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Abstract

Planar microphone arrays are of common use in acoustic source identification
methods, as well as the use of planar calculation grids. Indeed, the assumption
is that the planar grid contains all sources of interest. However, this assumption
may not be true in several applications and hence return misleading results. One
tentative to overcome this issue is to consider three-dimensional surface adher-
ing on the target. Unfortunately, also this choice may not be enough to obtain
accurate results in challenging applications like aeroacoustic source mapping,
since noise sources are not necessarily located on the surface of the target. This
paper aims to analyze the issues and the benefits arising when the calculation
grid turns into a volume. Two inverse methods based on Iterative Re-weighted
Least Squares (IRLS) and Bayesian Regularization (BR) are formulated: Equiv-
alent Source Method (ESM-IRLS) and Covariance Matrix Fitting (CMF-IRLS).
Even though these methods are based on concepts already known in literature,
the focus of this paper is on theoretical and algorithmic aspects that make them
able to produce accurate volumetric acoustic maps. The methods proposed are
applied both on a simulated and an experimental test case. The former is
reported to highlight the difference between standard surface mapping and vol-
umetric mapping. The latter reports an application on an airfoil in an open jet.
A comparison with the CLEAN-SC approach is reported in both cases to show
the performance of the proposed methods with respect to a well-known state of
the art algorithm.

1. Introduction

Acoustic source mapping techniques based on microphone arr ays are widely
used for localizing noise sources and quantifying their strength. A a matter
of fact, however, planar arrays are typically adopted for this purpose, while
source mapping is performed on focusing/calculation points laying on planes or
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3D surfaces that are just supposed to contain all acoustic sources. Indeed, the
true location of real sound sources may not lay on these surfaces, thus causing
misleading results. This issue often takes place in aeroacoustic noise source iden-
tification testing, in which noise sources are very rarely confined on a surface,
no matter how complex this could be. For this reasons, volumetric mapping,
i.e. mapping on focus/calculation points distributed on a volume rather than
on a surface, has raised interest in the aeroacoustic community. However, it
is worth noting that such a shift from surface to volume enhances some is-
sues that are typically ignored in the classic surface-based approach. Sarradj
[1, 2] analyzed volumetric mapping with direct beamformers and demonstrated
that different steering vector formulations (i.e. different spatial filters) are able
to provide either correct location or correct level. This limit of beamformers
is often masked in surface mapping if the real source is not located on the
mapped surface because it produces similar effects. The same study discusses
also the need of deconvolving beamforming maps, due to poor spatial resolution
in radial direction from array centre. Fast deconvolution techniques such as
Orthogonal Beamforming [3] and CLEAN-SC [4] are suggested due to the huge
problems size. Indeed, these two approaches are characterized by a reasonable
computation time. The use of DAMAS (or one of its extension) [5, 6, 7] is
theoretically possible but discouraged due to its huge computational cost. An-
other possible choice for volumetric mapping is the use of inverse methods, e.g.
Generalized Inverse Beamforming (GIB) [8], Equivalent Source Method (ESM)
[9], Covariance Matrix Fitting (CMF) [6] or Bayesian Approach to sound source
reconstruction (BA) [10]. Padois et al. compared the performances of differ-
ent techniques (CB,GIB,DAMAS and CLEAN-SC) in three-dimensional map-
ping and also studied the effect of using multiple planar arrays simultaneously
[11, 12]. Porteous et al. [13] described how to deal with volumetric mapping
with CB and CLEAN-SC using two orthogonally aligned planar arrays looking
at the same sources. Ning et al. [14] used Compressed sensing techniques to
face three-dimensional source mapping problem. Battista et al. [15, 16] studied
how to deal with inverse methods for volumetric aeroacoustic mapping in wind
tunnels using one or two planar arrays.

The focus of this work is to identify the main issues and the benefits ly-
ing behind volumetric acoustic imaging. Two formulations of inverse methods
based on Iteratively Re-Weighted Least Squares (IRLS) tailored to volumetric
mapping (ESM-IRLS and CMF-IRLS) are proposed. The problem is faced here
considering the use of a single planar array, given the wide availability and use
of such a configuration. However, the issues linked to the volumetric approach
and the methods proposed are still valid when different array configurations
(e.g. multiple microphone arrays) are adopted. A simulated test case has been
used to perform comparison between 2D/3D imaging and show how a small off-
set between mapping surface and actual source position deteriorates the quality
of the reconstruction in terms of localization/quantification accuracy. Then,
volumetric maps obtained on an airfoil in open jet are shown to demonstrate
the efficacy of the approach on a real test case. In both cases, a comparison
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with the CLEAN-SC deconvolution approach is performed.

