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Abstract—This paper considers the problem of cooperative
lidar sensing in vehicular networks. We focus on the task of
associating the vehicle-generated measurements by the lidars to
enable a cooperative detection of vulnerable road users. The
considered measurements are the three-dimensional bounding
boxes extracted from the lidar point cloud. Focusing on a
centralized architecture which aggregates and processes all the
sensing information, we design a graph formulation of the
association problem and we propose a novel solution based
on Message Passing Neural Networks (MPNNs). The method
has the advantage of accurately learning the associations and
the measurement statistics directly from data. We validate the
proposed approach on a cooperative sensing scenario simulated
by CARLA, an open-source high-fidelity simulator for automated
driving scenarios. For the generation of bounding boxes related to
pedestrian detections, we consider both artificially-generated and
realistic measurements obtained by employing the PointPillars
model. We validate the performance by comparing the proposed
MPNN model with the Sum-Product Algorithm for Data Asso-
ciation (SPADA), a common approach for data association in
multisensor systems. The proposed data-driven MPNN model
achieves an association accuracy above 99% and outperforms
SPADA in case of moderate sensing errors, as foreseen by
automated driving scenarios. We also assess the efficacy of data
association in case of mis-modeling between training and testing
datasets, observing good generalization capabilities when dealing
with untrained conditions.

Index Terms—cooperative lidar, pedestrian detection, data
association, MPNN, SPADA, CARLA simulator.

I. INTRODUCTION

A. Contextualization and background

In the last two decades, driving automation functionalities
have advanced at an incredible rate, allowing an accurate
perception of the environment for enhancing vehicle safety [1],
[2]. At the same time, the development of cellular commu-
nications for the automotive vertical (e.g., 5G and beyond)
is driving a new connectivity paradigm for mobility [3]–[5].
Vehicle-to-Everything (V2X) communications enable a seam-
less information sharing among vehicles, road infrastructures
and any other road entity over Vehicle-to-Vehicle (V2V) or
Vehicle-to-Infrastructure (V2I) links. Examples of exchanged
information in V2X networks include sensor data, driving
intents and planned trajectories, or safety-related messages [6].
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Moreover, V2X communications allow to extend the ego-
sensing capabilities beyond the immediate field of view of on-
board sensors, enabling the cooperation across sensing systems
of different vehicles. The aggregation of data from spatially
distributed sensors (both on vehicles and road infrastructure)
through V2X links fosters the deployment of the so called
Cooperative Localization (CL) systems [7]–[12]. A relevant
use case for CL in V2X networks is related to Vulnerable
Road User (VRU) detection [13], [14], where cooperation can
significantly improve the detection capability.

Regardless of whether these sensors are located in the same
vehicle [15], [16] or across different units [17]–[19], CL heav-
ily relies on the correct association of sensor measurements,
i.e., data association [20]–[22]. While data association may
appear as a simple task, numerous studies have emphasized the
importance of addressing this problem due to the limitations of
naive solutions that simply associate closely detected objects
[23]–[26]. These solutions only yield meaningful results if all
vehicles detect an identical number of objects, which is an
unrealistic assumption due to varying sensor hardware and
fields of view, and do not have false alarms due to clutter.
Consequently, it is essential to associate multiple sets of
measurements related to distinct detected objects that are only
partially in common among vehicles.

In the literature, classical approaches for data association
were developed for solving the Multiple Object Tracking
(MOT) problem, with the ultimate goal of estimating the
trajectories of unknown and time-varying objects. Differently
from the localization of active devices, passive targets produce
unknown measurement-to-target connections, which have to
be associated before running any CL algorithm. The fusion
of multiple sensors’ measurements can take place under cen-
tralized [27]–[36], distributed [37]–[42] or hybrid network
architectures [43], [44].

In this paper, we focus on a centralized solution in V2X
networks where a central processing unit is in charge of
combining the raw data (or derived characteristics) from all
connected vehicles. Specifically, the aggregated measurements
refer to bounding boxes extracted from lidar sensors at the
vehicles. Centralized solutions in the literature mainly rely on
probability-based methods such as Belief Propagation (BP),
also known as Sum-Product Algorithm (SPA), which gives a
systematic approximation of optimal Bayesian inference with
an appealing performance-complexity trade-off [45]. BP uses
an iterative message passing exchange of information over a
suitable graph characterizing the specific problem. BP-based
techniques are optimal in case of linear and Gaussian models,
but provide only an approximation in case of loopy graphs
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or statistical distributions arising from real systems [21], [22].
Differently from BP-based solutions, we here propose to use
Message Passing Neural Networks (MPNNs), that allow to
improve performances upon SPA by directly learning the
correct associations and noise distributions from data.

B. Related works

First works of MOT task were developed in the domain of
radar and sonar tracking [30]–[34]. Traditional MOT methods,
such as Joint Probabilistic Data Association (JPDA) [46],
Linear Joint Integrated PDA (LJIPDA) [47] and Multiple
Hypothesis Tracker (MHT) [48], assume that the number of
targets is known and jointly estimate the target states and asso-
ciation variables. These approaches have been later extended
to consider also multi-sensor scenarios [49], [50] as in Linear
Multitarget IPDA (LMIPDA) [51]. Recent studies, including
probability hypothesis density (PHD) filters [52], [53], adopt
finite set statistics to predict the number of targets and target
states without directly estimating the association variables.
Other studies addressing probabilistic data association can be
found in [54]–[59]. However, most MOT approaches have
limited scalability as the number of sensors and targets grows.
Improvements from this point of view have been introduced by
BP techniques that are able to achieve high scalability [45]. BP
approaches have been investigated for both centralized [27]–
[29], [36] and distributed [37], [38] solutions.

As far as the data association is concerned, one of the
most prevalent approach is to use a graph formulation, which
facilitates the description of relationships among multiple mea-
surements on a same set of detected targets. Many solutions
that use graphs to solve data association take into account all
feasible assignments at the same time, yielding to an NP-hard
combinatorial problem [60], [61]. To reduce the complexity,
sub-optimal (greedy) methods have been proposed, casting the
problem as a linear one and addressing it through minimum-
cost [62] and maximum-flow algorithms [63]. These methods,
however, do not guarantee satisfying performance, especially
in cluttered and occluded environments [64], [65].

