functions using the standard FSMD approach, and the
necessary DC components from the task graph describing
the dependencies between functions. FSMD modules will
then be assembled with their EMs, RMs, and with the
memory interface (Section 5.2).

5.2 Hierarchical memory interface

TOP LEVEL DATAPATH

MODULE y MODULE x
— addr_x_y in_addr
otuLal:d: W data_x y in_w_data
out w_data sel_store_x\ in_sel_store
SHARED T Mi_y Sel_load Xy Mi_x in_sel_load
MEMORY o r_data r_data
ready ready
req_y ‘
req_x
RESOURCE
running_y]| MANAGER running_x
_T ack_y ack_x| L
Y
SM

SM
Tready

Tready

r_data

Fig. 6. Hierarchical Memory Interface architecture.

After generating the datapath and the DC, the accelera-
tors need to connect to the memory. Our dynamically sched-
uled design leverages a specialized memory architecture (hi-
erarchical memory interface, or HMI) to manage concurrent
access to shared memory from independent accelerators.
The HMI is a multi-ported memory controller that dynam-
ically assigns concurrent memory requests from different
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resources to multiple external memory channels, computing
destination addresses at runtime with no additional delay.
If the destination addresses of different memory operations
collide, the HMI serializes the memory accesses. The HMI
extends the design of the custom Memory Interface Con-
troller (MIC) described in [42]. It is composed of several
replicated memory interfaces (MlIs), interconnected in a
chain. Each MI performs only one memory operation at a
time, but all MIs can operate in parallel. The concept of hier-
archy appears in the way signals are propagated across the
architecture. Figure [6| shows the schematic representation
of the HMI for two modules x and y. Additional modules
would be chained in the same way. Each MI provides the
following ports:

1) sel_store: write access request;

2) sel_load: read access request;

3) addr: memory address;

4) w_data: data to write;

5) r_data: loaded data;

6) ready: completion of the memory access.

The top-level module is the only one that directly inter-
faces with the memory. The propagation scheme requires
that only one module at a time sets sel_store and sel_load
signals, which identify memory access requests. Statically
scheduled designs ensure this behavior by pre-determining
the operations order and executing only one operation at a
time. However, this can degenerate in sequential execution
of modules that could instead execute simultaneously for
part of their computation. We avoid this issue by integrating
additional control logic in the HMI that exploits the presence
of the RM and SM blocks from the dataflow architecture. An
RM intercepts memory access requests (req). If it accepts a
request, it notifies a dedicated SM component, associated
with the MI of each module. For example, in Figure [f]
SM_x is associated with the MI of module x, while SM_y is
associated with the MI of y. If the top module encapsulating
x and y also needed to access memory, a third SM and a
third MI would simply be added to the arbitration scheme.

Load and store ports from communicating FSMD accel-
erators are connected to the HMI which, in turn, connects
them to a multi-ported shared memory. Our dataflow de-
sign can either connect to high-performance multi-banked
scratchpad memories or to external multi-ported DRAM
controllers (e.g., Xilinx AXI DRAM controllers for FPGAs).
SODA-OPT analysis passes compute the amount of data ex-
changed between kernels, and consequently determine the
required size of the shared memory, accounting for double
buffering and concurrent execution of the accelerators.

6 EXPERIMENTAL RESULTS

In this section, we present results of our end-to-end hard-
ware generation flow. We first synthesize isolated ML oper-
ators from representative DNN models, and then we eval-
uate the difference between the two available architectures
(centralized and dataflow) composed of multiple kernels.
In all experiments we maintained the following setup:
we target ASIC devices at the 45 nm technology node
through the OpenRoad flow, with an operating frequency of
500MHz. We use Bambu with its Clang12 frontend and O2
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Fig. 8. Speedup, area overhead, and power overhead obtained through
SODA-OPT high-level optimizations.

optimization level. Each synthesized kernel has two ports
connecting it to a shared memory with 2 cycles read latency
and 1 cycle write latency. Models are synthesized using 32-
bit floating point units. Our flow is also able to generate
several solutions for memory interfacing, including instan-
tiating dedicated load/store ports for each input/output
argument to an operator, or a parametric number of load-
/store ports. However, for this analysis, we only employ
two ports per accelerator, because we then combine them
in larger designs with multiple intercommunicating acceler-
ators. Hence, in the complete architectures, memory paral-
lelism is exploited by having different accelerators operating
concurrently, limiting growth of the HMI complexity.