2. The volumetric acoustic inverse problem

To better understand inverse methods is mandatory to start from direct for-
mulation of acoustic propagation from a set of elementary sources (e.g. monopoles,
dipoles, plane waves etc.) to receiver locations. Indeed, the direct acoustic
problem formulation relies on the Wave Superposition Method [17] which states
that the acoustic field, generated by a complex radiator, can be reproduced as
a superposition of fields caused by a set of simpler sources enclosed within the
radiator. In frequency domain, the discrete direct source-receiver propagation
problem is linear and can be written, for each frequency, as:

Gq = p , (1)

where q ∈ CN×1 is the vector of N complex source coefficients, p ∈ CM×1

is a vector containing acoustic complex pressures at microphone locations and
G ∈ CM×N is the acoustic transfer matrix. The calculation of p for a given
q and G identifies the direct acoustic problem, which is well-determined and
has unique solution. Contrarily, the inverse acoustic problem aims to retrieve
the source distribution q from measurement at microphone locations p, given
a direct propagator G. This problem results to be ill-posed in the Hadamard
sense [18, 19], i.e. existence, uniqueness and stability of the solution are not
guaranteed. The inverse problem formulation can be as well expressed as a
linear transformation:

q̂ = Hp , (2)

where q̂ is the solution for a particular inverse operator H ∈ CN×M . When the
acoustic field is stationary, the former problem can be rearranged in terms of
auto- and cross- power spectra averaged over several observations:

GQGH = P , (3)

where the superscript H stands for the complex conjugate transpose operator.
The matrix P = 〈ppH〉 is the Cross Spectral Matrix (CSM) of pressure at
microphone locations and Q = 〈qqH〉 is the CSM of sources strengths (〈·〉 is
the average operator over time blocks). Using the quadratic form, the solution
of the inverse problem can be obtained as

Q̂ = HPHH . (4)

The source auto-powers are on the main diagonal of Q̂ and are indicated through-
out the paper with diag(Q̂) (intended as column vector) or Qnn (element-wise).

The inverse operator can be formulated in different ways, depending on the
selected solution method, assumptions and a priori information considered. A
complete review about different inverse operators is provided by Leclere et al. in
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[20]. Beamforming methods [21] consider each potential source separately, thus
having a scalar inverse problem. The main advantage of inverse methods with
respect to classic direct beamforming approach is that all sources are considered
together, thus leading to better results in terms of source strength quantification
and in presence of multiple correlated/uncorrelated acoustic sources. However,
since the number of potential sources is usually much greater than the number
of microphones, the problem is generally under determined and different ap-
proaches can be adopted to obtain a particular solution that optimally satisfies
a condition.

2.1. Issues in volumetric acoustic mapping

The application of acoustic mapping methods to an extended spatial domain
is straightforward, while obtaining accurate and useful results requires a deeper
analysis of the problem. When it comes to volumetric acoustic imaging, three
critical issues have to considered:

• potential sources located at very different distances from the array;

• poor spatial resolution in the radial direction from the array centre;

• increase of number of potential sources with no contribution to the acoustic
field.

These problems are also present in classic plane/surface mapping. However,
their effects are dramatically enhanced in volumetric imaging, therefore, they
must be carefully understood and addressed to avoid getting misleading results.

As far as the first issue is concerned, potential sources near the array need less
energy to produce a given pressure on receivers with respect to farther sources.
Acoustic imaging methods, which rely on energy minimization of source field,
may tend to locate acoustic sources closer to the array than their actual location.
This problem is common to 2D and 3D applications, but it gets more relevant
when it comes to volumetric mapping. A simple strategy to overcome this
problem is to balance the energy needed by each potential source to generate
the same pressure at microphones locations.

The second item of the list is a well known issue in acoustic imaging: the
radial direction from the array centre suffers of poor spatial resolution, with
respect to the lateral directions, unless the microphone arrangement encloses
the source. This aspect can be an issue even when multiple planar arrays are
used together and it gets worse as the source distance from the array centre
increases. In order to understand how this effect influences the results, it is
useful to recall what happens in conventional beamforming mapping (the reader
can also refer to the examples presented in [1, 21]). Indeed, even a point source
produces, in a volumetric map, a beam whose axis links the array centre and
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the source location. As the wavelength and source-array distance increase, the
cross-section of the beam increases as well. In this context, beamforming maps
allow to distinguish different sources only when they are angularly spaced with
respect to the array centre, otherwise the beams would be superposed and hardly
distinguishable, even if the sources are at different distances from the array.

The last issue relates to the increase of the number of potential sources
that may lay within a volume rather than on a surface. In fact, few thousands
potential sources (103 ÷ 104) might be involved when distributed on a surface,
while hundred thousands potential sources (104÷105) might lay within a volume.
This implies theoretical and practical issues. The increase in the number of
unknowns makes the problem heavily under-determined. The latter is related to
the computational demand of techniques, that must be affordable and reasonable
even with this huge problem size.

