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Abstract: The diffusion of electronics and sensors in agricultural vehicles is enabling a revolution
in the field, leading—among the rest—to the introduction of advanced driving-assistance systems
(ADAS). From this perspective, the three key performance indicators (KPI) in a tractor are indeed
the driving safety, fuel consumption, and operator comfort. Such indexes describe the way the
driver interacts with the vehicle, the environment, and other vehicles, respectively. Therefore, such
information would be particularly valuable if promptly provided to the driver, e.g., on a dashboard
visualizer, so as to adapt the driving style accordingly. Within this context, we propose an algorithmic
solution for the on-line estimation of such KPIs. More specifically, by using an off-the-shelf smart-
sensor equipped with an Electronic Control Unit (ECU), the chassis accelerations are first processed
to extract physics-inspired features and then used to assess the safety and comfort levels; similarly,
the speed profile is used to evaluate the economicity of the driving style. The developed method
is based upon a cheap setup, and thus it is industrially amenable for its simplicity and robustness.
A sensitivity analysis to establish the best sensor placement is finally carried out, together with an
extensive experimental campaign considering offroad, urban, and circuit paths.

Keywords: driving style; agricultural tractors; safety; economicity; comfort

1. Introduction

The fast pacing diffusion of automatic systems and controls for agricultural tractors
is a trend that has been undergoing for decades now: modern tractors are provided with
more and more driving assistance features and autonomous systems, as evident from recent
works in the area [1,2] but also from a review of future challenges and perspectives in the
Internet-of-Things (IoT) [3].

Due to the large masses and relatively high center of gravity, tractors can be very
hazardous when traveling on public roads, as highlighted in a research analyzing the
Netherlands as a case study [4]; safety issues might indeed occur during agricultural or
forestry work, as reported in [5], where an analysis on the agricultural vehicles related
to accidents in Portugal is carried out. In particular, the risk of rollover during cornering
or when operating on hillsides is among the most relevant safety problems for these
machines [5]. As evident from the cited studies, the driving safety is tightly linked to the
driver itself and, more specifically, to its driving style.

Left apart from the aforementioned issue, tractors are also particularly critical from the
fuel consumption perspective, being characterized by high kinetic energies and provided
with many auxiliary subsystems. Again, the effect of the driver on fuel consumption is well
known and documented in the literature, being related to aggressive driving behavior, see,
e.g., [6,7].

A third key concept when considering agricultural vehicles is indeed the operator
comfort: a tractor driver is in fact often required to conduct the vehicle for many hours and
in unfavorable conditions [8]. This topic has been and still is of great interest to the scientific
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community; analyses were conducted about the vibrations measured at the seat according
to International Organization for Standardization (ISO) regulations [9,10] but also towards
the modeling and consequent prediction of said vibrations, for design purposes [8].

Safety, fuel consumption, and comfort are thus important KPIs to be taken into account
when dealing with agricultural vehicles: hence, we propose an algorithmic solution aiming
at estimating these quantities in real-time, so as to directly provide the driver with a
feedback on how they are driving the vehicle.

Estimating said KPIs means characterizing one’s driving style (DS). The DS assessment
for ground vehicles is a relevant problem in the scientific community. Most generally, DS
can be defined as the combination of driving skills and behind-the-wheel behavior [11]: this
translates into the manner that a driver operates the vehicle (e.g., the steering wheel, throttle,
brake pedals, etc.), specific to each person. Driving ability, demographics, surrounding
environment, and personality are some human and external factors influencing one’s
DS [12,13] and are used to explain the driving behavior. However, considerations regarding
such factors are beyond the scope of this research, and while useful for analysis purposes,
are not implementable on a real-time assessment system. Similarly, DS distinctions based on
road type (e.g., highway or urban) or traffic congestion are not taken into account: detecting
such information is not possible with standard tractors’ sensor layouts. A thorough review
of the DS recognition techniques has been presented in [14], which well describes the
ongoing trends.

This said, DS assessment systems can be principally categorized according to two
directions: the employed setup and the chosen methodology. Typical sensor setups
include inertial measurement units (IMU) [6,11,15,16], Global Positioning System (GPS)
signals [11,17], Controller Area Network (CAN) available signals, e.g., brake or throttle
pedal pressure [11,15,18], or even Light Detecting and Ranging (LiDARs) and cameras [16].
Additionally, smartphones have been considered, being an ensemble of the mentioned
sensors (typically IMUs and GPS units) [11,19]. Given the particular application, the choice
of the sensing setup is indeed critical and not an easy task. A minimal sensor setup will be
considered in this article, consisting of an external IMU and only one signal coming from
the tractor CAN network, the vehicle speed. Other CAN information, e.g., the steering
angle, might be available on some machines. This is however not always guaranteed, as
many tractors are still equipped with purely mechanic steering systems, where the angle
information is not necessary: hence, in order to guarantee robustness and portability, we
limit the set of extracted CAN signals to the sole vehicle speed. Eventually, this minimal
setup will prove to be effective for the problem of interest. Indeed, the availability of
additional available information could be employed to refine a suitable assessment system:
this is however out of scope for this research. GPS units and visual sensors are discarded, as
their presence on a production tractor is not guaranteed. With regards to smartphones, their
presence is indeed not advisable on tractors, as they might constitute both a distraction
from the agricultural activity and a safety hazard.