6.1

We automatically outline and synthesize individual oper-
ators from the ResNet50 and MobileNetV2 DNN models
(Figure [7), in two different configurations. In the baseline
configuration, we outline, lower to LLVM IR, and synthesize
each kernel without applying optimization passes. In the
optimized configuration, we add the SODA-OPT high-level
optimization pipeline, with the goal of reducing execution
time. As discussed in Section [}, SODA-OPT automatically
optimizes IRs, for example, to present increased instruction-
level parallelism and reduced number of redundant in-
structions. The transformations allow Bambu to compute
efficient schedules and to best leverage the available hard-
ware resources during HLS, as shown by the increase in
performance.

By enabling the high-level optimizations in SODA-OPT,
we observe an average speedup of 7.2x in the execution
time (clock cycles) over the baseline for ResNet50 layers
(Figure [8a). For operations from the MobileNetV2 model,
we see an average speedup of 23.5x over the baselines,
with peaks of ~52-74x in the convolutional layers (Figure
[Bb). Table B|shows the post floorplanning characteristics of
the optimized accelerators generated by the SODA Synthe-
sizer. We computed the efficiency (GFLOPS/W) by counting
the total number of floating point arithmetic operations
performed during the whole execution of an accelerator,
divided by execution time and power consumption reported
by OpenROAD after floorplanning. All the accelerators
provide efficiency well over the GFLOP/W, with power
consumption ranging from 20 to 440 mW.

In all cases, after enabling SODA-OPT we observe a
trade-off between performance and area/power consump-
tion, with power and area overheads that linearly increase
with the obtained speedup. This is expected, as the SODA-
OPT default optimization pipeline generates bigger designs
by allocating more resources in parallel to reduce the ex-
ecution time (especially through loop unrolling). With the
selected benchmarks, we can see that simple operators,
such as ReLU, achieve an efficiency up to hundreds of
GFLOPS/W, while more complex operators, such as con-
volutions, reach ~10 GFLOPS/W. In fact, an increase in
the amount of allocated computational resources increases
power consumption: for this reason, smaller kernels (e.g.,
ReLU) have lower power overhead and higher efficiency.

Effectiveness of the Optimization Pipeline



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
TABLE 3

Execution Delay, Area, Power, and Efficiency of the DNN accelerators
synthesized with high-level optimizations.

B (bottom), T (top) and C (centered) refer to the branches in Figure[7a]

ResNet50
Kernels Cycles Area(um?) Power(W) GFLOPS/W
B_00_conv2d  2,554,953,728 175,874 0.069 10.3
B_01_fbn 25,619,335 662,899 0.042 19.1
B_02_relu 3,353,684 70,949 0.032 141.3
B_03_conv2d  2,860,150,784 517,396 0.237 6.2
B_04_fbn 6,602,595 639,438 0.042 19.7
B_05_relu 870,770 48,977 0.021 185.6
B_06_conv2d  1,277,263,872 173,603 0.069 10.8
B_07_fbn 26,395,323 638,947 0.044 19.2
C_00_add 5,724,970 78,439 0.0378 17.8
C_01_relu 3,480,074 49,253 0.0217 183.0
T_00_conv2d  2,552,758,272 174,580 0.0627 11.6
T_01_fbn 26,395,323 638,929 0.042 19.5
MobileNetV2
Kernels Cycles Area(um™) Power(W) GFLOPS/W
00_conv2d 6,058,752 1,281,674 0.440 7.2
01_add 707,350 83,958 0.049 8.7
02_relu 648,214 42,050 0.023 82.2
03_dwconv2d 3,622,080 407,501 0.204 7.3
04_fbn 3,468,402 758,623 0.055 7.5
05_relu 648,214 42,050 0.023 82.2
06_conv2d 4,246,144 724,024 0.383 11.8
07_add 117,910 81,636 0.041 62.1

6.2 Qualitative comparison with other ML accelerators

Table | shows characteristics and quality metrics of popular
architectures used for training and inference of DNNs, com-
pared to one of the highly specialized accelerators generated
by the SODA Synthesizer. To perform this comparison,
we used SODA to generate dense matrix multiplication
(MatMul) accelerators with 8 memory ports and different
number formats. For programmable devices, peak rates may
or may not be achieved depending on how optimized is
the input code; instead, our approach implements fully
specialized accelerators for specific operations (e.g., matrix
multiplication, matrix-vector multiplication, or ML opera-
tors and models). Therefore, the efficiency results reported
in Table [4| are derived from a theoretical peak throughput,
except for the accelerator generated by SODA, where we
calculated the actual throughput and efficiency based on
execution time. SODA generates FSMD accelerators where
the number of functional units depends on the amount of
exposed parallel arithmetic operations in the kernel (which
is controlled by high-level optimizations), while other de-
vices based on systolic arrays contain thousands of process-
ing units that may or may not be fully utilized depending
on the operation. Considering these differences, and the
significantly older technology node, our efficiency results at
FP32 are comparable to the other FP32 accelerators, which
are also considerably larger devices and might not meet
edge requirements.