Another possibility to successfully manage data association
is to build Machine Learning (ML) models that directly learn
from data. ML, and in particular Deep Neural Networks
(DNNs), have been embedded inside graphs thanks to the rise
in popularity of Graph Neural Networks (GNNs) [66], [67].
GNNs, and more specifically MPNNs, inherit the message
passing structure of SPA to produce the desired output from
a set of inputs. Indeed, they have been jointly used with the
SPA to improve the overall performances by correcting errors
created by cycles and model mismatch [68], [69]. Compared
to DNNs, MPNNs have fewer parameters but they can still
catch the linear and non-linear relationships between input data
and output, being at the same time scalable [70]. Moreover,
MPNNs have been shown to outperform BP on loopy graphs,
provided that enough training data is available [71].

C. Contribution

To the best of our knowledge, GNNs have never been
explored for cooperative sensing nor for vehicular networks.

Drawing inspiration from [72], where the detections obtained
by a single camera system were associated over consecutive
time frames, we here modify and extend the approach to
a cooperative (i.e., multi-vehicle) scenario. We consider a
centralized network of vehicles, each with a single lidar
sensor, with overlapped Field-of-Views (FOVs) allowing a
cooperative detection (at the same time instant) of pedestrians
through the association of multiple bounding boxes extracted
from the lidar point cloud. We selected pedestrians as they
are passive elements of the environment and are extremely
relevant for safety-related applications (e.g., vulnerable road
user protection) as well as they are popularly present in urban
areas. Alternatively, vehicles could also be used, but they are
typically equipped with active devices in Cooperative Intelli-
gent Transport Systems (C-ITS) (following V2X paradigms),
thus notifying their presence in the near surroundings. On the
other hand, passive targets, such as pedestrians, traffic signals
or poles [73], are not univocally identified and, therefore, data
association is needed for their recognition and cooperative
detection by multiple sensors.

We assume that the lidar detection system does not incur
false detections (i.e., incorrect bounding boxes), which would
require a tracking over time to resolve the ambiguity; here
we focus on a snapshot-based data association. This assump-
tion may not always hold in real-world scenarios, especially
when objects are partially occluded. However, we employ
a filtering strategy that is widely adopted in deep learning
object tracking and discards unlikely bounding boxes with
low detection confidence (see e.g., [74] for a more complete
discussion). This helps limiting the false positives as very
unlikely bounding boxes are automatically removed by the
detector1. We also assume the noise statistics as invariant
across all sensors, a condition which in practice might not
be fulfilled due to different hardware and lidar processing
techniques. Including the variation over time of uncertainties
and designing an MPNN-based tracker with data association
are non-trivial issues that require deeper research relying on
this first activity as a starting point.

We propose an ML approach based on GNNs that exploits
the availability of training data, today largely accessible in
most applications. In particular, we address the data asso-
ciation problem through MPNNs in a V2X network where
vehicles share the detections of lidar sensors in a common
infrastructure (e.g., cloud-based). We choose to focus on data
association using MPNNs for two main reasons. First, data
association is a crucial component in cooperative sensing
algorithms, as accurate assignment of detections to tracks
significantly impacts the tracking performance: our goal is to
provide a solid foundation for more robust tracking solutions.
Second, using MPNNs for data association is an innovative
approach with great potentials for learning complex relation-
ships in graph-structured data, providing valuable insights and
future research opportunities.

1Complete removal of false positives may be accomplished by not only tak-
ing into account the detection confidence but also the temporal dependencies
of detections across adjacent time instants. This extension, not considered
here, requires solving the data association problem over multiple graphs
relating to adjacent time instants.
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A preliminary version of the proposed method has been
presented in [75], where we developed a unique graph rep-
resentation of the data association problem which is han-
dled by an MPNN model that captures the measurements’
characteristics and produces a compact and effective feature
representation. While in [75] we focused on a simple proof-of-
work implementation and stand-alone validation in a vehicular
scenario, in this paper we extend the work with the main
following contributions:

• proposal of MPNNs models for the cooperative associa-
tion of 3D bounding boxes from lidar sensing in vehicular
networks;

• analysis of the generalization capabilities of the MPNN
association model over a number of different and realistic
measurement statistics;

• validation of the suggested approach in a realistic cooper-
ative vehicular environment simulated with CARLA [76]
where a central unit fuses the bounding boxes obtained
by multiple vehicles from on-board lidar data using the
PointPillars [77] model;

• comparison with the conventional Sum-Product Algo-
rithm for Data Association (SPADA) [21], [22], with
particular focus on association performances and gener-
alization properties.

Note that the assessment on a synthetic cooperative dataset
considers the use of an efficient 3D object detector, which
has been demonstrated to provide accurate performances in
challenging real-world datasets [77]. Since the primary focus
of this work is on the fusion over the V2X networks of bound-
ing boxes from multiple vehicles and not on the processing of
raw lidar point clouds, any signal losses or adverse weather
conditions are not affecting the proposed MPNN as they only
reduce the performance of the 3D object detector operating
over the lidar point cloud.

Numerical results show that the proposed method is able
to efficiently address the data association issue in coopera-
tive connected multi-vehicle systems, and to correctly learn
extremely complex (e.g., multi-modal) distributions, such as
the realistic PointPillars outputs. Moreover, with respect to
SPADA, the proposed MPNN model can achieve higher per-
formances across different noise statistics and intensities in
several circumstances.

D. Paper organization

This paper is organized as follows: Section II introduces the
system model of the cooperative sensing scenario and its graph
representation. Section III firstly provides an introduction on
the working principle of GNNs, and then defines the proposed
MPNN solution. Section IV is devoted to performance analysis
in a cooperative vehicular scenario with lidar-based pedestrian
detection and to the comparison with SPADA. Finally, Sec-
tion V draws the conclusion.