On the other hand, different methodologies have been used, with a first set of
approaches employing machine-learning methods [15,16,19,20] and a second one resorting
to physics inspired, rule-based, or model-based algorithms [6,11,21]. The authors in [19]
developed an assessment system involving maneuver, car type, and traffic conditions
classification, building a cascade-like algorithm scheme relying on different algorithms,
e.g., perceptrons, k-nearest neighbors, and decision trees. In [15], an unsupervised learning
approach is proposed, based upon signals extracted from the CAN bus, and considering
more than 50 drivers: however, the presented approach is thought to be performed off-
line, since data are recorded on a data-logger and then processed later on. In other
recent contributions [16], the authors use Hidden Semi-Markov Models to extract driving
patterns from data, and an interesting comparison among different drivers is also detailed.
Nonetheless, the proposed method is based on signals coming from a camera, which
is usually not present on today’s industry-grade tractors; additionally, the algorithm is
not specifically designed to be implemented in a real-time environment. Furthermore,
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although being usually extremely well performing, model-free approaches heavily relying
on machine learning algorithms are well known to lack in robustness, especially when
tested over events not present in the training set: this is a critical issue when coming to
agricultural tractors from an implementation-oriented perspective. In fact, vehicle payload
might change significantly [22], as different tools or trailers might be connected to the
vehicle front or rear part, thus potentially yielding unpredictable results.

Physics-based and rule-based approaches are instead more suitable for the considered
application. In [6], the author employs a simplified longitudinal model of the vehicle to
estimate the energy (or fuel) consumption for a given speed profile: this information is
then used to construct an economy index. Even though the described approach is effective,
some introduced assumptions are not valid in case of tractors. The authors in [21] conduct
a preliminary analysis for the safety assessment in ground vehicles, based on a smartphone
setup; given a pre-trained safe region in the x − y accelerations plane, the data points
within or outside this region are evaluated. The investigation is indeed interesting, and
an experimental validation for different drivers is provided: however, the authors do not
distinguish between unsafe points, attributing the same importance to data outside the
safe region, regardless of the acceleration magnitude. A more recent study [11], presents
a combined assessment of safety, economy, and comfort, which is of interest to us for the
previously mentioned reasons; a set of Controller Area Network (CAN) retrieved signals—
including, e.g., steering wheel angle and brake pressure—and a GPS unit are employed.
The authors computed eight empirical indicators: some of them include, e.g., the average
driving speed over the limit during the ride, assuming the knowledge of information
about the road type (so as to establish the speed limit), which is not available on every
tractor. Eventually, the author proposed a computation of the indices based on a nonlinear
function of the features. The proposed formulae are however purely empirical, and no
further explanations are provided on, e.g., the decision of including the vertical jerk in the
assessment of fuel consumption. Moreover, the definition of “expert” reference values for
the computed features is never explained in details. For these reasons, the study in [11],
while indeed being interesting, lacks clarity in different points and fails at delivering a
sound physics-inspired estimation of the three indices.

Having established the driving factors for this research, and having documented the
existing state-of-the-art, the most significant contributions covered by this manuscript
follow:

• We design a complete driving scoring system for an agricultural tractor, including the
computation of an Eco Index (fuel consumption), a Safety Index, and a Comfort Index.
To the best of our knowledge, this is the first time that an assessment system for the
concurrent evaluation of these three KPIs starting from physics-inspired considerations
is carried out.

• The DS assessment problem is applied for the first time to tractors; this case study
requires a series of special considerations, which are carefully addressed throughout
the manuscript.

• A real-time oriented solution is developed, based on a very simple sensor setup,
possibly encompassing a wide variety of tractors. We thus enhance both the industrial
relevance and the reproducibility of the scientific output. Moreover, a sensitivity
analysis with respect to the best sensor placement is carried out.

• An experimental calibration is proposed so as to map the indices into a human-
understandable scoring, i.e., 0–100 KPIs: this point is mandatory when designing
an operator-oriented solution, having to display the transduced sensor information
directly to the driver.

Indeed, the proposed KPIs are not exact or unique, in the sense that the quantities
under analysis cannot be quantitatively assessed. Starting from the state-of-the-art, we
propose some modifications to the existing research basis, resorting to common sense
reasoning and inspired by the actual availability of sensors.
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The remainder of the article is as follows. The experimental setup is described in
Section 2, and in Section 2.1 the driving style assessment problem is defined and declined in
its three components. The algorithm validation campaign is then described and discussed
in Section 3; Section 4 draws some final considerations.

2. Materials and Methods

The vehicle employed in the research is represented in Figure 1: it is provided with
three six degrees-of-freedom (DOF) inertial measurement units (IMU), one on the cabin
deck (Figure 1d), another one on the steering column (dashboard, Figure 1c) , and the
last one on the seat. The IMUs are identical: the first two sensors are employed so as to
understand the better placement for the problem of interest, since only one sensor is to
be used for the final implementation. On the other hand, the seat IMU will serve as a
validation tool for the comfort assessment (Section 3.1). The sensors measure the three
accelerations and the three angular velocities along their orthogonal axes (ax, ay, az, ωx, ωy,
ωz) at a sampling frequency fs = 100 Hz; a pre-processing phase on such measurements is
necessary in order to obtain meaningful acceleration signals. Namely, the sensor frames
need to be rotated and aligned to the tractor frame.

The IMUs are provided with an integrated electronic control unit (ECU) and a CAN
board: in this way the algorithm is directly embedded inside the sensor—running at
frequency fs—and the only required external signal is the vehicle speed (v), based on
wheel encoder measurements, retrieved from the CAN network and made available to the
algorithm.

