Exploration of Synthesis Methods from Simulink Models to FPGA
for Aerospace Applications

Invited Paper

Serena Curzel
Politecnico di Milano
Milano, Italy
serena.curzel@polimi.it

Tiago Jorge

Madrid, Spain
tiago.jorge@gmv.com

ABSTRACT

Model-based development techniques in Matlab/Simulink simplify
the design and implementation of software for aerospace appli-
cations, providing the required level of abstraction for scientists
that work on complex navigation and control algorithms. As Field
Programmable Gate Arrays (FPGAs) have become more and more
relevant in space hardware platforms, developers could benefit from
automated acceleration flows that do not require extensive manual
rewriting of their code to port it on FPGA. We analyze existing
methods that synthesize Simulink models, showing how a combi-
nation of automated C code generation and High-Level Synthesis
can enable rapid prototyping, fast design space exploration, and a
good trade-off between accelerator efficiency and design flexibility.
We test the proposed acceleration flow on real-world guidance and
navigation control systems for CubeSats.

CCS CONCEPTS

+ Hardware — High-level and register-transfer level synthe-
sis; Reconfigurable logic and FPGAs.

KEYWORDS
FPGA, aerospace, High-Level Synthesis

ACM Reference Format:

Serena Curzel, Michele Fiorito, Patricia Lopez Cueva, Tiago Jorge, Thanassis
Tsiodras, and Fabrizio Ferrandi. 2023. Exploration of Synthesis Methods
from Simulink Models to FPGA for Aerospace Applications: Invited Paper.
In 20th ACM International Conference on Computing Frontiers (CF’23), May
9-11, 2023, Bologna, Italy. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3587135.3592766

1 INTRODUCTION

Space missions today face a growing need for on-board computing
performance: low bandwidth communication between spacecraft

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CF 23, May 9-11, 2023, Bologna, Italy

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0140-5/23/05.

https://doi.org/10.1145/3587135.3592766

Michele Fiorito
Politecnico di Milano
Milano, Italy
michele.fiorito@polimi.it

Thanassis Tsiodras

GMV European Space Agency (ESA/ESTEC)

Noordwijk, The Netherlands
thanassis.tsiodras@esa.int

Patricia Lopez Cueva
Thales Alenia Space
Cannes, France
patricia.lopezcueva@thalesaleniaspace.com

Fabrizio Ferrandi
Politecnico di Milano
Milano, Italy
fabrizio.ferrandi@polimi.it

and Earth requires sensor data to be pre-processed and compressed
before transmission, and increasingly complex navigation algo-
rithms cannot be operated remotely due to latency constraints. The
computational requirements for such tasks are rapidly approaching
the limits of what space-grade processors and microcontrollers can
offer, also because radiation-hardened components are inherently
slower than general-purpose processors. Instead, hybrid systems
that include Field Programmable Gate Arrays (FPGAs) have drawn
more and more attention [5], as they offer improved performances
with acceptable overhead in size, power consumption, and cost, and
they introduce the possibility of in-flight reconfiguration.

A possible obstacle to the adoption of FPGAs is the additional
design effort of translating an existing algorithm, often written in
a model-based programming framework such as Matlab Simulink,
into low-level hardware description languages (Verilog/VHDL).
In this paper, we analyze existing solutions, based on High-Level
Synthesis (HLS) and on tools provided within the Matlab suite, to
automatically synthesize Simulink models for aerospace applica-
tions into FPGA accelerators. We propose to combine the Matlab
Embedded Coder tool with an open-source HLS engine to obtain
efficient designs without any modification to the input Simulink
models, so that existing algorithms can be seamlessly deployed on
FPGA. The proposed approach allows to evaluate different HW/SW
partitioning schemes by working solely within Simulink, without
needing to write low-level code for each new solution, enabling
fast prototyping and rapid exploration of architectural trade-offs.