II. SYSTEM MODEL

Let us denote with Sn = {1, ..., Sn} a set of connected
vehicles at time n. A vehicle s ∈ Sn is described by
the state vector xs,n, which can include kinematic (e.g.,

position, velocity, etc.) and non-kinematic (e.g., identification
number, category, dimension, etc.) parameters. All vehicles are
connected to a central processing unit (e.g., a road side unit
or a mobile edge cloud) in charge of aggregating the vehicle-
generated information and providing a cooperative detection
system. We assume an always-available connectivity: model
and effects of the communication protocol are out of the
scopes of this paper. Each vehicle has a lidar sensing system
embedding an ML algorithm for detecting non-cooperative
vulnerable road users, here pedestrians, referred to as targets.
The k-th target is described by the state vector yk,n, while
the set Ys,n includes all the pedestrians detectable by vehicle
s (i.e., within its FOV) at time n. By processing the lidar
point clouds gathered at the vehicles via 3D object detection
methods, such as [78], [79], each target falling within the
lidar sensing range can be recognized and represented by a
bounding box encoding its location, extension and rotation.
Each target is assumed to generate at most one bounding box at
a vehicle per each time step. This assumption, known as “data
association assumption” [80], is common in object detection
models for lidar point clouds, and more in general in MOT
algorithms, as it helps to simplify the detection and tracking
process, reduce ambiguities, and improve the overall tracking
performance. The m-th bounding box at vehicle s at time n is
zsm,n and the associated target is unknown. As such, at time
n, a sensor has a set of unpaired (to the originating target)
bounding boxes zsn = {zs1,n · · · zsM,n}. Note that the set zsn
could even be empty. The union set of all bounding boxes of
all vehicles at time n is Zn =

⋃Sn

s=1 z
s
n.

To visualize the considered vehicular scenario, in Fig. 1a
we report the case of two vehicles, x1,n and x2,n, jointly
detecting two pedestrians, y1,n and y2,n, through the bounding
boxes z1n = {z11,n z12,n} and z2n = {z21,n z22,n} for vehicles
s = 1 and s = 2, respectively. The measurement zsm,n is
described by the 3D coordinates of its eight corners, i.e.,
zsm,n =

[
zsi,m,n

]8
i=1

, as shown in Fig. 1b, which take into
account the overall footprint and orientation of the target. To
correctly associate the bounding boxes, an absolute (fixed)
Cartesian spatial reference system has to be used for the
identification of the corners. In this case, we choose to label as
zs1,m,n the bottom-north-est corner and zs8,m,n the top-south-
west one.

In the proposed GNN solution, the union set Zn is modeled
as a direct graph G = (V, E), where each node i ∈ V
corresponds to a single measurement, while the edge (i, j),
with i ̸= j, indicates a candidate association. To univocally
map the node i ∈ V with the measurement m of vehicle s at
time n, we define the mapping function Φn : V → Zn × Sn.
The function Φn(i) = {m, s} cannot inherently prevent the
association of two distinct measurements of a same vehicle.
For this reason, we also introduce the association-related
variable yi→j ∈ {0, 1} which denotes the presence/absence of
the edge (i, j), i.e., the two bounding boxes embodied in nodes
i and j refer to a same target. The goal of the data association
algorithm (here addressed with MPNN) is to estimate the
association variable ŷi→j ∈ {0, 1} by considering all possible
pairings of bounding boxes, with the constraint of ŷi→j = 0
if the mappings Φn(i) and Φn(j) refer to a same vehicle s.
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(a) Cooperative detection of pedestrians through lidar sensing
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(b) Definition of lidar detections (bounding boxes)

Fig. 1. (a) Cooperative scenario with two vehicles x1 and x2 detecting
pedestrians y1 and y2 by means of lidar technology. (b) Bounding boxes
extracted from the lidar point cloud with corner definition. The subscript n
is removed for visualization purposes.

As an example of graph construction, we refer to the
vehicular scenario shown in Fig. 2a where vehicle x2,n detects
only y1,n through measurement z21,n, while the other two
vehicles x1,n and x3,n can detect both targets y1,n and y2,n,
respectively. It follows that the graph with true measurements
association for such scenario is the one indicated in Fig. 2b,
which has to be reconstructed from the fully-connected graph
in Fig. 2c that includes all possible pairings. In next section,
we detail the proposed algorithm for estimating the connec-
tions from all possible associations, i.e., how to get the graph
in Fig. 2b from the one in Fig. 2c.

A summary of the main notation variables introduced in this
section and their description is provided in Table I.

III. ADDRESSING DATA ASSOCIATION WITH MPNN
In this section, we first introduce the general concept of

GNN and more specifically MPNN (Section III-A), which is
the base for the proposed model. Then, we define the pro-
posed MPNN model with an insight on possible classification
strategies. Finally, we describe the loss function used to train
the model, as well as the performance metrics.

TABLE I
SUMMARY TABLE OF NOTATION.

DESCRIPTION SYMBOL

Set of vehicles at time n Sn

State of vehicle s at time n xs,n

Set of detectable targets by vehicle s at time
n

Ys,n

State of target k at time n yk,n

Set of bounding boxes of all vehicles at time
n

Zn

Set of bounding boxes of vehicle s at time n zsn
m-th bounding box of vehicle s at time n

described by the coordinates of its corners zsm,n =
[
zsi,m,n

]8
i=1

GNN directed graph with vertex and edges G = (V, E)
Mapping function from node i ∈ V to
measurement m of vehicle s at time n Φn : V → Zn × Sn

Association-related variable yi→j ∈ {0, 1}

A. Introduction to GNNs

Neural networks acting on graphs have been investigated
for more than a decade, being originally referred to as “graph
neural networks” (GNNs) [66], [67] and successively extended
to many variants such as MPNNs [81]. A complete gen-
eralization of GNNs is formulated in [82] under the name
of Graph Networks (GNs). Models in this ML family have
been studied in supervised, semi-supervised, unsupervised,
and reinforcement learning contexts across a wide range of
problem domains. They have been used to learn the dynamics
of physical systems [83], predict the chemical properties of
molecules [84], optimize the communication in multi-agent
networks [85], or even employed in machine translation [86].
A further domain of applications includes vehicular environ-
ments, where GNN are used to predict road traffic [87], [88]
or classify and segment 3D meshes and point clouds [89].