Deconvolution of volumetric beamforming maps with CLEAN-SC is the best
choice in terms of speed, since its computational demand is only a bit greater
than a conventional frequency domain beamformer. As for DAMAS-based de-
convolution techniques, the computational demand is often prohibitive when it
comes to such a high number of calculation points, since DAMAS-based decon-
volution approaches require calculation of all PSFs and then the solution of an
inverse problem (generally N × N). Inverse methods have been chosen in this
work since they return the whole source distribution at once and can successfully
deal with correlated/uncorrelated sources. In addition, they provide accurate
results in a reasonable computation time even with hundred thousands poten-
tial sources. Despite this advantage, the ill-posedness and the ill-conditioning
of the inverse problem are two issues that sill need to tackled. Indeed, these
two aspects are enhanced by the huge problem size. In the next section, all
the aspects discussed above are addressed in the formulation of an approach
tailored to volumetric mapping.

3. Tailored IRLS approach for solving sparse approximation of volu-
metric source field

Many IRLS approaches for acoustic imaging are available in literature, such
as GIB [8], ESM [9], Compressive ESM [22] and sparse acoustical holography
from iterated Bayesian Focusing (IBF) [23]. The one proposed here does not
differ from the others for theoretical basis, but it adopts several strategies needed
to tackle the issues discussed in the previous section in order to obtain accurate
solutions in volumetric context.

3.1. Problem definition and sparsity constraint

The main assumption adopted is sparsity of the solution. Indeed, despite
the growth of the problem size when addressing volumetric imaging, the actual
sound sources can be still approximated with ”few” equivalent sources. This
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can be seen as a priori information helping in compensating the lack of informa-
tion that is intrinsic of acoustic inverse problems. When sparsity constraint is
enforced, the basis in which this happens is crucial, since the hypothesis cannot
be true in some source representations. A sparsity constraint on the sought
solution can be enforced by minimizing the following cost function

q̂(η2, p) = arg min
q

(
‖Gq− p‖22 + η2‖q‖pp

)
(5)

where ‖ · ‖pp is the Lp-norm of a vector. The main three terms of this cost
function are:

• ‖q‖pp is the Lp-norm of of the solution, where 0 ≤ p ≤ 2. Adjusting
the exponent of the norm different amount of sparsity in the solution is
achieved.

• ‖Gq − p‖22 is the fitting error. This term represents the fidelity of the
solution with respect to measured data.

• η2 is the regularization parameter and controls the trade-off between the
two terms above. Its estimation is difficult because it depends on problem
formulation and data. This is probably the most critical aspect of the
method.

The strongest sparsity constraint is enforced setting p = 0, while p = 2 means
no sparsity. Intermediate values (e.g. in descending order from p = 2) cause
an increase in the level of sparsity. For p < 1 this turns in a more difficult
non-convex optimization problem, while for p ≥ 1 the optimization problem is
convex. Therefore, p = 1 is the strongest sparsity that can be enforced with
a convex optimization problem. Unfortunately, there is no analytic solution to
Lp minimization problem, but for p = 2. In fact, this is the case of Tikhonov
Regularization [24] or a particular case of the Bayesian Approach to Sound
Source Reconstruction (BA) [10]. Both approaches make it possible to have an
analytical solution to the following problem:

q̂(η2,W) = arg min
q

(
‖Gq− p‖22 + η2‖Wq‖22

)
(6)

where the square invertible matrix W is used to introduce a priori information
about the solution. This aspect is particularly well explained in BA. The inverse
operator that results from this approach is:

H = W−2GH(GW−2GH + η2I)−1 . (7)

The Iteratively Reweighted Least Squares (IRLS) [25, 26] can be used for
obtaining an approximation of the solution of Eq. 5. This approach is based on
the analytical solution of Eq. 6 and on the assumption

‖q‖pp =

N∑
n=1

|qn|p =

N∑
n=1

w2
nn|qn|2 = ‖Wq‖22 . (8)
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The matrix W is square, real and diagonal and the set of weights wnn depends
on the result of the previous iteration, according to the following expression:

w(it)
nn =

∣∣∣q̂(it−1)n

∣∣∣ (p−2)
2

(9)

where it stands for the current iteration. Basically, for each iteration a regu-
larized Weighted Least-Squares problem is solved, exploiting the solution of the
previous iteration to find a better approximation of the solution of Eq. 5.