2 BACKGROUND

FPGAs in the space domain - The benefits of FPGAs for critical
space applications have been shown in several studies. For example,
[5] outlines the computing requirements for small satellites and pre-
dicts that future missions will have to rely on FPGA-based hardware
accelerators to cope with their increasingly complex functionalities.
Another overview of FPGA-based systems for space applications
can be found in [6], with particular emphasis placed on reconfigura-
bility. In-flight reconfiguration can ensure that on-board computers
for long-lasting satellite missions can be upgraded and optimized
throughout their entire lifetime by uploading new bitstreams from
a ground station. The other concern that can be addressed through


http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587135.3592766&domain=pdf&date_stamp=2023-08-04

CF ’23, May 9-11, 2023, Bologna, Italy

+ Fast
+ Effortless
- Less efficient design

+ Efficient design
- Time consuming
- Requires experts

Blocks from HDL
library +
HDL Coder

Hand-written C++
+HLS

Embedded
Coder + HLS

Hand-written

Figure 1: Synthesis tools from Simulink models to FPGA.

dynamic reconfiguration is reliability: FPGAs are notoriously sus-
ceptible to single event upsets when exposed to radiation, and
errors in the configuration memory can cause incorrect behavior
(especially if they accumulate in years of operation).

It is worth noting that these are not only theoretical studies: there
are already several space missions that have successfully employed
FPGAs as on-board computational units. To quote just a few of
them, the Cibola Flight Experiment [8] performed experiments
and assessed FPGA performance when exposed to radiation, and
several FPGAs are used on the Mars Exploration Rovers and their
landers [9]. The CHREC Space Computer [11], a design based on a
multi-processor System-on-Chip platform, has been successfully
deployed and validated on the International Space Station.

High-Level Synthesis - HLS tools simplify the implementa-
tion of accelerators on FPGA by automating the most complex,
time-consuming step in the development flow: instead of manu-
ally writing VHDL/Verilog code, the user only needs to provide
a program written in a well-known software language such as
C/C++, together with constraints about timing and resource utiliza-
tion that the final design has to satisfy. In this way, the increased
performance offered by FPGAs is made available also to software
developers that do not have hardware design expertise. Generally,
the High-Level Synthesis flow begins with a compilation step to
analyze data dependencies and loops in the input C/C++ program,
perform typical code optimizations, and generate a Control and
Data Flow Graph (CDFG). Then three core steps are performed on
the CDFG (resource allocation, scheduling, binding) to define the
structure of the output hardware by assembling functional, storage,
and communication units taken from a library of RTL components.
In the end, the obtained HDL code is ready to be used in a com-
mercial FPGA design tool for further analysis, logic synthesis, and
deployment. In the past, the shorter development time offered by
HLS used to be at odds with the efficiency of the generated designs.
Instead, several commercial and open-source tools exist today [2]
that are able to generate efficient designs, competitive in speed and
resource utilization with hand-optimized RTL code.

3 SYNTHESIS TOOLS AND METHODOLOGIES

Several methods exist to translate a Simulink model into an FPGA
design, each having different degrees of automation, abstraction,
and efficiency. We ranked them in Figure 1 according to the amount
of effort required; the least automated option is manually writing
RTL code that corresponds to the Simulink model functionality.
Hardware accelerators designed in Verilog/VHDL are traditionally
considered to be more efficient than others that have been specified
at higher levels of abstraction; however, this is the most expensive
method in terms of both time and effort. Moreover, domain experts
who write complex Simulink models for aerospace applications
likely do not have any hardware design expertise, so there is a risk
of introducing inefficiency and errors during the translation. Adding

244

Serena Curzel, Michele Fiorito, Patricia Lopez Cueva, Tiago Jorge, Thanassis Tsiodras, and Fabrizio Ferrandi

FPGA experts to the team is an additional cost, and it also does
not entirely eliminate the risk of translation errors when moving
between such different programming models.

Matlab provides a slightly more automated method that auto-
matically translates selected blocks from Simulink models into
Verilog/VHDL: HDL Coder. Some important limitations have to
be taken into consideration here, the most relevant one being that
HDL Coder does not support every block available in the Mat-
lab/Simulink libraries, so parts of the input model might need to be
eliminated or substantially changed. For supported blocks, usually,
there are both a generic version and one that has been optimized
for RTL code generation, so the majority of blocks in an existing
model might have to be manually substituted with their counter-
parts from the HDL library to fully exploit HDL Coder’s capabilities.
Writing or re-writing a Simulink model for HDL Coder requires
a low-level perspective similar to that of manual RTL design, and
later in Section 4.1 we have provided a concrete example of how
this impacts the quality of the generated accelerators.