Finally, the tests are performed connecting a trailer to the tractor, as shown in Figure 1b,
so as to consider a more realistic validation phase.

Dashboard 

IMU

Deck IMU

Seat IMU

(a) (b)

(c) (d)

Figure 1. The tractor employed in this work, with a detail of the sensor mounting points. (a) Tractor;
(b) trailer; (c) dashboard sensor; (d) deck sensor.

2.1. Driving-Style Assessment Algorithm

As mentioned in Section 1, the driving style for an agricultural tractor can be characterized
by safety, comfort, and economy components. The developed estimation scheme is
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represented in Figure 2: the first step consists in pre-processing the measured accelerations,
while the three indices are then computed according to a different set of signals. A
supervisor is in charge of keeping track of the beginning and the end of a driving section.

Figure 2. Block scheme of the DS assessment algorithm.

2.1.1. Pre-Processing

In order to obtain an informative set of acceleration measurements, we have to rotate
the sensor frames aligning them to the tractor frame, with the x-axis pointing towards the
front of the tractor; the z-axis pointing upwards, exiting from the cabin; and the y-axis
completing the orthogonal frame. The sensors are mounted such that the yaw angle offset
is ≈0◦ with respect to the tractor frame; hence, an estimation and successive compensation
for the roll and pitch mounting angles is carried out according to the procedure detailed
in [23].

2.1.2. Eco Index

The economicity of an operator driving style is related to the fuel consumption;
it is well known that higher fuel consumption is in fact related to aggressive driving
behavior [7], especially in terms of sudden accelerations and braking events, i.e., associated
with fast speed fluctuations.

Inspired from [6], an economic driving style is characterized by a band-limited speed
profile, which can be obtained by low-pass filtering the original signal. Then, given a
speed profile, the vehicle energy dissipation along a certain driving path can be computed
through a simplified longitudinal dynamics model

Mvehv̇(t) = −γ f riv(t) + Feng(t)− Fbrake(t)−Mvehg sin(φ(t)) (1)

whereas γ f ri · v is a lumped friction term, an acceptable modeling assumption for our
purposes [22]; g is the gravity acceleration; φ is the road inclination angle; Mveh is the tractor
payload; and v̇ is the time derivative of v, which can be computed through a derivative
filter. The time dependence (t), explicit in (1), will be dropped from now on for the sake
of simplicity. The gravity contribution is neglected in [6], assuming flat road conditions:
however, such an assumption is not acceptable in the case of agricultural vehicles, which
are often operated on slopes. Hence, the road inclination angle is estimated through a
Kalman Filtering approach [23], resorting to the available acceleration measurements (ax,y,z),
angular rates (ωx,y,z), and vehicle speed (v).

The friction term will be on the other hand neglected [6]; given the large mass and
relatively low travel speed—limited at 40 km/h—of the vehicle, the dominant terms are
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the inertial and gravity ones. Thus, the longitudinal balance of powers is obtained by
multiplying both sides of (1) by v:

Peng − Pbrake = Fengv− Fbrakev = Mvehv(v̇ + g sin(φ)). (2)

When the left-hand side term in (2) is positive, the engine is providing power so as
to propel the vehicle and is thus consuming fuel in the process. Hence, by integrating the
quantity on the right-hand side of (2) only when positive values occur, an estimate for the
tractor specific energy consumption can be obtained as:

eloss =
Eloss
Mveh

=
∫ te

ts
P̃loss dt

P̃loss =

{
v(v̇ + g sin(φ)) , v̇ + g sin(φ) > 0,
0 , v̇ + g sin(φ) ≤ 0.

(3)

The estimation of the specific (mass normalized) energy consumption is another
difference with respect to [6]: in this way, robustness with respect to mass is enforced, as
the same might change significantly, e.g., in the presence of ballasts or trailers.

At this point, we need to assess the difference between the actual energy consumption
and the one occurring in ideal conditions; in order to do so, a first-order low-pass filter
is introduced so as to estimate the ideal speed profile, whose pole f EI

lp is a tuning knob.
The ideal speed and speed rate profiles calculated through the low-pass filter are to be
plugged into (3) in order to compute the ideal energy loss eid

loss, opposed to the real one,
ere

loss. An example of the computed speed and speed rate ideal and real profiles is provided
in Figure 3a,b, for Eco and not-Eco tests, respectively. One can note that the ideal and
real profiles are practically identical in the first test, meaning that the driver is leading
the machine in an economical way. Significant differences are noticeable in the second
one, and the low-pass filter is effectively attenuating the high frequencies associated with
not-economic driving.

At this point, the Eco Index is computed according to the following relation:

EIraw = ere
loss − eid

loss. (4)

Note that the higher the value of EIraw, the less economic is the driving; this convention
is maintained also for the other indices. It is clear that the integrals in (4) need to be carefully
treated for a twofold reason:

• Integrals drift is a common problem when integrating real-world raw data (the speed
signal is not high-pass filtered; thus, a constant measurement error might translate
in huge errors due to the integration process in (3)) [24]. Integrating over a driving
session te − ts—which might last several hours for an agricultural tractor—is hence to
be avoided.

• In order to obtain an easily comparable scoring, i.e., among different driving sessions,
it is necessary to reset the index computation upon reaching certain conditions. In
this research a reset based on the traveled distance (d) is introduced. By resetting the
integrals we also ensure that particularly dangerous maneuvers are not hidden by a
subsequent series of safe ones.