The designs in the bottom half of the table support
ML-specific floating point number formats (e.g., bfloatl6
or tensorfloat32) or integer/fixed point formats. FPGA-
based custom accelerators typically focus on integer/fixed
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point formats, as implementing floating point units on fine-
grained reconfigurable devices is inefficient. For example,
DNNBuilder, targeting the Kintex UltraScale FPGA, lever-
ages a fixed-point 16-bit format. Custom number formats
increase efficiency with limited loss of accuracy; the SODA
toolchain, thanks to its modularity, can easily be extended to
parse quantized models and generate functional units with
specialized number formats. The SODA-generated fixed-
point 16-bit MatMul reaches an efficiency >150 GOPS/W.

6.3 Comparison between dataflow architecture and
centralized architecture

We used the blocks of DNN layers in Figure [ to com-
pare the performance of the two different ways in which
we can connect synthesized accelerators: the centralized
architecture, and the dataflow architecture. The centralized
architecture is a system like the one depicted in Figure
where individual accelerators are attached to a central
bus, a microcontroller drives their execution, and the data
they exchange is stored in and retrieved from an external
memory. The dataflow architecture, instead, is a system that
uses our distributed controller to orchestrate the execution
of accelerators accessing a shared memory, similar to the one
of Figure [3¢| For all experiments, each individual operator
in the DNN graph is outlined, processed by SODA-OPT with
the full optimization pipeline, synthesized by Bambu, and
simulated with Verilator.

While the simulation already accounts for shared mem-
ory accesses, we estimate the cost of communication be-
tween accelerators and external memory taking into con-
sideration the type and size of the inputs and outputs
for each kernel. We consider a memory bandwidth of
6400MB/s, typical of DDR3 RAM modules using 45 nm
technology cells, and calculate transfer times as seen by
the accelerator, in terms of clock cycles at 500MHz. In
the centralized architecture, accelerators communicate with
each other through the external memory. In the dataflow
architecture, only the graph inputs and outputs go through
the external memory, while intermediate results are kept
within a shared internal scratchpad memory. We assume
this shared scratchpad memory to have as many ports as
independent accelerators, so that, using the HMI memory
interface described in Section[5 the architecture can support
conflict-free concurrent accelerator execution, allowing for
efficient pipelined execution of streaming workloads. We
assume a latency of 2 cycles for read and 1 cycle for
write operations. This assumption is reasonable, as there
exist high-performance scratchpad designs with up to 16
independent banks, enough to support the benchmarks in
our experiments.

To model the overall latency of the centralized architec-
ture, we simply add the execution time of each accelerator
with the time it takes to transfer data to/from external mem-
ory before and after its execution. We compute the streaming
latency by multiplying the result by the number of inputs in
the stream. In fact, although the synthesized accelerators can
execute in parallel on different inputs, the application host
code derived from the original MLIR representation of the
DNN model only invokes them sequentially.

The model to estimate the performance of the dataflow
architecture, instead, takes into account the support for
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TABLE 4
Comparison between DNN accelerators, extended from [43]. Giga Operation per Seconds per Watt (GOPS/W) was calculated on the respective
GOPS, Power, and Clock values.

Floating-point accelerators

Platform Technology Precision Power [W] Clock [MHz] GFLOPS/W  Notes

V100 GPU 12nm  FP32 300 1246 52.33 Theoretical peak

A100 GPU 7nm  FP32 400 1410 48.75 Theoretical peak

TPU v3 16 nm  FP32 450 940 8.89 Theoretical peak

SODA MatMul 45nm  FP32 0.42 500 17.46 Derived from execution time
Accelerators with different numerical formats

Platform Technology Precision Power [W] Clock [MHz] GOPS/W Notes

A100 GPU Tensor Core 7nm  TF32 400 1410 780 Theoretical peak

TPU v3 12nm FP16 450 940 273.33 Theoretical peak

TPU v4 7nm BF16 175 N/A 1432.29 Theoretical peak

SIGMA Sparse 28 nm  FP16 22.3 500 480 Average across GEMMs

(KU115) DNNBuilder 20nm  Fixed16 22.9 235 90.2 Batch execution of VGG

SODA MatMul 45nm  Fixedl6 0.05 500 162.25 Derived from execution time

TABLE 5

Number of cycles to execute the DNN accelerators using the centralized (baseline) or the dataflow architecture.