As HLS is an established method to raise the level of abstrac-
tion in the design of FPGA accelerators, it would be beneficial to
use it when synthesizing Simulink models; to do that, the input
model has to be translated into a programming language that HLS
tools support (usually C or C++). The Xilinx Model Composer tool
integrates Vitis HLS in the Matlab suite by providing library compo-
nents (in hardware description languages or HLS-friendly C code)
that can substitute Simulink blocks; to implement functions that
are not available in the library it allows to manually write C/C++
code and integrate it in the model as a custom block [1]. Mentor
Graphics similarly proposes to combine the use of Matlab/Simulink
and Catapult HLS through a manual translation of blocks that are
selected for hardware acceleration into C++ code [10]. Both of these
solutions focus on the integration of HLS within the Matlab suite,
so that the newly introduced blocks can be verified in the context of
the whole Simulink model using familiar tools, and they correctly
assume that writing C/C++ code is easier and less error-prone than
writing Verilog/VHDL. However, asking aerospace engineers to
manually translate parts of large and complex Simulink models
would require a considerable amount of time, and domain experts
might find even C++ challenging, as it represents a completely
different level of abstraction.

We propose to further automate the design process by applying
High-Level Synthesis to C code generated by Matlab’s Embedded
Coder tool. This option is not often considered because the output
code of Embedded Coder is not always compatible with standard
HLS tools such as Catapult or Vitis HLS. Moreover, C code generated
and optimized by Embedded Coder for an embedded microprocessor
might produce less efficient designs than hand-written C. Neverthe-
less, the combination of Embedded Coder and High-Level Synthesis
would enable a fast and effortless translation of Simulink models
into good quality hardware designs. We found that the open-source
HLS tool Bambu [3] can successfully process C code produced by
Embedded Coder, with the only additional requirement of adding
a wrapper around the generated step function to map inputs and
outputs of the accelerator to corresponding variables in the code.

With the proposed solution, users with no experience in hard-
ware design or HLS can select blocks from their input Simulink



Exploration of Synthesis Methods from Simulink Models to FPGA for Aerospace Applications

Table 1: Configuration options in Embedded Coder/Bambu.

Property Options
Embedded Coder
Hardware board ARM 11

Intel x86-64 (Windows)
Intel x86-64 (Linux)

Atmel AVR32
Support long long Yes

No
Code generation objectives Unspecified

Execution efficiency
RAM efficiency

Bambu
Experimental setup BAMBU-AREA
BAMBU-BALANCED

BAMBU-PERFORMANCE

Memory allocation policy =~ ALL-BRAM
NO-BRAM
Loop unrolling Yes
No

models and seamlessly translate them into FPGA accelerators. Dur-
ing the process they can test different HW/SW partitioning deci-
sions by changing the subset of blocks to be translated, and explore
different configuration options in Embedded Coder and Bambu to
meet specific application requirements. An example of the avail-
able configuration options is given in Table 1. Embedded Coder
provides a set of configuration options to tune the code generation
process according to user-defined constraints, which are meant to
adapt the output C code to a specific processor and application.
Embedded Coder supports several hardware targets from different
vendors, for example it can produce C code tailored to ARM, Intel,
and Atmel processors; for each of them it can be specified whether
support for 64 bits long long data types is available. Moreover,
it is possible to specify high-level "Code generation objectives"
that automatically configure Embedded Coder to prioritize fast
execution time, reduced memory usage, debugging, safety, and
other factors that might be critical for a specific application. Bambu
exposes similar high-level options called "Experimental setups"
that automatically configure other options to prioritize the genera-
tion of Verilog/VHDL code with minimized resource consumption
(BAMBU-AREA), few clock cycles (BAMBU-PERFORMANCE) or to
find a good compromise between the two (BAMBU-BALANCED).
Other available command-line arguments provide different mem-
ory allocation and loop unrolling strategies: objects that are stored
in memory can be allocated to on-chip block memories (BRAMs)
or moved to external memory, loops can be unrolled to increase
instruction-level parallelism if a reduction in latency is desirable
and the additional area overhead is acceptable. In general, it is hard
to predict in advance which configurations will result in the best
quality of results after synthesis, and therefore it is crucial that the
design space exploration process in the proposed approach does
not require any manual modifications on the input Simulink model.

245

CF ’23, May 9-11, 2023, Bologna, Italy

Table 2: Selected benchmarks.