As soon as d =
∫ t

0 v dt ≥ d̄, reset is enforced. d̄ is a design parameter, fixed to 1000 m.
Finally, in order to obtain a readily understandable scoring, i.e., in a 0–100 scale, let us

introduce a scaling function fEI such that:

EI = fEI(EIraw), (5)

where the scaling factor needs to be identified from a set of experiments, which are described
in detail in Section 2.2.
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A schematic representation of the described computation algorithm is provided in
Figure 4.

(a) (b)

Figure 3. Ideal and real vehicle speed (and its derivative) in eco (upper plot) and non-eco tests (lower
plot). (a) Eco driving test. (b) Non-eco driving test.

Figure 4. Block scheme of the Eco Index estimation algorithm.

2.1.3. Safety Index

Driving safety is tightly related to planar accelerations of the vehicle; indeed, these
measurements influence the friction ellipse, defining the adherence characteristic of the
machine, and depending in turn on the tire and terrain features (e.g., dry asphalt, snow,
. . . ) [21]. Typical unsafe maneuvers both excite longitudinal and lateral vehicle dynamics,
with an example being a strong braking action while cornering.

Hence, the design of a Safety Index estimator should take into account these accelerations:
the approach proposed herein is inspired from the concept of the safe-driving region in
the x − y accelerations plane, originally proposed in [21] for road vehicles applications.
However, the present work constitutes an innovation with respect to the mentioned
reference for different reasons:

• We include a loss function, penalizing both the occurring of acceleration points outside
the safe region and the distance of said points from the region.

• A different experimental layout (see Section 2) is employed in this work, and a
processing phase is introduced so as to cope with intrinsic measurement noise associated
to inertial measurements and to low-frequency acceleration biases due to road grade.
In [21], no filtering phase is considered, since road vehicles are less likely to be operated
on inclines while being also less subject to high frequency vibrations influencing the
acceleration spectra.

• The Safety Index is here real-time computed and converted into a human
understandable score.
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Remark 1. The planar accelerations are informative measurements of the vehicle dynamics. Indeed,
if one considers, e.g., an increased payload for the machine, the underlying system model would
change—this is easily verified from Equation (1). Consequently, the same driver inputs would result
in different responses in terms of acceleration. As one could intuitively understand, this means that
one should properly modulate the vehicle commands so as to produce moderated accelerations and
avoid dangerous events. The driver inputs are indeed very important when classifying the driver
behavior [25], which is however not the scope of this research.

IMU measurements are composed of different contributions: high frequency ones,
due, e.g., to engine vibrations or ground asperities, and low-frequency ones, due, e.g., to
ground slope and banking. Among such contributions, we need to extract the one related
to the driver actions, in order to characterize driving safety: a solution consists in accurately
filtering the signals.

Figure 5a shows the measured longitudinal and lateral accelerations in an unsafe drive
experiment; the driver contribution is distinguishable among the high-frequency noise,
which is particularly unfavorable for the dashboard sensor. On the other hand, measured
accelerations are also characterized by quasi-constant terms due to the ground slope, which
has to be taken care of, in order to achieve a consistent representation of the driver-effect
in the frequency spectrum. For these reasons, a band-pass filtering is here introduced to
treat the raw acceleration signals: a low frequency pole is in charge of filtering off the
ground offsets, while two higher frequency poles take care of the high-frequency content
highlighted in Figure 5a.

FSI(s) =

(
2π f SI

lp

)2

(
s + 2π f SI

lp

)2 ·
s

s + 2π f SI
hp

. (6)

As one can note from Figure 5b, the SI-filtered signals are very similar for the two
sensors, meaning that the same information can be extracted starting from two different
placements, given that a suitable processing is performed onto the signals.

At this point, the filtered acceleration vector −→a SI =
[

aSI
x , aSI

y

]
is processed in order to

extract safety-oriented signals features.
The vector is compared to a g-g plot like safe driving region Υ, Figure 6. Two

experiments, a safe and an unsafe driving one, are superimposed on the figure: the
differences among the tests are evident, and the percentage of data points within Υ is
reported in the legend for both experiments. Υ is defined as:

Υ =

{(
ax, ay

)
∈ R2 s.t. ax ≤ ax ≤ ax ∧ ay ≤ ay ≤ ay ∧ ax ≤

k
ay
∧ ax ≤

k
−ay

}
(7)

where the ∧ sign represents a logic AND between two expressions. The tunable box
bounds ax, ax, ay, ay enforce a limit on the maximum (traction) and minimum (braking)
longitudinal accelerations and on the maximum and minimum lateral accelerations during
cornering. Moreover, the hyperbole branches parameterized by k are introduced so as
to pose a limit stricter than the box bounds on mixed conditions, i.e., excitation of both
longitudinal and lateral dynamics.