3.2. Direct acoustic operator

The choice of the direct acoustic propagator is an important step since it
defines both the investigation zone (i.e. location of potential sources) and the
source model. Only monopoles are considered as potential source models, but
the method is general enough to be transferred also to different types of elemen-
tary sources. Once defined the investigation zone and the source models, the
discretization of the investigation zone can be done adopting either a uniform
grid or a more generic distribution of potential sources. Unlike direct beam-
formers, the solution of an inverse formulation is influenced, and even more in a
volumetric approach, by the definition of the investigation zone and by its dis-
cretization. In fact, the energy required by each potential source to produce a
certain pressure at microphone locations should be properly balanced. This can
be done using a strength-to-pressure acoustic transfer function in combination
with a weighting strategy, as suggested by Pereira et al. [27]. A similar concept
is explained in [13]. If only monopoles are considered as potential sources, the
acoustic propagator and the weights can be calculated as:

Gmn =
e−jkrmn

4πrmn
, wnn =

1

r0n
(10)

where k is the wavenumber. The terms rmn represent the propagation distances
between microphones (m) and the potential sources (n). The weights wnn are
calculated as the reciprocal of terms r0n that are the propagation distances
between the reference point ”0” and the location of potential sources. The
reference point is usually set at the array centre, but it can be chosen arbitrarily,
avoiding the coincidence with a potential source location. The weighting matrix
W hosting the weighting coefficients wnn is diagonal. The elements of the
weighted direct operator GW−1 becomes:

Gmnw
−1
nn =

r0n
rmn

e−jkrmn

4π
. (11)

An alternative choice is the pressure-to-pressure acoustic transfer function
formulation [28], which embeds compensation of source distances. For monopoles,
the propagator can be written in the following form:

Gmn =
r0n
rmn

e−jk(rmn−r0n) . (12)
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This propagator relates the pressure in the reference point ”0”, generated by a
monopole located in n, to the pressure induced on microphone m. This is the
formulation adopted in this paper to solve inverse problems since the balance is
straightforward. Solutions returned by the two formulations of propagator are in
different physical units (volume acceleration of each source or pressure induced
by a monopole at the reference point). However, solutions are equivalent if
expressed in the same unit.

3.3. IRLS procedure

The IRLS procedure can be formalized with the following expression:

q̂(it) = F
(
q̂(it−1),W(it), η2 (it),G(it),p, p

)
, (13)

where the function F is given by Eq. 6 and the superscript (it) addresses those
quantities that are updated at each iteration. The main steps of the algorithm
are listed hereafter. Two inputs must be set at first:

• p: order of the Lp-norm that sets the strength of sparsity constraint;

• W0: weighting matrix that introduce arbitrary a priori information on the
source field. This term is named Aperture Function in BA.

The IRLS procedure adopted is the following:

1. Set the weighting matrix W(it) for the current iteration:

W(it) = W0 W(it)
sp . (14)

The matrix W
(it)
sp is used to force the sparsity (Eq. 9) and W

(1)
sp = I.

2. Estimate the regularization parameter η2 (it) for the current iteration.

3. Calculate the solution q̂(it) using the inverse operator of Eq. 7.

4. Discard potential sources that do not contribute significantly to the acous-
tic field.

5. Evaluate a convergence criterion: if not fulfilled go back to step 1 otherwise
stop.

This iterative procedure represents a fixed-point scheme for Eq. 5 that con-
verges to its minimum. In case of convex problems (p ≥ 1) the minimum is
unique and global, while multiple local minima may also be present for non-
convex problems (0 ≤ p < 1). Influence of p is studied in [29]. From Bayesian
point of view, this method can be seen as an Expectation-Maximization al-
gorithm that converges to a Maximum A Posteriori (MAP) estimation of the
source field [30].

As for step 1, both matrices are normalized such that ‖W0‖∞= ‖W(it)
sp ‖∞=

1 and then multiplied to give them the same weight. The resulting matrix W(it)
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is normalized such that trace(W(it)) = N . The matrix W0 is constant for all
iterations and can be used to introduce arbitrary information about the source
distributions. This helps in reducing the lack of information in the inverse
problem, while an identity matrix means no a priori information introduced.

Step 2, which addresses the estimation of the amount of regularization, can
be considered as the most critical step. The parameter η2 must be correctly esti-
mated at each iteration to guarantee the stability of result. Empirical Bayesian
Regularization (BR) is adopted since it has been demonstrated to outperform
many other regularization techniques. The interested reader might refer to [31]
for a deeper insight into this topic. In this work, the MAP estimate of the reg-
ularization parameter is adopted. The MAP estimate aims at minimizing the
following cost function with respect to η2:

JMAP (η2) =

M∑
k=1

ln(s2kk + η2) + (M − 2) ln

(
1

M

M∑
k=1

|yk|2

s2k + η2

)
. (15)

The calculation of this cost function requires the Singular Value Decomposition
of the matrix GW−1 = USVH ; the term skk refers to the k-th singular value
(diagonal elements of S) while yk = uH

k p refers to the k-th Fourier coefficient
(uk is the k-th column of U). Even though other strategies can be utilized
to estimate the regularization parameter, one should remember that in IRLS
under-regularized solutions in any iteration may compromise the final result.
On the other hand, over-regularized solution may produce two effects: a loss of
details in the final acoustic map, since weaker sources may be suppressed, and
under-estimation of source strength.