Model Simulink Lines of Constants Static
blocks C code variables
Filters 21 432 584 bytes 120 bytes
SAGE-GNC 445 2391 592 bytes 248 bytes
HERA 62 54391 644 bytes 38.5 Mbytes

4 EXPERIMENTAL EVALUATION

We generated FPGA designs from three Matlab/Simulink models,
briefly described in Table 2 in terms of size and complexity (neglect-
ing the variations in the length of the C code introduced by different
Embedded Coder configurations). The Filters model contains two
filter blocks, the first one taken from the Simulink library and the
second built from gain, delay, and arithmetic blocks. SAGE-GNC and
HERA are two real-world aerospace applications: the full Guidance
and Navigation Control system developed within the CoRA-SAGE
project [4], and a real-time image-based navigation algorithm from
the HERA mission [7].

4.1 Comparison of different approaches

As stated in Section 3, the Matlab suite contains a tool called HDL
coder that can translate selected blocks into low-level Verilog/VHDL
code. Even if the input model only contains blocks supported by
HDL Coder, however, without hardware design expertise the results
obtained with HDL Coder can be worse than what can be achieved
with the combination of Embedded Coder and High-Level Synthesis.
To show this, we built the Filters model so that it was possible to
process it with both HDL Coder and Embedded Coder, we passed
the generated C code to Bambu, and synthesized the two resulting
Verilog modules with Vivado 2020.2 for a Xilinx Zing-7000 FPGA.

One of the configuration options that can be selected in HDL
Coder is the desired frequency: in this experiment the target fre-
quency was set to 100MHz, but the post-implementation results in
Table 3 show that the real operating frequency is considerably lower.
We found at least two identifiable reasons that explain why HDL
Coder produces a design that runs one order of magnitude slower
than what we required. The first one is that part of the model per-
forms calculations on floating-point data types, and floating-point
computation tends to be inefficient on FPGA. Aerospace engineers
may not be used to taking into account data representation issues
when they write Simulink models, so it is realistic to expect that
their applications contain blocks that can be rewritten as fixed-point
computation, which would result in more efficient FPGA designs.
In our scenario, however, we would like to explore different hard-
ware/software partitions starting from a single model, so adapting
data types for different subsets of blocks each time would quickly
nullify the automation benefits provided by HDL Coder.

The second reason behind such a wide gap between the required
frequency and the obtained one is that one of the two filters in
the model contains a feedback loop, and HDL Coder does not add
registers to break loops unless the user explicitly includes them as
blocks from the HDL library. Overcoming this problem would again
require a significant amount of manual rewriting and hardware
design expertise, and it becomes unfeasible as the input model



CF ’23, May 9-11, 2023, Bologna, Italy

Serena Curzel, Michele Fiorito, Patricia Lopez Cueva, Tiago Jorge, Thanassis Tsiodras, and Fabrizio Ferrandi

Table 3: Implementation results for Verilog code generated through HDL Coder, or Embedded Coder and HLS (Filters model).

Tool (Required clock period) ‘ Clock Cycles ‘ Frequency ‘ Slack ‘ Registers ‘ Slices ‘ DSPs ‘ BRAMs
HDL Coder (10 ns) 5 8.83 MHz | —103.250 ns 175 2062 36 0
Embedded Coder + Bambu (10 ns) 55 96.91 MHz —0.319ns 3412 1713 10 0
Embedded Coder + Bambu (9.5 ns) 62 107.02 MHz 0.156 ns 4451 1879 10 0
Table 4: Comparison between accelerators produced by Bambu and Vitis HLS.
Model Configuration | HLS Tool | Clock Cycles | Frequency | Registers | Slices | DSPs | BRAMs
Filters ARM Vitis HLS 62 106.93 MHz 3554 1235 28 2
Filters ARM Bambu 55 97.70 MHz 3418 1721 10 0
Filters ARM-LL Vitis HLS 50 106.97 MHz 3092 1185 28 2
Filters ARM-LL Bambu 55 96.91 MHz 3412 1713 10 0
SAGE-GNC | ARM Vitis HLS 4182 120.29 MHz 29504 14682 247 6
SAGE-GNC | ARM Bambu 3301 78.53 MHz 36483 25285 505 100
SAGE-GNC | ARM-LL Vitis HLS - - - - - -
SAGE-GNC | ARM-LL Bambu 1735 100.03 MHz 12424 9139 549 4