Remark 2. Note that the parameters defining Υ are specific to the tractor physical and geometrical
parameters but most importantly to the safety perception of the vehicle tester, given that an objective
assessment of this quantity does not exist. The tester is in fact in charge of giving a feedback on the
perceived accelerations, establishing reference acceleration values to be considered as “safe”. More
details regarding the calibration of Υ are given in Section 2.2.
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The acceleration components
(

aSI
x , aSI

y

)
are then penalized according to their distance

from Υ; indeed, if the point is contained in Υ, we do not penalize it. Hence, let us consider
the limit acceleration vector (see Figure 6):

−→a lim =
[

alim
x alim

y

]
, (8)

which is defined according to the following rules:

alim
y

alim
x

=
aSI

y

aSI
x

= m, sign
(

alim
x

)
= sign

(
aSI

x

)
, sign

(
alim

y

)
= sign

(
aSI

lim

)
,
(

alim
x , alim

y

)
∈ Υ. (9)

Equations in (9) enforce the same direction and orientation for the two vectors. The
features aid and are are obtained according to:

aid = min
(∣∣∣∣∣∣−→a lim

∣∣∣∣∣∣
2
,
∣∣∣∣∣∣−→a SI

∣∣∣∣∣∣
2

)
, are =

∣∣∣∣∣∣−→a SI
∣∣∣∣∣∣

2
. (10)

The two quantities in (10) are of intuitive physical interpretation: the first one represents
the limitation of the instantaneous acceleration vector to the safe region, and the second
one is its module. Now, let us consider the penalty function ∆a = are − aid; in this way, the
acceleration points outside Υ are penalized according to the distance from the same. The
Safety Index is computed as a function of ∆a:

SIraw(aid, ∆a) =

∫ te
ts

e∆a − 1 dt∫ te
ts

e∆a − 1 + aid dt
∈ [0 , 1). (11)

Note that for ∆a = 0, i.e., for a perfectly safe driving profile, SIraw = 0, thanks to the
introduction of the constant term 1. Moreover, the introduction of an exponential penalty is
necessary so to strongly penalize the points very far from the safe boundaries, even within
an overall safe driving profile.

An interesting property of SIraw is the boundedness of the same between 0 and 1,
whereas 0 corresponds to a completely unsafe driving style, i.e., −→a SI ∈ Υ ∀t, and 1
corresponds to a perfectly safe one.

Additionally, in this case, let us introduce the reset specified for the Eco Index in
Section 2.1.2, so as to obtain a comparable scoring.

The overall safety index assessment module is depicted in Figure 7. Finally, we
introduce a scaling function fSI , as shown for the Eco index in Equation (5).

(a) (b)

Figure 5. Longitudinal and lateral accelerations: raw pre-processed signals (left plot) and driver-
oriented filtering (right plot). (a) Raw signals. (b) Filtered signals.
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Figure 6. Experimentally identified safe region, for the deck IMU.

Figure 7. Block schemes representation of the Safety Index estimation algorithm.

2.1.4. Comfort Index

The comfort problem is of paramount importance in agricultural vehicles, where
operators are often required to drive for many hours and in unfavorable conditions [8].
Agricultural vehicles driving comfort is regulated according to the ISO 2631-1:1997 standard
[26], which establishes the most significant range of frequencies (0.5–80 Hz) directly
transmitted to the whole body in a seated position. For frequencies below 0.5 Hz, the
body reacts as a rigid element, while those higher than 80 Hz are damped by the outer
layers of the body. In the defined range of frequencies, relative displacements among the
organs occur, which are potentially dangerous for the driver’s health. Given that the refresh
frequency of the sensors is 100 Hz, we limit the band of the signals at 50 Hz, rather than
80 Hz, so as to prevent the aliasing phenomenon. The band limiting is enforced through a
first-order Butterworth filter. Within the considered frequency band, ISO standards define
a set of weighting transfer functions, in order to emphasize the most relevant sections of
the acceleration spectra determining of human comfort.

Two different filters, one for the x and the y axis and one for the z axis are thus defined
as follows:

Fxy
CI (s) =

s/Ωxy + 1
s2/Ω2

xy + s/
(
Ωxyqxy

)
+ 1

,

Fz
CI(s) =

s/Ωz,1 + 1
s2/Ω2

z,1 + s/(Ωz,1qz,1) + 1
·

s2/Ω2
z,2 + s/(Ωz,2qz,2) + 1

s2/Ω2
z,3 + s/(Ωz,3qz,3) + 1

,
(12)

where qxy, Ωxy, qz,1,2,3, and Ωz,1,2,3 are provided in [26].
The root mean square value of the frequency-weighted and band-limited accelerations

aw
x,y,z is then computed as:

rmsx,y,z =

√
1

ts − te

∫ te

ts

(
aw

x,y,z

)2
dt (13)

The obtained values are used to compute the Estimated Vibration Dose Value (eVDV),
considering the maximum of the three rms values and weighting it by the driving session
time. The Comfort Index is then equal to eVDV:

CIraw = eVDV = (te − ts)
0.25 ·max(rmsx, rmsy, rmsz), (14)
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Due to the presence of the driving time term, the longer the session, the less comfortable
the driving is assessed to be. Additionally, the max() function extracts the worst-case
acceleration contribution, so as to consider vibration components in each one of the three
axes. Note that (14) is slightly different from the formulation described in [26], which
contains other scaling constants: given that we are interested in assessing the comfort on a
0–100 scale, such scaling constants are discarded.

The same considerations carried on for the Eco and Safety indices apply here: a scaling
fCI(CIraw) is introduced so as to obtain an human understandable score, and the calibration
procedure for the said function is reported in Section 2.2.3.

A schematic representation of the Comfort Index computation algorithm is provided
in Figure 8.

Finally, let us remark that the comfort metrics should be computed by exploiting the
accelerations felt by the driver. Placing an IMU onto the seat is however impractical for an
industry-oriented implementation; therefore, a proxy of the driver-referenced accelerations
is to be found in the available measurements (i.e., the deck and dashboard IMUs). In
practice, the only difference between the accelerations at the cabin deck level and those at
the seat is the presence of a suspension system, typically modeled as a spring-damper [27].
We will show in Section 3 that the proxy is acceptable for our purposes, while Section 2.2.3
will highlight as the dashboard IMU is not suitable for the comfort assessment.