We here consider an MPNN that iteratively performs a
message passing procedure over a graph G. Iterations are
indexed with t, the maximum number of message passing steps
(a design parameter) as T , while Ni = {j ∈ V|(i, j) ∈ E}
is the set of neighbors of node i ∈ V . We also identify the
so called embeddings, i.e., attributes, of node i and edge (i, j)

with variables h
(t)
i and m

(t)
i→j , respectively.

The purpose of MPNN is to train a function that propa-
gates information from node and edge embeddings/attributes
throughout G. The more message passing steps are performed,
the more the node and edge embeddings contain elaborated
information, just like the receptive field of a Convolutional
Neural Network (CNN). To this extent, a Neural Network
(NN) is present at each node and edge of the graph. The
NN at node is indicated with gn(·), while the one over the
edge by ge(·). Considering that gn(·) and ge(·) have the same
parameters, respectively across each node and each edge, they
may be trained on small-scale graphs before being applied to
large-scale problems.

For each iteration t = 1, . . . , T , each node i ∈ V sends
the following message to its neighbors Ni

m
(t)
i→j = ge

(
h
(t−1)
i ,h

(t−1)
j ,m

(t−1)
i→j

)
, ∀j ∈ Ni , (1)
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(a) Scenario
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(b) True graph representation
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z21

z32
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(c) Fully connected graph of unknown pairings

Fig. 2. (a) Top view of an exemplary cooperative localization scenario with three vehicles detecting one or two pedestrians each. (b) Virtual graph representing
the pairings measurement at multiple vehicles. Each subgraph includes all measurements of a same target. (c) Graph with unknown associations among all
measurements. Each edge embodies a potential association, which has to be probabilistically computed to get the result in (b). The color of nodes refers to
the color of originating vehicle, while colors of edge indicate the two detected pedestrians.

with

h
(t)
i = gn

(
h
(t−1)
i ,Φ({m(t)

j→i}j ∈ Ni
)
)
. (2)

Function Φ(·) is called aggregation function and it is invariant
to permutations of its inputs (e.g., element-wise summation,
mean, maximum). Concisely, and referring to Fig. 3, the
message m

(t)
i→j sent from node i over an edge (i, j) updates

the previously sent message m
(t−1)
i→j over the same edge with

the available attributes h
(t−1)
i and h

(t−1)
j of the involved

nodes, respectively. The attribute h
(t)
i is obtained by combin-

ing together all the incoming messages at the node i, i.e.,
m

(t)
j→i∀j ∈ Ni (through function Φ) and the previously

available information h
(t−1)
i (computed at previous iteration).

B. MPNN model for data association

The proposed model consists of two parts: an MPNN and
an edge classifier. The role of the MPNN is to process the
input graph G derived from the measurements of all vehicles
at a given time n, i.e., Zn. On the other hand, the edge
classifier is a binary classifier with the role of determining
the pairings of all the measurements referring to the same
target, i.e., finding the association variable ŷi→j based on
association probabilities. As a consequence, at the output of
the classifier we have a set of multiple disjoint subgraphs (as
in Fig. 2b), each of them grouping all the measurements that
are hypothesized to be originated from the same target.

The MPNN model is composed of four multi-layer percep-
trons (MLPs): ge(·) at each edge and gin

n (·), gout
n (·), gn(·) at

each node. The role of MLPs ge(·) and gn(·) is to update the
edge and node embeddings, respectively, in a similar way as
the conventional MPNN in (1) and (2). On the other side,
gin

n (·) and gout
n (·) are introduced to better encode the structure

of incoming and outgoing edges. In this way, we can split the

i h
(t−1)
i

j
′

h
(t−1)

j′
jh

(t−1)
j

j
′′

h
(t−1)

j′′

m
(t−1)
i→j

m
(t−1)

i→j
′

m
(t−1)

i→j
′′

m
(t)
i→j

(a) Update of edge embeddings

i h
(t)
i

j
′

j

j
′′

m
(t)
j→i

m
(t)

j
′→i

m
(t)

j
′′→i

(b) Update of node embeddings

Fig. 3. MPNN working principle: (a) update of edge embeddings, (b) update
of node embeddings. The updated elements are in red. For each MPNN step
t, first compute the edge embeddings from node i over all edges (i.e., toward
all neighbors Ni) according to (1). Then, compute the node embeddings
depending on the previously updated edge embeddings as in (2).

problem into two parts and individually manage the incoming
and outgoing edges in each node.

The message passing over the graph works as follows. First,
we update the edges embeddings as in (1), while the node
embeddings are updated taking into account both the incoming
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m
in,(t)
j→i and outgoing m

out,(t)
i→j edge embeddings as

h
(t)
i = gn

 ∑
j ∈ Ni

m
in,(t)
j→i ,

∑
j ∈ Ni

m
out,(t)
i→j

 , (3)

where m
in,(t)
j→i and m

out,(t)
i→j are defined as

m
in,(t)
j→i = gin

n

(
h
(t−1)
i ,m

(t)
j→i

)
, ∀j ∈ Ni, (4)

m
out,(t)
i→j = gout

n

(
h
(t−1)
i ,m

(t)
i→j

)
, ∀j ∈ Ni. (5)

We remark that this is done to divide the problem into two
parts, as the constructed graph for solving the data association
is bi-directed (i.e., undirected), which is common in most
graphs used by MPNNs. However, our approach also needs to
ensure the unique constraints of our data association problem,
i.e., that the association-edge between two measurements is
conceptually the same in both directions.