becomes larger and more complex. This second issue disappears
when the model is transformed into Verilog code through Embedded
Coder and HLS. In fact, HLS engines schedule operations so that
they fit inside a given clock period, inserting registers where they
are needed rather than expecting the user to specify where they
should be placed. If the resulting design is still not able to run at the
desired frequency (negative slack reported after logic synthesis and
implementation), specifying a stricter constraint may help guide
the tool towards different scheduling and allocation decisions. Such
a case is visible in Table 3, where Verilog code synthesized by
Bambu 0.9.7 is not able to run at 100MHz when the initial clock
period requirement is 10ns, but reaches the desired target when
generated with a tighter constraint. From these considerations we
can conclude that combining Embedded Coder with HLS represents
a more appropriate way to translate existing Simulink models into
Verilog/VHDL than using HDL Coder, especially when the input is
a complex model written by aerospace engineers and fast design
space exploration is a priority.

4.2 Comparison of different HLS tools

After deciding to exploit Embedded Coder to automatically translate
Simulink models into C, the second important choice to build a
stable design flow is to select the most appropriate HLS tool. In
this section we compare the performance of Vitis HLS 2020.2 and
Bambu 0.9.7, which are state-of-the-art tools supporting most of the
C/C++ language. An exhaustive comparison across all experiments
has not been possible because Vitis HLS was not always able to
synthesize the C code produced by Embedded Coder; specifically,
Vitis HLS failed to compile the C code with long long support of
the SAGE-GNC model due to an unsupported array access (the size
of the array could not be determined at compile time), and it could
not finish pre-synthesis checks on the HERA code (the process was
killed after running for more than 24 hours).

Table 4 reports post-implementation results for accelerators gen-
erated starting from C code tailored to an ARM target, with and
without 64 bit data types (-LL configurations). On the Filters model,
Bambu tends to consume fewer DSPs and BRAMs with similar or

246

slightly worse performance; the SAGE-GNC model that Vitis HLS
successfully synthesized resulted in performances that are compa-
rable to what Bambu was able to achieve starting from the same C
code. However, the best performance overall for SAGE-GNC can be
achieved by changing the Embedded Coder configuration (ARM-LL
instead of ARM), which is not compatible with Vitis HLS.

A significant drawback of Vitis HLS is that to introduce further
optimizations (e.g., parallelism, memory interfaces), the user has to
insert compiler directives (pragmas) at the right place within the
input C code; Bambu, on the other hand, exposes most optimiza-
tion opportunities as command-line options. In the case of existing
aerospace applications, the meaning of each function and variable
within the automatically generated code may be hard to trace, espe-
cially if the user is not the same person that designed the Simulink
model. The effort of understanding where to insert optimization
directives significantly slows down the design space exploration
process, and it would be lost each time the input Simulink model is
modified and the C code is regenerated.

4.3 Design space exploration

We finally tested the proposed design flow on two aerospace appli-
cations to explore the design space provided by different Embedded
Coder and Bambu configurations. In all experiments, logic synthe-
sis was performed by Vivado 2020.2 for a Xilinx Virtex-7 FPGA
with a target frequency of 100 MHz.

Figure 2 reports the results of the experiments that we performed
on the SAGE-GNC model. Each color corresponds to a different
hardware target in Embedded Coder or to the same hardware target
with different long long support options; groups of bars on the
x axis represent different Bambu configurations. Separate charts
are provided for six different hardware metrics: number of clock
cycles (after simulation), clock frequency, registers, slices, DSPs, and
BRAMs (after synthesis and implementation). The configuration
options that we selected are the ones reported in Table 1; however,
C Code generated for AVR32 is identical to the one for ARM11,
so results for the AVR configurations are not shown. The figure
does not contain information about the code generation objectives



Exploration of Synthesis Methods from Simulink Models to FPGA for Aerospace Applications