Step 3 refers to the application of Eq. 7, where G(it), W(it) and η2 (it) are
used. Step 4 requires deeper attention. In fact, weights in Eq. 9 imply that
source coefficients must be different from zero. This is avoided by applying an
amplitude threshold to the current solution q̂(it) in order to discard sources that
do not contribute significantly to the acoustic field. These sources are discarded
from the calculation and are set to 0 in the final solution. The set of indexes n
of sources to discard at each iteration is found using the following criterion:{

n : 10 log10

(
|q̂n|(it)

‖q̂(it)‖∞

)
< THRdB

}
. (16)

The threshold THRdB should be low enough to avoid any influence on the
result. Indeed, big negative values are recommended. All the results showed in
this paper are obtained with the THRdB threshold set to -100 dB. This value
makes it possible to quickly discard several potential sources, thus speeding
up the calculations. The propagation matrix G(it) is then updated removing
columns associated to the sources discarded. The same happens to the weighting
matrix W(it).

The convergence of the solution at each iteration is checked on Step 5. The
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rate of convergence depends on p and W0, but it is also highly-data dependent.
A convergence criterion should guarantee uniformity of results even in different
conditions. A good convergence criterion should ensure that changes of solu-
tion are getting smaller both spatially and in terms of amplitude. In [32], a
convergence criterion (C1) is suggested:

ε(it) = 10 log10 (MSR) (17)

MSR(it) =
〈∣∣∣q̂(it)n /q̂(it−1)n

∣∣∣〉 (18)

where MSR stands for Mean Source Ratio and the operator 〈·〉 refers to spatial
average. This criterion requires that source amplitudes remain almost unaltered
in the last 2 iterations to stop the algorithm. If potential sources are discarded
in two consecutive iterations, MSR is calculated using only those common to
both solutions. The value ε(it) approaches asymptotically to 0 dB from negative
values. Some fluctuations may happen due to sudden changes in two consecutive
solutions, especially when p < 1, due to discarding of sources. To increase the
robustness to this issue, in [15, 33] a slightly different criterion (C2) is proposed,
which is also used in this paper:

ε(it) = 10 log10

(
MSR(it) −

∣∣∣∆(MSR)(it)
∣∣∣− ∣∣∣∆2(MSR)(it)

∣∣∣) (19)

where the operators ∆(·) and ∆2(·) are the backward finite differences of first
and second order. This criterion can be evaluated only for it > 2 because of the
second order finite difference in the formula. The additional terms prevent the
convergence in case of eventual variations that may occur in consecutive IRLS
solutions. This criterion requires that variations in the solution are small over
the last 3 iterations. Negative values, that may result in the argument to the
logarithm, mean that convergence is not met. This criterion tends to Eq. 17
when MSR changes smoothly during consecutive iterations, hence it should be
considered as a safety condition. In this work, the convergence of the solution
is accepted when ε(it) ≥ −0.1 dB using C2.

3.4. ESM-IRLS

The Equivalent Source Method described in this work aims at finding a
solution to the inverse acoustic problem using the linear formulation, therefore
starting from Eq. 1. Each element of the discrete propagator G is calculated
using Eq. 12. In this case, a sparse approximation of the source field is recovered
considering only monopoles. However, the method is general enough to consider
also other elementary source representations (e.g. dipole, quadrupole, etc.).
Suzuki [8] suggested to decompose CSM in coherent source components and
solve an inverse problem for each of them. The Eigenmode Decomposition (ED)
relies on the property of CSM of being Hermitian and non-negative definite, thus
having the following decomposition:

P = Evec Eval E
H
vec , (20)
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where Eval is a diagonal matrix with all real positive eigenvalues and Evec is a
unitary matrix with M orthonormal eigenvectors. The CSM diagonal is kept,
otherwise some eigenvalues may result negative. Once the eigenvalues are sorted
in descending order, it is possible to define the eigenmode em as the eigenvector
including its amplitude

em =
√
eval,m evec,m m = 1, . . . ,M (21)

where evec,m is the m-th eigenvector and eval,m is the corresponding eigenvalue.
Each eigenmode represents a coherent signal across the microphones, under
an orthogonality constraint. An inverse problem is solved for each eigenmode,
according to

Gqi = ei i = 1, . . . , C (22)

where C ≤ M is the number of most energetic eigenmodes that are considered
as relevant.