Figure 8. Block schemes representation of the Comfort Index estimation algorithm.

2.1.5. Supervisor

A supervisor block is designed so as to manage the reset logic described in Section 2.1.2
and the indices scaling through functions fSI , fEI , and fCI . Moreover, the supervisor stops
the integration of the indices and resets their values whenever the vehicle stops for more
than 10 s, assuming that the driving session has been stopped or paused.

2.2. Algorithm Calibration

The algorithms proposed in Section 2.1 are based upon different parameters, which
need to be tuned; we thus discuss the calibration procedure for the different algorithm
modules. Most importantly, the value of the computed raw indices is not meaningful per-se,
and it is necessary to tune the rescaling functions fEI,SI,CI .

The calibration tests have been performed on a circuit (see Figure 9 for a satellite image
of said circuit), so as to improve repeatability. A professional tractor driver was employed
in the experiments; the driver has been instructed on how to perform the tests, in order to
excite the characteristics of interest.

For the Comfort Index calibration, two additional tests have been considered, over
offroad tracks. An example for the first of the two offroad paths is provided in Figure 10.
The other considered path is similar to the one represented in Figure 10, while being
significantly bumpier.

Finally, the circuit tests are indeed characterized by a flat road, with an overbridge,
yielding significant vehicle pitching (up to −15◦); see Figure 11a; the bridge is at ≈80 s.
Offroad tests are instead characterized by relatively plain surfaces, with small slopes/banking.
An example is provided in Figure 11a, showing the attitude angle values for the experiment
on the gravel path in Figure 10.
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Remark 3. Note that it is not possible to define an absolute and “objective” assessment of Safe and
Eco drive, whereas a quantitative evaluation of the Comfort comes from the ISO regulations. For this
reason, we rely on the driver expertise for the calibration of the Safety and Eco modules, while the
eVDV raw value (see (14)) is considered to be an informative representation of the less-comfortable
and more-comfortable tests.

Figure 9. Circuit considered in the road calibration tests (Argo Terminal, Fabbrico, Italy).

Figure 10. Gravel track considered in one of the offroad calibration tests (Via Pianoni, Fabbrico, Italy).
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(a) (b)

Figure 11. Roll and pitch orientation angles in the circuit and offroad paths. (a) Circuit path.
(b) Offroad path.

2.2.1. Eco Index

In order to calibrate the Eco Index, three tests are performed: in the first experiment,
Teco,1, the tester is asked to maintain an Eco drive style, while in the two other sessions
(Teco,2 and Teco,3) the non-eco features are gradually highlighted, with strong accelerations
and frequent restarts. The low-pass filter pole f EI

lp is a key tuning parameter; intuitively,
the lower is the pole, the less tolerant the algorithm will be in determining the ideal eco
driving style. The value for f EI

lp is chosen such that, in test Teco,1 (see Figure 3a)—which
should be the reference for an ideal speed profile—the root mean square percentage error
between v and vid should be smaller than the 10%:

rms% = 100 ·

√
∑Ns

i=1(v(i)− vid(i))
2√

∑Ns
i=1(v(i))

2
≤ 10. (15)

flp = 0.01 Hz guarantees that (15) is verified.
With regards to the function fEI , an a-priori score is assigned to the three experiments:

the most Eco test (based on the driver expertise) is assigned with the score EIlow = 15%;
the next one is evaluated EImid = 50%; while the last one EIhigh = 85%. At this, point EIraw
is computed for three tests, by taking the value obtained for the three driving sessions
EIraw,1,2,3. A Least Squares problem is then solved, and the best-fitting function is found to
be a first-order polynomial (Figure 12)EIraw,1

EIraw,2
EIraw,3

 · kEI =

EIlow
EImid
EIhigh

. (16)

Overall, a fitting error of ≈5% is obtained, thus minimizing the distortion between the
raw score and the scaled one. Let us note that EIlow and EIhigh have been set with some
tolerance with respect to 0% and 100%: this is necessary so as to allow worse or better
scoring with respect to the calibration ones. Finally, a saturation on the scaling function is
introduced, and the complete formula reads:

fEI(EIraw) =

{
kEI · EIraw , EIraw ≤ 100/kEI ,
100 , EIraw > 100/kEI .

(17)
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Figure 12. Eco Index calibration procedure.

2.2.2. Safety Index

Similarly, as previously discussed for the Eco Index, the driver is instructed to perform
three experiments, Tsa f e,1, Tsa f e,2, and Tsa f e,3, in which the unsafe features—e.g., accelerating
or braking while cornering—are gradually increased, starting from the first test, which is
the safest one: hence, also in this case the assessment of a qualitative Safe driving is left to
the driver expertise.

First, the Υ region parameters ax,y, ax,y, and k in (7) need to be calibrated; this
calibration is to be carried on for both the considered sensors, namely, the dashboard
IMU and the deck one.