110

0 || || ‘ | |

& &

90000

80000
70000
60000
50000
40000
30000
20000
10000

0

mARM  X86-WIN © X86-LINUX ® ARM_LL m X86-WIN_LL

3

10000

<
8

8000

®
8

6000

~
3

4000

2
8

2000

&

&, —
—_—
—_—
]
—
I
—_—
]
-

]
—
=
]
|

a

3

CF ’23, May 9-11, 2023, Bologna, Italy

N
N S S & S S S & b
& 4 @b@@‘é‘ d & é’@@ @‘?\"? & &S ‘gh <\°°‘ "‘/W «\‘pk & (b‘?y R oée Q"ézﬁ( c"@ LA S & & € & Q@Qg &
< < < < DR SN s ) s > O S » > <« >
SR8 b 55 PO & D 3 & 3 & » &
& > Y N & S & > <X N & &7 & 4 < &7 < &7
& ’ @ D © &7 & 3 < & ¥ & 3 & &
N & & < & N & ¢ & 13 © &
(a) Clock cycles (b) Frequency (MHz) (c) Registers
45000 800 160
40000 700 140
35000 600 120
30000 500 100
25000 400
20000 80
15000 300 P
10000 200 20
o I I I I I I I l I I " »
mle il ele
O S S e S S E S R P N S S P R °l@\.¢ e e e T
€S &G TS &S € Fed TSy E TS R M N
RS s > & &S LS, oS o5 PRI L) & & $ & T S
& F & & 3 > b & 3 DR S s N PO N
& & & > & & & <& M & <« & & > & o & <
& @ & 5 < S ‘gﬁf & < &

(d) Stices

(¢) DSPs

Figure 2: Timing and area utilization results across different Embedded Coder and Bambu options (SAGE-GNC model).

14000
12000

10000

‘l ‘\ ‘\ ‘\ ‘\
o |I || || o

d§ f a@

§

§

§

e S 3 N
a’

qefyw*é e Ow
&"3/ :
v

&

5 5 £ o 5
@ @ »“ & >
& a* g Q&

&
&

(@) Clock Cycles (v) Slices

Figure 3: Effect of Bambu experimental setups.

either because they never produced any change in the output C
code, as long as hardware target and long long support were the
same. By default, we allocate all objects that are stored in memory
to BRAMs and do not perform loop unrolling; results labeled as
_nobram are obtained moving all storage to external memory, and
the ones labeled as _ul contain unrolled loops.

The first consideration that can be made looking at the results
is that generating C for a hardware target supporting long long
data types will perform better almost in every case. There is lit-
tle to no difference between an ARM or x86 target, but enabling
long long support and leaving all other options unchanged pro-
duces designs that occupy on average 62% fewer registers, 62%
fewer slices, 89% fewer BRAMs, and take 66% fewer clock cycles to
execute. Figure 3 isolates the effect of changing Bambu configura-
tion while maintaining the same input C code (ARM-LL): it shows
the number of clock cycles and slices in ascending order, assign-
ing different colors to the three experimental setups. It is evident
that BAMBU-AREA effectively minimizes resource consumption,
BAMBU-PERFORMANCE reduces the number of clock cycles, and
BAMBU-BALANCED provides a good compromise between the
two. When loops are unrolled, memory access patterns become
less complicated: this is reflected in a lower number of clock cycles
(Figures 2a, 3a) and BRAMs (Figure 2f).

247

The models that were translated to C without support for long
long data types (blue and red bars in Figure 2) contain calculations
that have been split into multiple operations on lower bit-widths:
in these conditions, it is easier for Bambu to perform resource
sharing, i.e., allocating different operations to the same hardware
resources in a time-multiplexed way. This behavior is visible in
Figure 2e, where the BAMBU-AREA experimental setup is able
to share DSPs and dramatically reduce their number, while on
the other hand requiring more clock cycles (Figure 2a). There are
many other configuration options available in Bambu that were
not considered in the first set of experiments to limit the size of
the design space. For example, it is possible to introduce a "DSP
allocation coefficient” to correct the estimates of the timing model
within Bambu that predicts the cost of interconnections, and set a
"Skip pipeline parameter” to increase the number of pipeline stages
within multipliers. Taking the BAL configuration on the ARM-LL
input model as the baseline, setting a DSP allocation coefficient
of 1.75 and a skip pipeline parameter of 1 allows to increase clock
frequency to 104.59 MHz and reduce DSPs by 48%, only increasing
the number of clock cycles by 15%.