After T message passing steps, the edge embeddings m(T )
i→j

are fed into an MLP edge classifier gclass
e (·) which evaluates

the association probabilities ŷ
(T )
i→j as

ŷ
(T )
i→j = gclass

e

(
m

(T )
i→j

)
, ∀(i, j) ∈ E . (6)

The association variables ŷi→j are then obtained with a
thresholding operation, with threshold Γ, to pair nodes i and j.
Two nodes are associated (i.e., two bounding boxes at distinct
vehicles refer to a same pedestrian) if

ŷ
(T )
i→j ≥ Γ , (7)

which implies ŷi→j ≜ 1. However, it may happen that one
measurement of a vehicle is associated to multiple measure-
ments of another vehicle. To avoid this issue, a constraint
is enforced such that a bounding box of a vehicle can be
associated to at most one bounding box of another vehicle.

C. Loss and performance metrics
For computing the training loss and performing back-

propagation, we employ the weighted binary cross-entropy that
is estimated at the end of each message passing iteration t after
the edge classifier’s prediction ŷ

(t)
i→j as

L =
−1

|E|

T∑
t=1

∑
(i,j) ∈ E

(1−yi→j)log(1−ŷ
(t)
i→j)+w yi→j log(ŷ(t)i→j) ,

(8)
where w is a weight given to the positive class in order to
compensate the class unbalances and it is computed as

w =

∑
(i,j) ∈ E 1(yi→j = 0)∑
(i,j) ∈ E 1(yi→j = 1)

, (9)

where 1(·) is an indicator function that returns 1 if the
condition is true and 0 otherwise. Concerning the performance
metrics, we adopt the accuracy measure defined as

Accuracy =
TP + TN

TP + FP + TN + FN
, (10)

(11)

where the terms TP, TN, FP and FN indicate the number of
True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN), respectively.

IV. SIMULATION EXPERIMENTS

To evaluate the proposed MPNN model for data association
we consider a network of vehicles localizing pedestrians
through lidar sensing. We dedicate Section IV-A to the sim-
ulation scenario and dataset, while Section IV-B reports the
results of performed simulations.

A. Simulation scenario

Due to the unavailability of real-world cooperative percep-
tion datasets, i.e., collected by multiple and synchronous lidar-
equipped vehicles, we here employ a simulator of automated
driving systems that allows us to generate lidar readings at
multiple vehicles moving in a synthetic, yet realistic, mo-
bility environment. Similarly to [90], we use the CARLA
simulator [76], an extremely advanced software that integrates
trajectory planning and sensing. The considered scenario is
referred to as Town02 in the simulator, which spans over an
area of roughly 200 m×200m. Twenty vehicles with lidar and
fifty pedestrians populate the scene, unless otherwise specified.
The state xs,n of each vehicle refers to its 3D position. A
snapshot restricted to seven vehicles with associated point
clouds of the simulator is show in Fig. 4, where we represent
the effect of cooperative sensing by merging seven lidar
point clouds. Specifically, for visualization purposes we group
the vehicles into three subgroups and we show the partial
point cloud in Figs. 4a, 4b and 4c, respectively, while the
cooperative perception obtained by merging all the seven point
clouds is in Fig. 4d.

The duration of simulation is 300 s, with sampling time
of 0.2 s. This results in 1500 snapshots of the scene, each
one described by vehicles and pedestrians’ positions and lidar
detections. A top-view image of the simulation in a fixed
time instant is shown in Fig. 5, where we include both
vehicles (red squares) and detected pedestrians (blue triangles)
as well as the associated detections (black link). A vehicle
s ∈ S can detect a pedestrian k ∈ Fv,n if it falls in its
field of view. All lidar sensors are configured to run at a 5
Hz update frequency, with an FOV of 360 deg in azimuth
and [−30,+10] deg in elevation. The number of channels
supported is 64, corresponding to a spatial resolution of 0.625
deg. The sensing range is limited to 70 m and the number of
points of the cloud cannot exceed 1 million per second. The
single point has an accuracy of ±2 cm. To simulate realistic
operating conditions, 20% of the points are randomly dropped
during every simulation frame.

The ground truth information provided by the simulator
includes the true positions of vehicles, i.e., xs,n, ∀s ∈ Sn,
and the true bounding boxes around the pedestrians, defined
by its eight corners, i.e., yk,n = [yi,k,n]

8
i=1. Localization errors

are introduced as an additive measurement error ws
i,m,n, which

directly translates over the 3D corners of the measured bound-
ing boxes. The resulting noisy measurement of a bounding box
corner is thus defined as:

zsi,m,n = yi,k,n +ws
i,m,n , ∀k ∈ Ys,n,∀i ∈ {1, . . . , 8} .

(12)
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1

2

(a) Lidar sensing from vehicles 1-2 in the left

3 4

(b) Lidar sensing from vehicles 3-4 in the center
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7

(c) Lidar sensing from vehicles 5-6-7 at the bottom

1

2
3

4

5

6

7

(d) Cooperative lidar sensing from all vehicles

Fig. 4. Snapshot of lidar sensing simulated by CARLA: seven vehicles (red bounding boxes) detect pedestrians (green bounding boxes). (a) Partial lidar
sensing from the two vehicles in the left. (b) Partial lidar sensing from the two vehicles in the center. (c) Partial lidar sensing from three vehicles at the
bottom. (d) Cooperative sensing as a combination of seven lidar point clouds.

Note that the measurement error distribution is the same
for all corners, for all time instants and across all vehicles.
Unless otherwise specified, the artificial noise ws

i,m,n follows
an isotropic Gaussian distribution with standard deviation
σ = 10 cm. Note that the additive noise is absent in case of
using a ML model for the automatic extraction of bounding
boxes, as in the case of PointPillars [77], since the error is
embedded in the model itself.

In the simulations, we validate the systems for a variety of
noise intensities ranging from extremely accurate detections
up to inefficient systems (errors in the order of meters) for
the considered vehicular context targeting the automation of
mobility. The former case can be considered as a condition in
which the vehicle position is assumed to be perfectly known
and the only source of error is attributed to lidar sensing
and bounding boxes extraction algorithm. The latter case,
instead, embeds both vehicle uncertainty and the errors in the
generation of bounding boxes. We do not consider separate
effects as we aim to assess the aggregated model robustness.