It should be highlighted, however, that applying an inverse problem to each
eigenmode of the CSM will necessarily destroy the sparsity of the solution in
the general setting. Indeed, the eigenvalue decomposition is a L2 minimiza-
tion, which is contradictory with the recovery of sparsity. If eigenmodes are
processed independently, neither IRLS nor any other Lp-norm minimzer, p < 2,
will be able to efficiently restore sparsity. This will be kept only if eigenmodes
are extracted jointly or even afterwards the IRLS procedure. When the latter
condition holds, the total map can be calculated as a sum of the source powers
associated to the most energetic C eigenmodes for each point of the map:

Q̂nn =

C∑
i=1

|q̂n,i|2 n = 1, . . . , N . (23)

Other CSM decompositions can be adopted with ESM-IRLS, an example of this
can be found in [15, 16], where CLEAN-SC is exploited as a tool to extract single
coherent source components from CSM. In this paper ESM-IRLS is applied to
Eq. 3 with no decomposition step.

3.5. CMF-IRLS

The Covariance Matrix Fitting approach, described in [6, 34], aims at finding
the source field that best approximates pressure CSM of microphones. Sources
are assumed to be uncorrelated in the standard CMF formulation. This implies
null off-diagonal terms in the Q matrix. Consequently, Eq. 3 can be rearranged
as a standard linear system:

Pc = Gc diag(Q) (24)

where Pc is the microphone CSM reshaped in column vector form and the matrix
Gc is computed using the elements of the direct operator G. The explicit form
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of Eq. 24 is:

〈p1p∗1〉
〈p1p∗2〉

...〈
pip
∗
j

〉
...

〈pMp∗M 〉


=



G11G
∗
11 . . . G1nG

∗
1n . . . G1NG

∗
1N

G11G
∗
21 . . . G1nG

∗
2n . . . G1NG

∗
2N

... . . .
... . . .

...
Gi1G

∗
j1 . . . GinG

∗
jn . . . GiNG

∗
jN

... . . .
... . . .

...
GM1G

∗
M1 . . . GMnG

∗
Mn . . . GMNG

∗
MN





Q11

Q22

...
Qnn

...
QNN


(25)

where the indices i, j = 1, . . . ,M are used for microphones and n = 1, . . . , N is
the index of potential sources and the term 〈·〉 stands for the averaging operator.
Each term GinG

∗
jn represents the cross-spectrum between microphones i and j,

when the n-th source with unitary power is active. The system has N unknowns
and M2 equations. However, the number of independent equations reduces to
Mc = M2 −M when Diagonal Removal is exploited to exclude self-noise on
microphones. This is the formulation used in this work. Even though the
source model is the same of ESM-IRLS (monopoles), the problem is formulated
using different bases (Gc instead of G), therefore, this is important when the
sparsity condition is enforced.

The Qnn elements represent source auto-powers, hence they must be real and
non-negative. The ”realness” of the solution is guaranteed from a mathematical
point of view by the structure of the matrices. Algorithms as Non-negative
Least Square could be used to comply with this condition. However, also if
using the IRLS procedure described in this paper, the positivity constraint on
solution is applied at each iteration discarding source having negative power, in
addition to the other discarding strategy described in Section 3.3. In this way,
source having non-physical negative power are forced to 0 as in the Gauss-Seidel
procedure of DAMAS.

4. Results

4.1. Simulated data

The first test case is the Analytical Benchmark 8, available at [35]. This
dataset represents a simulation of measurements in an open jet wind tunnel
with a round jet. Noise sources are three monopoles emitting uncorrelated
white noise with the same level. Simulated setup is depicted in Fig. 1. The 64
microphones array is situated above the volume and has an aperture of D = 1.5
m. The flow is along x-axis direction and the sound propagation through the
flow field is calculated using the Acoular OpenJet environment [36]. The nozzle
diameter is 0.5 m, the jet flow speed is 0.2 Mach and speed of sound is 343 m/s.
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x y z
Source 1 0.10 0.00 -0.50
Source 2 0.10 0.12 -0.50
Source 3 0.10 0.24 -0.50
Nozzle centre -0.60 0.00 -0.50

Table 1: Setup coordinates (m)

x (m) y (m) z (m)
Plane 1

[-0.50 , +0.50] [-0.50 , +0.50]

-0.50
Plane 2 -0.48
Plane 3 -0.52
Volume [-0.20 , -1.00]

Table 2: Regions of interest for the simulated test case. The values in the square brackets
indicates the extension of the region.

(a) (b)

Figure 1: Simulated measurement setup. Black circle is the nozzle. Black dots are the
microphone locations. Red crosses are source locations. (a) Side view. (b) Top view.

A comparative analysis between 2D and 3D mapping is provided in this
section. Table 2 reports the coordinates of the planes and volume mapped and
all are discretized with regular grid of monopoles with 2 cm step. Each plane has
2.601 potential sources while the volume has 106.641 potential sources. Planes
2 and 3 have an offset of 2 cm from the exact source positions. Three mapping
methods are applied to this test case: ESM-IRLS, CMF-IRLS and CLEAN-SC.
The latter is applied using a loop-gain ϕ = 0.6.