Table 5 reports results obtained on the HERA image-based navi-
gation algorithm, which is considerably larger than the SAGE-GNC
model. The accelerator has to process several MBytes of images
and coefficient tables, which are too large to fit in on-chip BRAMs,
so we only evaluated configurations that allocate all data to exter-
nal memories. Access to the Simulink model for this algorithm is
restricted, so we could only synthesize one version of the C code
generated by Embedded Coder: it is the version targeting ARM
processors, with support for long long data types.

Exploring the simplest configuration options in Bambu did not
produce significant variations in the outputs: in fact, in the first six
lines of Table 5 there is almost no difference in the number of clock
cycles, and approximately 10% difference between the worst and
best resource utilization results. To reduce latency, which requires



CF ’23, May 9-11, 2023, Bologna, Italy

Serena Curzel, Michele Fiorito, Patricia Lopez Cueva, Tiago Jorge, Thanassis Tsiodras, and Fabrizio Ferrandi

Table 5: Effect of standard and advanced Bambu optimizations (HERA model, ARM-LL).

Clock Cycles | Frequency | Latency | Registers | Slices | DSPs | BRAMs
AREA_nobram 318593 228 100.70 MHz 3.164 s 107 816 46 117 152 0
AREA_ul_nobram 318593504 101.16 MHz 3.149 s 108 380 47217 152 0
BAL_nobram 318592 687 101.44 MHz 3.141 s 110035 46 004 156 0
BAL_ul_nobram 318588091 101.97 MHz 3.124 s 110505 47 469 156 0
PERF_nobram 251243590 101.95 MHz 2.464 s 134 695 57636 389 0
PERF_ul_nobram 251240824 101.31 MHz 2.480 s 136 161 59837 389 0
*BAL_nobram 318827836 102.33 MHz 3.116 s 114 830 46 678 68 0
*BAL_MP_nobram 281482 647 100.87 MHz 2.791s 116 788 47343 68 0
*BAL_nobram_dfp 251489182 102.54 MHz 2453 s 130 838 54587 258 0
*BAL_MP_nobram_dfp 187929590 103.09 MHz 1.823 s 130 264 58 409 258 0
*BAL_ul_nobram 318 823 233 101.91 MHz 3.129 s 115 262 47559 68 0
*BAL_MP_ul_nobram 281478039 102.90 MHz 2.735s 113969 48751 68 0
*BAL_ul_nobram_dfp 251484624 102.29 MHz 2.459 s 131826 56 890 258 0
*BAL_MP_ul_nobram_dfp 187925011 100.92 MHz 1.862 s 131085 59776 258 0

either a higher frequency or a lower number of clock cycles, we
applied additional optimizations (marked with an asterisk in Table
5). All the advanced configurations in the table have registered
inputs, and adjustments to the DSP allocation coefficient and skip
pipeline parameter. _dfp stands for disable function proxy, a Bambu
option that inhibits sharing hardware modules and increases paral-
lelism; _MP indicates that external memories can be accessed with
two channels in parallel (only supported when function proxies are
disabled). The best combination of options yields a 1.823s latency,
which is 26% less than the best result obtained with a standard
configuration. These results suggest that, as the input Simulink
model increases in size and complexity, optimizations applied at
the HLS level become less effective. The 26% reduction in latency
that we were able to achieve with the advanced set of optimizations
required up to 15 hours of processing for each new experiment (es-
pecially due to logic synthesis, place, and route). Better results could
probably have been achieved with modifications to the algorithm
itself and to the Embedded Coder configuration. The proposed de-
sign flow allows to exploit all these levels of abstraction to guide
and speed up the refinement process: if the predicted accelerator
performance fails to meet system requirements, the input Simulink
model can be modified and synthesized again effortlessly instead
of requiring a new and expensive manual translation.

5 CONCLUSION

Recent technology improvements have sparked a widespread inter-
est in FPGA-based systems for aerospace applications, thanks to
their performance and the possibility of in-flight reconfiguration.
In this paper, we have presented a development process and a set of
tools that simplify the adoption of such highly configurable systems
through model-based design and HLS tools. Automatic code genera-
tion speeds up the design process and ensures the correctness of the
final results, and the level of abstraction provided by HLS enables
rapid prototyping and the exploration of different partitioning op-
tions. Experimental evaluation showed that producing C code with
Embedded Coder for HLS is more efficient than relying on HDL
coder to translate Simulink models into Verilog/VHDL, and that
Bambu is always able to process the output of Embedded Coder. The

248

configuration options for both tools offer a rich set of optimization
opportunities that do not require any manual modification on the
code to explore different architectural trade-offs.