ResNet50

Single Input Streaming (100 inputs)
Arch. Runtime  Memory Total Runtime Memory Total
Centralized  1,146,101,992 7,152,635 1,153,254,627 114,610,199,200 715,263,486  115,325,462,686
Dataflow 806,742,427 656,320 807,398,747 34,677,385,627 656,320 34,678,041,947
Speedup 14 10.9 14 3.3 1089.8 3.3

MobileNetV2

Single Input Streaming (100 inputs)
Arch Runtime  Memory Total Runtime Memory Total
Centralized 19,517,066 3,726,301 23,243,367 1,951,706,600 372,630,149  2,324,336,749
Dataflow 19,517,066 64,345 19,581,411 625,392,266 64,345 625,456,611
Speedup 1.0 57.9 1.2 3.1 5,791.2 3.7

concurrent and pipelined execution provided by the dis-
tributed controller. We first identify the longest path in a
directed acyclic graph where vertices correspond to ker-
nel or memory latencies and edges replicate the edges in
the application dataflow graph; the sum of latencies along
the critical path corresponds to the overall execution time
for a single input. In this way, we account for fork-join
patterns in the application dataflow graph, where multiple
branches can be executed in parallel and the overall latency
is determined by the slowest branch latency. In streaming
execution, the dataflow architecture latency becomes the
latency of a single input execution plus N - 1 times the
initiation interval, where N is the number of elements in
the input stream and the initiation interval is the latency of
the slowest kernel or memory transfer.

Table 5| provides the execution latency in clock cycles for
the two blocks of layers in Figure [7} and uses the results
from the centralized architecture as a baseline to assess
the performance improvement provided by the dataflow
architecture. For the Resnet50 block, using our dataflow
architecture, accelerators implementing layers in the upper
branch of Figure|7a|can execute in parallel with accelerators

implementing layers in the lower branch. Compared to the
centralized architecture baseline, this results in a speedup
of 1.4x during single input execution, and a speedup of 3.5x
when streaming a batch of 100 inputs. For MobileNetV2,
although Figure does not have parallel branches, we
still observe significant savings due to the reduced accesses
to external memory; in fact, the centralized system spends
57.9x and 5,791.2x more cycles to transfer data between
accelerators and external memory, with a single input and
when streaming a batch of inputs, respectively.

6.4 Discussion

Our experiments show how the SODA Synthesizer high-
level optimizations and dataflow methodology provide sig-
nificant performance gains, with reasonable area and power
overheads, while requiring minimal user interaction. Out-
lining each layer for acceleration, as we did in the experi-
ments, can lead to imbalanced execution times and utiliza-
tion (e.g., a ReLU node remaining idle for most of the time
waiting until the convolution node has finished). In the fu-
ture, the outlining strategy can be improved to better exploit
optimization at the level of the computational graph. Oper-
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ators (e.g., convolution, bias, ReLU) can be fused together or
further partitioned into smaller primitives, aiming to gener-
ate accelerators with similar computational intensity and a
higher utilization of resources. For kernels that are memory-
bound, the HMI design can be further extended to support
FSMD accelerators with multiple ports and better manage
buffers between nodes, to increase memory parallelism in
the dataflow architecture. In summary, our dataflow gen-
eration methodology enables the synthesis of input DNN
models in a system of specialized accelerators, generates
efficient accelerators through high-level optimizations, and
does not require any manual code modification to identify
the accelerators in the input specification.

7 CONCLUSION

This paper presents the SODA Synthesizer, an open-source,
multi-level, no-human-in-the-loop hardware compiler able
to transform specifications from high-level software frame-
works (Machine Learning in particular) into efficient FP-
GA/ASIC accelerators. Its frontend, SODA-OPT, leverages
the MLIR framework to identify kernels for acceleration,
to generate orchestrating code, and to implement a set
of high-level optimizations that restructure the kernels to
enhance the hardware generation backend, i.e., state-of-the-
art HLS tool Bambu. SODA also implements a methodology
to assemble highly optimized FSMD accelerators in a coarse-
grained, dynamically scheduled dataflow design, which
provides better performance compared to a centralized ar-
chitecture with a microcontroller driving the execution of
accelerators, especially in the case of streaming inputs. We
show that our-high level optimization pipeline effectively
yields better HLS results (up to 74x speedup compared to
an unoptimized baseline), and that the dataflow architecture
can provide a further 3x speedup thanks to reduced accesses
to external memory, concurrent execution, and pipelining.

Future works involve further extending the methodol-
ogy for the generation of the dataflow system of accel-
erators, both at the frontend level and at the backend.
At the front-end, SODA can exploit semantic information
of the computational graph to better balance the custom
accelerators generated for each operator or layer. At the
backend, there are opportunities to further improve inter-
facing between accelerators and memory.

Our compiler-based toolchain is modular by construc-
tion, and it will easily allow further development to intro-
duce new optimization techniques, automate design space
exploration, and explore different architectural models.
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