Let us consider the first test among the three, which is the safest one—according to the
driver experience. The chosen tuning rule is such that, for the longitudinal acceleration, ax
and ax, respectively, represent the 1st and the 99th quantiles for the distribution of aSI

x in
such a test. For the lateral acceleration, ay = −ay—since no difference should exist between
left and right turning—and they are computed as the mean between the absolute values of
the 1st and 99th quantiles in said safe driving test: the distribution of the lateral acceleration
data measured at the deck, in the safe drive test, is provided in Figure 13. With regards to k,
its value is selected such that, in test Tsa f e,1, 95% of the data points

[
aSI

x , aSI
y

]
belong to Υ:

k = 1 satisfies this condition for both sensors.
Finally, in order to select the proper scaling function fSI so as to transform the raw

indices in a 0–100% value, the same procedure carried on for the Eco Index in Section 2.2.1
is employed here. Eventually, we get two different functions for the two sensors (Figure 14),
and the structure of the selected function, which is a first order polynomial, reads:

fSI(SIraw) =

{
kSI · SIraw , SIraw ≤ 100/kSI ,
100 , SIraw > 100/kSI .

. (18)

As one can note from Figure 14, there are no significant differences when considering
dashboard or deck IMUs in the safety assessment: this is however due to the accurate
signal-processing phase. Both positions could be in principle used for the assessment of
safe driving.
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Figure 13. Distribution of the filtered lateral accelerations in a safe driving test.

Figure 14. Safety Index calibration procedure.

2.2.3. Comfort Index

With regards to the comfort index, a slightly different approach is considered, recalling
Remark 3. Taking into account the six tests performed on the proving ground in Figure 9,
two more experiments are carried out along an offroad track, To f f road,1 and To f f road,2 The
offroad experiments are performed maintaining a more regular speed profile, compared,
e.g., to the unsafe ones; this is because the aggressiveness of the maneuvers cannot be
exaggerated on an unpaved road, and the speed has to be limited. This is however perfectly
compatible with the typical use of the tractor. The eVDV for the eight experiments is
computed for both the deck sensor and the dashboard one. Table 1 reports the numeric
values, which are ranked accordingly to the value obtained by using the deck sensor. As
one can notice, the dashboard eVDV values seem contradictory with respect to the deck
ones and yield different results, in terms of ranking among the experiments: test nr. 3 in
particular would be ranked as the least comfortable. Figure 15 highlights as the dashboard
IMU acceleration spectra are characterized by significant harmonics at high frequency, in a
frequency range that should be well damped by the tractor suspension systems [28] and is
thus only due to the dashboard support oscillations. Hence, said sensor is not suited for
the estimation of the comfort level, being affected by unwanted high-frequency noise.

This said, the deck sensor is used to calibrate the index. Tests nr. 1 and 8, representing
the minimum and maximum comfort levels observed in the experiments, are assigned the
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percentage scores 15% and 85%, respectively, whereas tests nr. 3 and 6 are assigned the
scores 40% and 60%. The same procedure described for the previous indices (Sections 2.2.1
and 2.2.2) is here repeated, and the function fCI is eventually obtained:

fCI(CIraw) =

{
k1,CI · CIraw + k2,CI · CI2

raw , CIraw ≤ CI,
100 , CIraw > CI.

(19)

A graphical representation of the calibration procedure and of the obtained function
fCI is provided in Figure 16.

Figure 15. Acceleration spectra comparison: deck versus dashboard sensor.

Figure 16. Comfort Index calibration procedure.
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Table 1. Comfort index calibration experiments: the Estimated Vibration Dose Value is reported
for each experiment and for both sensor positions. Note that the dashboard sensor yields a slightly
different ranking, with a notable outlier for test To f f road,1. A basic description of the terrain roughness
(road quality) is also provided.

Test Terrain Quality eV DV
[ m

s1.75

]
Deck Dashboard

Tsa f e,1 Circuit (good) 3.13 10.62

Teco,1 Circuit (good) 4.21 12.37

To f f road,1 Gravel (few bumps) 4.78 27.20

Tsa f e,2 Circuit (good) 5.14 12.98

Teco,2 Circuit (good) 5.26 13.67

Tsa f e,3 Circuit (good) 5.46 13.66

To f f road,2 Gravel (more bumps) 5.47 13.47

Teco,3 Circuit (good) 7.18 13.98

3. Discussion

In this section we present an extensive validation campaign of the algorithm: a variety
of experiments in different conditions has been performed so as to highlight the algorithm
potentialities.

In order to highlight the computation of the indices in the time domain, let us consider
two urban driving tests carried out on the streets of Fabbrico, Italy (see Figure 17). With
respect to the tests used in the calibration phase, the urban tests are characterized by
unpredictable conditions, e.g., interactions with other vehicles and the presence of traffic
lights and pedestrians.

Remark 4. These conditions represent a realistic testing environment, emulating a trip from a field
to the next one, or to the farmer house. While operating in a field, the tractor is usually driven at
low speed, and its operation is constrained by the specific agricultural task. Road trips are instead
potentially more dangerous, due to the frequent start and stops, turns, and the presence of other
users, which might get involved in accidents. For these reasons, the validation campaign mostly
focused on urban and semi-urban tests.