It has been checked that the use of further components does not affect the
solution neither in terms of localization nor in terms of quantification of the
sources. The maximum sparsity constraint is enforced setting p = 0, while
uniform aperture function has been used. This choice tends to produce the
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best quantification results when adopting the inverse methods addressed in this
paper. Source spectra reconstructed are obtained by integrating maps over a
spherical volume of 6 cm radius centred in the exact source location. The inte-
gral is calculated summing the auto-powers of equivalent sources. Reconstructed
source spectra are depicted as ratio, in terms of source strength, between the
exact source spectrum and the one obtained from the maps. The frequency
range of analysis goes from 2 kHz to 9 kHz, that corresponds to the range
He = 8.5÷ 38.3, where He is the Helmholtz number calculated as the ratio of
array diameter and wavelength. As rule of thumb, all mapping methods tend
to have troubles to provide accurate maps when He < 8 in presence of multiple
sources, therefore, this low range of He is not considered here.

Figures from 2 to 4 shows the comparison of volumetric maps (Volume) with
planar ones (Plane 1). In this case, acoustic sources are contained in the regions
of interest (ROI), while in Fig. 5 to 7, the planes used to produce the acoustic
maps are 2 cm above (Plane 2) or below (Plane 3) the actual source locations.
This produces apparently no artifacts with CLEAN-SC, while slightly deterio-
rates the quality of maps obtained with ESM and CMF. It is worth noticing that
all methods are able to correctly return the exact source locations in volumetric
maps. Figure 8 depicts the errors in source spectra reconstruction obtained with
all mapping techniques tested in this work, when different regions of interest are
used. All methods clearly shows that the offset of Plane 2 and 3 with respect
to source location produces the underestimation of source strengths. This effect
is particularly evident with CLEAN-SC and CMF, from about 5 kHz towards
higher frequencies, but even ESM confirm this trend despite its instability in
source strength quantification. Figure 9 compares the source quantification er-
ror obtained with all methods on volumetric maps. The major instability in
source quantification of ESM-IRLS, with respect to the other two methods,
can be partially attributed to the assumption of uncorrelated sources made for
CMF-IRLS and CLEAN-SC. In case of correlated and distributed sources how-
ever, it is expected that CLEAN-SC performance gets worse. Experimental test
case in the next section is an example of this.

When it comes to processing time, the following data can be reported (CPU:
Intel Xeon E5-2630 v4 @ 2.20 GHz, RAM: 128 GB @ 2400 MHz). For 2D cal-
culations, CLEAN-SC took about 0.11 seconds, CMF-IRLS 6.67 seconds and
ESM-IRLS 1.9 seconds. For inverse method a non negligible increase of pro-
cessing time is experienced when planes ”out of focus” are considered. In this
condition, CMF-IRLS took 7.45 seconds while ESM-IRLS 2.55 seconds. Instead
for 3D calculations, CLEAN-SC took 5.50 seconds, CMF-IRLS 210.56 seconds
and ESM-IRLS 18.61 seconds. It is worth to remember that with ESM an in-
verse problem for each eigenmode is solved, while with CMF only one on the
whole CSM.
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(a) (b)

Figure 2: 2D vs 3D mapping with CLEAN-SC, 8 kHz 1/3-octave band. (a) Plane 1. (b)
Volume.

(a) (b)

Figure 3: 2D vs 3D mapping with ESM-IRLS, 8 kHz 1/3-octave band. (a) Plane 1. (b)
Volume.
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(a) (b)

Figure 4: 2D vs 3D mapping with CMF-IRLS, 8 kHz 1/3-octave band. (a) Plane 1. (b)
Volume.

(a) (b)

Figure 5: 2D mapping with CLEAN-SC, 8 kHz 1/3-octave band. (a) Plane 2. (b) Plane 3.

(a) (b)

Figure 6: 2D mapping with ESM-IRLS, 8 kHz 1/3-octave band. (a) Plane 2. (b) Plane 3.
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(a) (b)

Figure 7: 2D mapping with CMF-IRLS, 8 kHz 1/3-octave band. (a) Plane 2. (b) Plane 3.
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Figure 8: Error of reconstructed source spectra with different regions of interest. Black solid
line: Volume. Green dashed line: Plane 1. Purple dotted line: Plane 2. Blue dot-dashed line:
Plane 3. (a) CLEAN-SC. (b) ESM-IRLS. (c) CMF-IRLS.
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Figure 9: Error of reconstructed source spectra with different methods in volumetric source
mapping. Black solid line: CLEANSC. Green dotted line: CMF-IRLS. Purple dot-dashed
line: ESM-IRLS.