We divide the overall dataset into training (700 samples)
and validation (800 samples) parts, with dimensions optimized
as discussed in Section IV-B2. Moreover, in order to assess
the generalization of the method, we increase the number of

validation samples by applying a random flip along the x and
y axes of the bounding box positions, thus obtaining a total
of 1600 validation samples. We remark that a sample is a
snapshot of the scene at a given time instant n and it is fully
represented by the graph of unknown measurement-pairings
(Fig. 2c). To avoid the computational burden of dealing with
too many edges, we introduce a gating which a-priori discards
unlikely associations, i.e., ignoring edges related to centroids
whose distance is greater than 10 m. As optimizer, we use the
Adam optimizer with tuned learning rate of 10−3 and hyper-
parameters β1 = 0.9 and β2 = 0.999 [91]. The performance
metrics are computed using the thresholding in (7) with Γ =
0.5.

B. Simulation results

1) Initialization of node and edge embeddings: To ini-
tialize the node and edge embeddings, we adopt a strategy
that learns how to extract feature embeddings directly from
measurements. This is done by using an MLP at each node
and edge, called genc

n (·) and genc
e (·), respectively. For the

considered cooperative lidar sensing scenario, we use the
geometric characteristics of the bounding boxes as input to
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Pedestrian Vehicle

Fig. 5. Top-view of the simulation scenario with twenty vehicles (red squares),
detected pedestrians (blue triangles) and detections (black lines).

the two neural networks to obtain m
(0)
i→j and h

(0)
i as

m
(0)
i→j = genc

e

(
zs1,m,n − zs

′

1,m′,n, z
s
8,m,n − zs

′

8,m′,n

)
, (13)

∀(i, j) ∈ E : Φn(i) = {m, s} ∧ Φn(j) = {m′, s′}, s ̸= s′ ,

h
(0)
i = genc

n

(
zsm,n

)
∀i ∈ V : Φn(i) = {m, s} . (14)

This allows the MPNN to discriminate not only the position
of the detected object, but also its dimension and rotation. We
find this approach to be highly effective and efficient, as it
uses a minimal amount of information for data association,
limiting the data exchange among vehicles.

Incorporating additional features, such as individual point
cloud positions, into the current feature encoding could be
beneficial and would require only modifying the encoding
neural networks genc

n (·) and genc
e (·). While this could poten-

tially enhance performance, there are two primary drawbacks
to consider. First, the volume of information that would
need to be exchanged with the central entity responsible for
data association via MPNN could become unmanageable and
unsustainable, given that a lidar sensor typically outputs more
than 1 million point clouds per second. Second, increasing
the number of input features might inadvertently introduce
unrelated or redundant features that may not be beneficial or
could even negatively impact the inference process due to the
multi-dimensionality problem in machine learning.

2) Impact of training dataset dimension: We first analyze
the impact of the training dataset size on the model’s per-
formance. This is crucial in determining whether the model
exhibits high or low bias. In essence, expanding the dataset
size decreases the model’s variance, meaning the residual
error is predominantly due to bias. In Table II, we present

TABLE II
IMPACT OF TRAINING DATASET SIZE (NUMBER OF SAMPLES) ON

ACCURACY, PRECISION AND RECALL METRICS.

# OF SAMPLES ACCURACY PRECISION RECALL

16 0.869 0.852 0.859
32 0.919 0.891 0.912
64 0.972 0.953 0.980

128 0.993 0.989 0.992
300 0.999 0.998 0.998
700 0.999 0.999 0.999
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Fig. 6. Accuracy of the MPNN for different values of message passing
iterations T = [1, 2, 4, 8, 12] over the epochs for the validation dataset. The
mean value (solid line) is plotted together with the associated uncertainty
(shaded area) computed using the maximum and minimum values of accuracy
as boundaries.

the validation accuracy, precision, and recall after 100 epochs
for varying training dataset size. We note that by increasing
the number of samples, the model improves the performance
metrics and reaches an upper bound on the accuracy after
700 samples, representing the best accuracy reachable by the
model, i.e., its bias. It is noteworthy that the recall typically
overcomes the precision, implying a larger number of false
positives than false negatives. This is because the ground-truth
graph retains a predominant number of zeroed edges, thus the
model is more prone to mistake on edges that are labeled as
zeros, despite the loss function employed (8) for unbalanced
classes.

3) Impact of MPNN iterations: This assessment aims to
verify the role of the number of message passing iterations T ,
a fundamental parameter to tune the amount of information
extracted and elaborated from the data. In Fig. 6, we show the
accuracy (and associated confidence) metric in the validation
dataset over the number of epochs for T = {1, 2, 4, 8, 12}.
We notice that increasing T leads to a higher accuracy and
a faster convergence, at the cost of increasing computational
complexity. However, a saturation condition occurs for T >
4, leading us to select T = 4 as a good trade-off between
accuracy, convergence and complexity. This value will be used
for the following analyses.

4) Impact of the measurement statistics: This assessment
has the goal of verifying how the MPNN model handles
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TABLE III
DEFINITION OF MEASUREMENT NOISE DISTRIBUTIONS

Distribution fw(w)

Isotropic Gaussian (
√
2πσ2)−1exp(−0.5σ−2w2)

Non-isotropic Gaussian (
√

det(2πΣ))−1exp(−0.5wTΣ−1w)

Laplace (
√
2σ2)−1 exp(−

√
2σ−1|w|)

Uniform

{
0.75 (πσ3)−1, if ∥w∥2< σ.

0, otherwise.

Discrete


0.4, if w = 03,

0.1, if w = {w1,w2,w3},
0, otherwise.