The driver has been asked to drive aggressively in the first test, whereas a calm driving
style was required in the second one. The algorithm was run online on the deck IMU—for
the reasons discussed above—and the obtained results for the Safety, Eco, and Comfort
scores are reported in Figures 18–20, respectively. In Figure 18a, one can appreciate the
heavy penalty attributed to the driving style (from 65% to 100%), which is characterized
by some extremely high lateral acceleration points, as shown in the g-g plot. The reset
points are highlighted with the corresponding SI value. The plot shows the time evolution
of the index; however, the most meaningful values are the ones occurring at each reset,
since the index improves in consistency when the integrals grow over time, and the driving
style is thus correctly estimated for a given driving section. Conversely, better scores (from
20% to 40%) are associated with the non-aggressive test, Figure 18b, where one can note
as the acceleration values are now well contained within the safe region Υ. Let us remark
that only two resets occur in the non-aggressive driving test, while three are present in the
aggressive driving one: this is simply because the first one inadvertently happened to be
slightly shorter. Additionally, the supervisor role is noticeable at ≈400 s: given that the
vehicle stops moving for more than 10 s (due to a red traffic-light), the indices computation
is stopped and only restarted at ≈420 s, when the vehicle starts moving again. Similar
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considerations can be drawn for the Eco Index test. In the aggressive driving dataset,
Figure 19a, EI is not greater than 40%.

Finally, the Comfort Index results for the aggressive driving test are reported in
Figure 20a, where a value of ≈80% is reached; on the other hand, a value of ≈50% occurs
in the not-aggressive driving test, Figure 20b. Note that in Figure 20b, CI is reset at ≈420 s,
for the reasons described above.

Other experiments have been performed so as to extensively test the algorithm: namely,
two more semi-urban tests (i.e., combining urban environment with some highway roads),
six additional circuit tests (Figure 9), and two more offroad tests (performed on paths
very similar to that of Via Pianoni, see Figure 10). The driver has been required to drive
some tests in an aggressive way and some others in a calm way: indeed, one’s perception
of aggressiveness is subjective, and difference exists between different tests in which
the same person is asked to drive in the same way. These results are collected in the
barplot of Figure 21: the figure highlights a net separation between calm and aggressive
tests. Furthermore, we can appreciate the differences among tests labeled in the same
way. Finally, note that the offroad tests are overall evaluated with positive scores. This is
concordant with the considerations done in Section 2.2.3: the aggressive driving features
cannot be exaggerated in offroad conditions, thus motivating the importance given to the
urban tests, which are indeed much more critical for the considered KPIs.

Figure 17. Path followed in the urban tests.

(a) (b)

Figure 18. Safety Index and g-g plots, for two urban driving tests, an aggressive one (upper plot),
and a not-aggressive one (lower plot). (a) Aggressive driving. (b) Calm driving style.
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(a) (b)

Figure 19. Eco Index and real/ideal speed profiles, for two urban driving tests, an aggressive one
(upper plot), and a not-aggressive one (lower plot). (a) Aggressive driving. (b) Calm driving.

(a) (b)

Figure 20. Comfort Index and power spectral density of the frequency-weighted accelerations aw
x,y,z,

for two urban driving tests, an aggressive one (upper plot), and a not-aggressive one (lower plot).
(a) Aggressive driving. (b) Calm driving.

Figure 21. Safety, Eco, and Comfort Indices evaluated for a variety of tests. The label AGG is used to
denote aggressive driving tests, where as the label CALM is used to denote calm driving tests.

3.1. Comfort Index Validation through Seat Imu

Finally, in this paragraph we show how the computation of CI through the deck-
referenced accelerations is not critical in the comfort level assessment. In the urban and semi-
urban experiments previously mentioned, the data coming from the seat IMU described
in Section 2 are recorded, and eVDV = CIraw is computed according to the procedure
detailed in Section 2.1.4. The results are reported in Table 2: as one could expect, the
numeric values for the two placements are slightly different. However, the same ranking
among the four experiments is obtained, namely, with the urban aggressive test being



Agronomy 2022, 12, 590 20 of 22

the less comfortable and the urban calm test being the more comfortable. Eventually, by
means of a suitable calibration procedure (Section 2.2.3), the seat eVDV could be scaled so
as to obtain a 0–100 scoring, and the tests would be evaluated in a similar way as for the
deck IMU.

Table 2. Comfort Index validation, comparison between the observed eVDV at the seat and at the
cabin deck.

Test eV DV
[ m

s1.75

]
Deck Seat

Urban aggressive 2.13 2.78

Semi-urban aggressive 1.91 2.52

Semi-urban calm 1.64 2.17

Urban calm 1.60 2.15

4. Conclusions

In this research, an algorithm for the real-time estimation of the driving style in
agricultural tractors was developed. The algorithm estimates the three key components
of the DS, namely, safety, economy, and comfort. The safety estimation module is based
upon an experimentally identified safe driving region and evaluates the operator behavior,
penalizing the accelerations outside of said region; the economy estimator is instead
based upon a longitudinal dynamics model of the vehicle, integrated with an estimation
of the road inclination angle so as to guarantee the functionality in a wider variety of
conditions. Finally, the comfort assessment is based upon ISO-defined filtering and
evaluation procedures. A calibration phase was performed by means of ad-hoc experiments,
so as to map the indices onto a 0–100 scoring, which is immediately
understandable by the driver and thus more effective. An extensive experimental campaign
conducted on different terrain types completes the work, highlighting the effectiveness of
the proposed system.

Future research efforts could be directed towards a more complete evaluation algorithm,
possibly taking into account other signals or information not considered so far, e.g., the
machine payload or the terrain characteristics.
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Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced Driver Assistance Systems
CI Comfort Index
DOF Degree-of-Freedom
DS Driving Style
ECU Electronic Control Unit
EI Eco Index
eVDV Estimated Vibration Dose Value
GPS Global Positioning System
IMU Inertial Measurement Unit
ISO International Organization for Standardization
KPI Key Performance Indices
SI Safety Index
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