4.2. Experimental data

The second test case is a real experiment conducted in the aeroacoustic wind
tunnel at Brandenburg University of Technology [37]. A NACA 0012 airfoil is
positioned in an open jet of diameter 0.2 m and core velocity 50 m/s. The
airfoil has a span of 0.28 m and a chord length of 0.25 m. The boundary layer
tripping was realized with a 2.5 mm anti-slip tape applied at 10% of the chord
both on the suction and the pressure side. The array used has 56 microphones
and a diameter D = 1.3 m; it was placed 0.715 m above the airfoil. Figure 10
shows the position of the airfoil and the nozzle. Data were sampled at 51200
samples/s and the CSM is estimated averaging 4000 blocks of 1024 samples
(overlap 50%) using Hanning window. The frequency resolution obtained is
50 Hz. Also in this test case the sound propagation through the flow field
is calculated using Acoular OpenJet environment, in order to get the actual
propagation distances. As for the acoustic propagator is concerned, standard
free field pressure-to-pressure formulation is used. No masking effect due to the
solid airfoil is currently considered. Authors are developing solutions to tackle
this issue, but this will be discussed in future works.

The target volume for delivering acoustic maps is the outer region depicted
in Fig. 10. This volume is discretized in a regular grid of 2 cm spacing. Since
monopoles are considered, this discretization turns into 60.516 potential sources.
The inner region is exploited to define an arbitrary aperture function. All coor-
dinates of both regions are available in Tab. 3. An arbitrary aperture function
is introduced in the processing of experimental data to reduce the influence of
disturbing sources outside the mapped region. The aperture function is equal
to 1 for each point inside the inner region and has values that decrease to 0 to-
wards the edges of the outer region. Figure 11 depicts the weights profile, used
to calculate the aperture function, which are obtained similarly to a Cosine-
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Tapered window (or Tukey window). The weight of each point is calculated
as the product of Wx, Wy and Wz, depending on its coordinates, and these
values are used to define the diagonal of the inverse of W0, which is the actual
weighting matrix used in calculations.

Results referring to the 1/3-octave bands with central frequencies 4 kHz and
8kHz, which correspond to He ≈ 13.5÷16.7 and He ≈ 26.8÷33.5, are reported
hereafter. CLEAN-SC produces quite clear maps, even though the sources iden-
tified, both at the leading and trailing edges, are too spatially concentrated with
respect to the distribution suggested by the physics of the phenomenon. The
adoption of ϕ < 1 could help in mitigating the risk to alter the shape of spa-
tially distributed sources. ESM-IRLS seems to respect the spatial extension
of the noise sources expected. This is true also for the CMF-IRLS approach,
despite this latter method seems to preserve the spatial distribution of source
in a less precise way.

Figure 10: Measurement setup. In gray the airfoil NACA 0012. The black circle is the nozzle
of the open jet. Black dots are the microphone locations.

x (m) y (m) z (m)
Outer region [-0.400 , +0.300] [-0.400 , +0.400] [-1.115 , -0.315]
Inner region [-0.300 , +0.200] [-0.300 , +0.300] [-0.915 , -0.515]

Table 3: Regions of interest for the experimental test case. The values in the square brackets
indicates the extension of the region.
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Figure 11: Weights profile used to create the Aperture Function. (a) Profile along x axis. (b)
Profile along y axis. (c) Profile along z axis.

(a) (b)

Figure 12: Volumetric 3D maps on airfoil NACA 0012 in open jet with CLEAN-SC. (a) 4 kHz
1/3-octave band. (b) 8 kHz 1/3-octave band.

21



(a) (b)

Figure 13: Volumetric 3D maps on airfoil NACA 0012 in open jet with ESM-IRLS. (a) 4 kHz
1/3-octave band. (b) 8 kHz 1/3-octave band.

(a) (b)

Figure 14: Volumetric 3D maps on airfoil NACA 0012 in open jet with CMF-IRLS. (a) 4 kHz
1/3-octave band. (b) 8 kHz 1/3-octave band.
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5. Conclusions

A study on three-dimensional volumetric mapping with inverse methods has
been presented in this paper. The use of a single planar array makes source
localization and quantification a very difficult tasks, because additional issues
must be faced with respect to standard acoustic imaging performed on grids
that lay on surfaces. A tailored IRLS approach has been discussed for solving
sparse approximation of source field in volumetric context. Two inverse methods
have been proposed: ESM-IRLS and CMF-IRLS. These two methods have been
compared with CLEAN-SC both on simulated and experimental test cases. It
has been shown that standard approach of surface mapping produces errors
in source spectra reconstruction, when the surface does not contains the real
sources. Moreover, some artifacts may be present in acoustic maps. Despite
the higher complexity, volumetric three-dimensional approach demonstrated to
bring advantages in terms of localization and quantification. The application
on experimental data of an airfoil in open jet showed several sources out of the
chord plane and the airfoil surface. A positive aspect of the volumetric approach
is that it does not require any additional hardware or any sort of modification
to typical measurement setup, therefore it can be applied also to measurement
data already acquired for standard acoustic mapping.
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