Error component x [m]

Error component y [m]

Error component z [m]
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Fig. 7. PointPillars localization error on the corners of bounding boxes
along x, y and z components. The three histograms are approximated with a
Gaussian distribution whose standard deviation is highlighted in red.

unobserved noises (for which it has never been trained on).
This is extremely useful in case the model is trained in a
simulated and controlled environment, and then deployed in
real systems typically characterized by different measurement
statistics. Since there is almost no literature detailing the
error characteristics of real ML-based 3D object detectors,
we investigate the types of noise that are currently considered
in point cloud denoising algorithms. As suggested in [92], we
explore five different noise statistics: the already introduced
isotropic Gaussian, the non-isotropic Gaussian, the Laplace,
the uniform, and the discrete one, which are defined
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Fig. 8. Accuracy of the MPNN model (after 25 epochs) for training/validation
mismatch on measurement noise.

by the distributions fw(w) ≜ fw(ws
i,m,n) as reported

in Tab. III, where σ denotes the standard deviation, Σ =
σ2[[1,−0.5,−0.25]T, [−0.5, 1,−0.25]T, [−0.25,−0.25, 1]T]

T,
while w1 = (±σ, 0, 0), w2 = (0,±σ, 0) and w3 = (0, 0,±σ).

We also implement the ML model PointPillars [77] to pro-
cess the lidar point clouds and derive the associated bounding
boxes. This method allows us to assess the performance of
the MPNN without resorting to artificially generated measure-
ments in (12), leading to a detection system that closely re-
sembles practical scenarios. By using the detections produced
by PointPillars as inputs to our data association system, we
maintain a noise distribution that mirrors realistic conditions,
which is essential for evaluating the effectiveness of the
proposed MPNN-based data association strategy in various
real-world situations. The statistics of the 3D localization error
(computed as the difference between the true and estimated
bounding boxes over x, y and z axes) of PointPillars are
reported in Fig. 7, showing that they can be well approximated
by a zero-mean Gaussian distribution over the horizontal (x,
y) space. On the other hand, for the vertical dimension z,
the model is more likely to predict boxes in higher positions
(i.e., above the road) instead of the opposite, so the error
distribution is slightly biased. Furthermore, we notice that the
error statistics do not vary significantly over the three axes,
suggesting that they (almost) follow an isotropic Gaussian
distribution with standard deviation σ = 10 cm.

In Fig. 8 we analyze the mixed impact of training and
testing with different noise statistics. The value of σ for
each noise distribution has been set to 10 cm as closely
matching the standard deviation used for fitting the error
statistics of PointPillars. Analyzing the results, it is apparent
that training and validating the MPNN model on the same
noise distributions lead to optimal performances. This shows
that the model is able to obtain good accuracy regardless of
the noise type, provided that the same noise is experienced
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Fig. 9. Comparison on data association accuracy between (a) MPNN and (b) SPADA. For MPNN we show the accuracy (after 25 epochs) for training/validation
mismatch on measurement noise, whereas for SPADA we validate each standard deviation of the likelihood with different noise intensities.

for both training and validation phases. Focusing now on
the different combinations of training/validation noises, results
detail that training under the isotropic Gaussian or Laplace
noise allows the model to generalize well over all noise types,
suggesting that these distributions may be employed in real-life
applications where noise statistics are not known beforehand.
On the other hand, training considering discrete and/or uniform
leads to poor generalization results during validation, most
probably due to the simplistic noise distributions compared to
all other noise types. Finally, training on realistic data, i.e.,
over the noise generated by PointPillars, does not allow the
MPNN to generalize well over other distributions, particularly
for Laplace and isotropic/non-isotropic Gaussian noises.

5) Impact of the different scenarios and false positives:
This experiment aims at verifying the validation performances
of the proposed model in a brand new scenario where false
positives, i.e., false alarms, are present. This allows us to
assess the robustness and adaptability of the model in more
realistic conditions, demonstrating its potential for practical
implementation.

To this purpose, in Fig. 10, we report the results of perfor-
mance validation in Town10 scenario of CARLA simulator,
where we vary the number of cooperating vehicles from 5 to
20. The proposed MPNN association strategy is evaluated con-
sidering both the absence (Fig. 10a) and presence (Fig. 10b) of
false alarms, which are obtained from the Pointpillars detector.
We would like to highlight that the model has been trained
in the map Town2 illustrated in Fig. 5 neglecting any false
positive, thus Town10 and the presence of false alarms are
unseen conditions. Starting from the scenario without false
alarms in Fig. 10a, we note that increasing the number of
vehicles leads to better accuracy, up to a plateau around 97%,
which is just 2% below the results in the original scenario with
Pointpillars (see Fig. 8). Accounting for the false positives, we

notice in Fig. 10b a decrease of the accuracy to 93%. Even
more relevant is the precision which falls to 78% due to the
fact that each false positive introduces new nodes and edges
in the graph which will be associated with real detections,
leading to lower performances.

6) MPNN vs SPADA - generalization capabilities: This
experiment compares the performance of the proposed MPNN
association model against a conventional SPADA over differ-
ent combinations of Gaussian noise intensities used in the
training and validation datasets. For the SPADA, a training
phase is not needed, but we can embed prior knowledge
on the noise intensity by calibrating the standard deviation
used for computing the measurement likelihood function. To
do so, we process the training dataset and extract a single
standard deviation value that characterizes the considered
noise intensity.

The comparison is reported in Fig. 9. Regarding the MPNN,
we show, for different training and validation datasets, the
validation accuracy reached after 25 epochs, while for the
SPADA we represent the validation accuracy after convergence
using different a-priori noise statistics (in terms of standard de-
viation). First, we can clearly observe that, in both algorithms,
the bottom-left part of the matrix has higher values of accuracy
if compared with the top-right part. This is due to the fact
that, generally, overestimating the noise (i.e., bottom-left part)
leads to a more robust model that can handle noises with lower
intensity. On the contrary, underestimating the noise (i.e., top-
right part) can incur into problematic situations, especially
in the case of MPNN (Fig. 9a). From this point of view,
SPADA (Fig. 9b) is more solid and can better handle different
noise values. Under overestimating conditions, on the other
hand, the MPNN is able to achieve superior performances
compared to SPADA, reaching an accuracy of 99% against
97%, respectively.
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Fig. 10. Analysis of validation accuracy, precision and recall in an unseen scenario, for different number of cooperative vehicles: (a) absence of false alarms,
(b) presence of false alarms.
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Fig. 11. Comparison of reached accuracy using MPNN (circles) and SPADA
(triangles) in different validation datasets. Red markers represent an artificial
measurement noise in the validation dataset with standard deviation 0.1 m,
while the blue markers describe a standard deviation of 0.5 m. For the MPNN,
the noise statistics of the training match those of the validation, whereas for
SPADA the standard deviation of the likelihood matches the standard deviation
of the noise in the validation dataset.