Some open points remain that could lead the way for further im-
provement of the proposed design flow: for example, a specific pro-
cess to select and evaluate possible HW/SW partitioning schemes
has not been defined. At this stage, deciding which functional blocks
are best suited to acceleration is entirely left to the user. In the fu-
ture, analysis tools that support such decisions could be integrated
into the process to provide a starting point for design space explo-
ration and help evaluate system-level trade-offs. Another aspect
that deserves more consideration is the quality of automatically
generated C code: Embedded Coder offers several options to tune
its output to a specific processor, but selecting the ones that will
produce C code most suited to HLS is not straightforward. More-
over, the floating-point data types usually employed in Simulink
algorithms do not produce efficient results on FPGA, and replac-
ing them with fixed-point causes significant precision loss. A first
solution could be to impose a constraint on the use of fixed-point
data types during the development of the Simulink program; how-
ever, in order to be able to reuse existing algorithms without long
and expensive redesigns, a better approach would be to optimize
floating-point representations within the HLS tool.

Finally, it is worth mentioning that the modularity of our ap-
proach lends itself to research on different application domains: for
example, it is reasonable to assume that aerospace systems will also
rely on computer vision tasks and machine learning algorithms in
the near future. The proposed design flow can be easily adapted
to the development of such systems, extending the benefits of au-
tomated code generation and HLS to application domains that are
not yet considered in this study.

ACKNOWLEDGMENTS

This research was partially supported by the ESA/ESTEC Contract
No. 4000121154/17/NL/LF - CORA-MBAD, and by the HERMES
project funded by the EU Horizon 2020 Program under grant agree-
ment No 101004203.



Exploration of Synthesis Methods from Simulink Models to FPGA for Aerospace Applications

REFERENCES

(1]
(2]

(3]

AMD-Xilinx. 2022. Importing C/C++ Code as Custom Blocks. In Vitis Model
Composer User Guide.

J Cong, ] Lau, G Liu, S Neuendorffer, P Pan, K Vissers, and Z Zhang. 2022. FPGA
HLS Today: Successes, Challenges, and Opportunities. ACM Transactions on
Reconfigurable Technology and Systems 15, 4 (2022), 1-42.

F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, et al. 2021. Bambu:
an Open-Source Research Framework for the High-Level Synthesis of Complex
Applications. In Proceedings of the 58th ACM/IEEE Design Automation Conference
(DAC). 1327-1330.

A Figueroa, ] Cura, S Lozano, G Valle, G Rodriguez, J Corchero, et al. 2020. CoRA-
SAGE: The lessons learnt from AOCS/GNC algorithms deployment in TASTE. In
Model Based Space Systems and Software Engineering Workshop (MBSE 2020). 1-2.
Alan D. George and Christopher M. Wilson. 2018. Onboard Processing With
Hybrid and Reconfigurable Computing on Small Satellites. Proc. IEEE 106, 3
(2018), 458-470.

249

[6]

[7]

(8]

[9]
(10]

[11]

CF ’23, May 9-11, 2023, Bologna, Italy

N Montealegre, D Merodio, A Fernandez, and P Armbruster. 2015. In-flight
reconfigurable FPGA-based space systems. In 2015 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS). 1-8.

A Pellacani, M Graziano, M Fittock, J Gil, and I Carnelli. 2019. HERA vision based
GNC and autonomy. In Proceedings of the 8th European Conference for Aeronautics
and Space Sciences (EUCASS 2019).

H Quinn, D Roussel-Dupre, M Caffrey, P Graham, M Wirthlin, K Morgan, et al.
2015. The Cibola Flight Experiment. ACM Trans. Reconfigurable Technol. Syst. 8,
1, Article 3 (mar 2015).

D Ratter. 2004. FPGAs on mars. Xcell J 50, 8 (2004), 11.

P. Solanti and R. Klein. 2020. Seamless MATLAB® to Register-Transfer Level De-
sign Methodology Using High-Level Synthesis. International Journal of Aerospace
and Mechanical Engineering 14, 9 (2020), 406 — 413. https://publications.waset.
org/vol/165

C Wilson and A George. 2018. CSP hybrid space computing. Journal of Aerospace
Information Systems 15, 4 (2018), 215-227.