7) MPNN vs SPADA - performances on different noise
statistics: This experiment has the aim of comparing the
peak or absolute performances of MPNN and SPADA in
case we have a training dataset with same statistics of the
validation dataset. Understanding the maximum performances
is fundamental to have an upper-bound on a real deployment
and to know the learning capabilities of the algorithm/model.

In Fig. 11 we report the validation accuracy reached by
MPNN and SPADA varying the adopted dataset and for
different standard deviations of the noise. For the MPNN

we used training and validation datasets with the same value
of σ, while the standard deviation of the likelihood in the
SPADA is the same as in the validation dataset. We notice that
the absolute performances of MPNN outperform the classic
SPADA for both σ = 0.1 m and σ = 0.5 m and for all datasets.
Therefore, the proposed method is able to fully solve the
problem and learn synthetic or realistic noise representations.
Clearly, for the dataset obtained with PointPillars, we cannot
tune the quantity of noise introduced by the ML model
and consequently the red and blue circles for the dataset
PointPillars coincide with MPNN. Lastly, we can observe that
the degradation of performances passing from σ = 0.1 m to
σ = 0.5 m are worst for the MPNN. This behaviour is further
investigated in the next experiment.

8) MPNN vs SPADA - performances on different noise
intensity: In this last assessment, we study how the MPNN and
SPADA perform over different levels of detection accuracies.
This is useful to understand if there are conditions in which
one method outperforms the other.

To this aim, we consider different standard deviations of
the Gaussian measurement error. The results of this analysis
are in Fig. 12, where we report the validation accuracy of the
MPNN and SPADA in a scenario with 100 or 50 pedestrians
to be detected. First, we observe that the performances with
the scenario in Fig. 12b are generally higher than the scenario
in Fig. 12a. This is due to the fact that with a higher number of
pedestrians, the uncertainty on the data association increases
and the data association becomes more challenging. Second,
comparing the two methods across different noise intensities,
we note that the MPNN is the preferable method in case we
have a standard deviation of the noise below 1.8 m in both
scenarios. We believe that this behaviour is caused by the
fact that for MPNN is much more difficult to learn a noise
with high variance with respect to a low power noise. On the
contrary, the SPADA depends on the standard deviation of the

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3304002

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

0.95

0.96

0.97

0.98

0.99

1

Measurement error σ [m]
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

SPADA

MPNN

A
cc

ur
ac

y

(a) 100 pedestrians

0.95

0.96

0.97

0.98

0.99

1

Measurement error σ [m]
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

SPADA

MPNN

A
cc

ur
ac

y

(b) 50 pedestrians

Fig. 12. Comparison of the impact of measurement error in terms of accuracy between MPNN and SPADA for a scenario with (a) 100 pedestrians or (b)
50 pedestrians. An isotropic Gaussian distribution with standard deviation σ is considered for the additive noise statistics.

likelihood that in this case is known a-priori and equal to the
standard deviation of the validation dataset. Therefore, above
those noise intensities, it is preferable to use SPADA as we
would need too many samples to learn the noise directly from
data.

V. CONCLUSION

This paper addressed the problem of data association in a
cooperative vehicular sensing scenario with multiple vehicles
detecting pedestrians through lidar sensors. To solve the prob-
lem, we proposed an MPNN model based on a novel graph
representation encoding node and edge feature attributes to
express the detection knowledge. The validation was carried
out in a vehicular environment simulated by CARLA software,
which allows to reproduce realistic cooperative lidar sensing
scenarios. We simulated the ML PointPillars model for the
extraction of bounding boxes from the lidar point cloud,
obtaining realistic statistics of bounding boxes measurements.
Furthermore, we compared the proposed method with the con-
ventional SPADA to investigate the generalization capabilities
and peak performances.

Results showed that the proposed MPNN model is able to
learn the correct associations under several realistic measure-
ment statistics and handles good generalization capabilities
when it comes to dealing with untrained conditions, such
as different measurement error statistics, noise intensities,
number of vehicles and new scenarios. The lidar detection
error introduced by PointPillars has been found to be well
approximated by a Gaussian distribution with standard devia-
tion equal to 10 cm. Under this condition, very high accuracy
can be reached by training the model on artificial noises,
e.g., Laplace or Gaussian, and then validate the model on the
field with realistic noise distribution produced by PointPillars.
Concerning the comparison with the classic SPADA, we found
that, under overestimation of noise intensity, the proposed
method achieved higher performances. Moreover, regarding
peak performances, MPNN completely outperforms SPADA
up to a noise standard deviation of 1.8 m.

In the incoming years, the relevance of cooperative percep-
tion is expected to grow rapidly, particularly in the context of
automated and connected mobility, where the new-generation
V2X communication technologies bring opportunities for the
development of new services. It follows that an efficient
management of data association is a fundamental and crucial
step for enabling cooperative sensing. As a result, we expect
our work to be extended and applied to different contexts.
By enhancing the data association performance, our method
provides a solid foundation for more accurate and robust object
tracking when combined with existing tracking algorithms
which exploit the information shared by the vehicles to per-
form cooperative positioning or sensing of the surrounding
environment.

A natural extension of the work would be to manage and
account for possible false and/or missed detections through
intra-temporal association and non fully-connected vehicular
networks. Future developments could also embrace the area of
distributed sensor networks in which the flood of information
over sensors demands fast interactions of locally-available
data but guarantees higher resilience compared to centralized
architecture, overcoming the problem of single point of failure.
On the other hand, hop-by-hop transport might introduce a
non-negligible time delay before the same full information
is available at all nodes. In addition, we plan to evaluate
our method on real-world cooperative data which would help
further validate and refine our approach, ensuring its effec-
tiveness in addressing real-world object detection and tracking
challenges.
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