
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

A Complete Quantum Circuit to Solve
the Information Set Decoding Problem

Simone Perriello, Alessandro Barenghi and Gerardo Pelosi

Department of Electronics, Information and Bioengineering - DEIB
Politecnico di Milano, 20133 Milano, Italy

Email: simone.perriello@polimi.it, alessandro.barenghi@polimi.it, gerardo.pelosi@polimi.it

Abstract—Providing strong security margins against cryptan-
alytic attackers equipped with quantum computers is a major
research direction fostered by the US National Institute of Stan-
dards and Technology (NIST) Post-quantum Cryptography Stan-
dardization process. Among the viable candidates, code-based
asymmetric cryptosystems are one of the prominent approaches.
In this work, we propose the first fully detailed quantum circuit
to compute the solution to the Information Set Decoding problem,
the main cryptanalytic tool against such cryptosystems. We
evaluate the cryptanalytic effort with our circuit design on
actual parameters from cryptosystems admitted to the final stage
of the NIST standardization process and compare it with the
previous conservative asymptotic estimates. We show that the
actual computational effort of our solution is smaller than the
one estimated via asymptotics by a factor of 24. We also perform a
comparison of our results with the quantum-computational effort
of breaking the AES cipher, following the guidelines of the US
NIST in evaluating the security of the ciphers. To do this, we
translate our design on gates of the Clifford+T gate set only,
one of the most promising candidate for fault-tolerant quantum
computation, and report that the parameter choices for Classic
McEliece and BIKE, two candidates admitted to the final round
of the NIST standardization process provide an adequate security
margin with respect to our ISD solution technique.

Index Terms—Quantum cryptanalysis, post-quantum code-
based cryptosystems, quantum circuit design

I. INTRODUCTION

One of the most significant impact area of quantum com-
puting is the ability to solve computationally hard problems
underlying modern cryptography, such as factoring and dis-
crete logarithms in cyclic groups [1]. As a consequence, a
considerable amount of interest has been raised in the design
and security evaluation of cryptographic primitives resistant
to attacks supported by a quantum computer, also known as
post-quantum cryptosystems. This interest is witnessed by the
US National Institute of Standards and Technology (NIST)
standardization process for post-quantum cryptosystems [2],
and the EU ETSI working group on quantum-safe cryptogra-
phy [3]. A consolidated practice to gauge the security of cryp-
tosystems is to quantify the amount of computation required to
break them through a given cryptanalytic technique, and tune
the cryptosystem parameters so that such a computation is
practically unfeasible [4]–[8]. This in turn requires the design
and evaluation of efficient implementations of the said crypt-
analytic techniques, a research direction which has attracted
significant interest [9]–[12]. In particular, quantitative evalua-
tions of the computational effort required to break factoring-

based cryptosystems [13], [14] and discrete logarithm based
cryptosystems based on prime cyclic groups [15], elliptic curve
over prime fields [16], [17] and elliptic curves over binary
fields [18], have proven that a quantum computer equipped
with a few thousands reliable qubits will be able to break
the aforementioned public-key cryptosystems (configured with
most of the key-lengths currently in use) in little time.

Our purpose in this work is to provide the first detailed
implementation of the so-called Information Set Decoding
(ISD) technique, which is employed to cryptanalyze all the
current code-based cryptosystems selected by NIST as the
finalists in its standardization process. The current state of the
art in the analysis of quantum ISDs sees a number of works
which either provide asymptotic bounds on the complexity of
ISDs (without explicit quantum circuits) [19]–[21] or perform
a finite-regime analysis estimating the quantum speedup as a
square root of the effort of the classic counterpart [22]. We
note that the proposals in [20], [21] are relative to algorithms
which require an exponential amount of qubits in the size of
the input problem. In this work we focus on polynomial-space
quantum ISD solvers. The quantum circuit proposed in our
work allows us to provide a first concrete data point on the
expected amount of qubits and quantum circuit size and depth
that are required to break a code-based cryptosystem built on
the binary syndrome decoding problem [23]. This falls in line
also with the analyses on quantum circuits to solve their hard
problems on other NIST competition finalists, i.e., the lattice
sieving approach to solve the shortest vector problem [24]
and the supersingular isogeny Diffie-Hellman problem [25].
Our results show that the parametrizations of code based
cryptosystems provide more than adequate security margins
when compared to the quantum effort of breaking AES, albeit
we improve on the asymptotic estimates by ≈ 24×.

The paper is organized as follows: Section II provides a
description code based cryptosystems and the ISD problem, a
summary of Grover’s algorithmic framework and background
on sorting networks, which are employed as a building block
in our quantum ISD approach. Section III details our quantum
ISD circuit and evaluates its complexity in terms of gate count
and circuit depth. Section IV reports quantitative results on
the computational effort required to solve the ISD problem
for Classic McEliece and BIKE, the finalist and one of the
alternate cryptosystems selected by NIST in its final evaluation
round, and Section V reports our conclusions.

II. BACKGROUND

In this section, we recall the basic concepts of code-
based asymmetric cryptosystems, the Information Set De-
coding (ISD) technique, provide a summary on the Grover
algorithmic framework, and recall the notions on the classical
comparator networks used in our quantum circuit design.

A. Code based cryptosystems

A binary linear error correcting code C is a linear subspace
of n-element (column) vectors with components over the
finite field Z2. The purpose of a code is to encode a k-bit
long information word m∈Fk2 into a codeword c∈C⊂Fn2 by
adding to it r=n−k redundant bits. Codes are designed so
that codewords c ∈ C differ by at least d elements, a quantity
known as code distance. This property allows correcting up to
bd2c errors exploiting the fact that such a number of changes on
a codeword cannot yield a result closer to a different codeword.

A binary linear code C is fully described bya parity-check
matrix H∈Fr×n2 in such a way that C={c∈Fn2 : Hc=0}.
Solving the codeword decoding problem corresponds to de-
coding a corrupted codeword y = c+ e, where c∈C and e is
an n× 1 binary vector, also denoted as en×1, with Hamming
weight WEIGHT (e) = t, 0<t<bd2c, through recovering either
c or e. To this end, many decoding algorithms exploit the
syndrome of the corrupted codeword y through the parity-
check matrix H , i.e., the r×1 vector s, also denoted as sr×1,
computed as s=Hy=H(c+e)=He, to recover the unknown
error vector e. The syndrome decoding problem is defined as
the one of determining the binary error pattern e, knowing a
parity check matrix H and the syndrome s of e through H .

Both the codeword decoding problem and the syndrome de-
coding problem, when the parity-check matrix H is randomly
chosen among the ones in Fr×n2 with rank (r), were proven
to be NP-hard by McEliece in [23]. This fact allows one to
build asymmetric cryptosystems in which the trapdoor function
relies on an obfuscated version of the parity-check matrix
H ′ of a non-random and efficiently decodable code, obtained
through multiplying H ′ by a random non-singular matrix
Sr×r, which is kept secret, yielding H=SH ′ as a public piece
of information. The obfuscated parity-check matrix H allows
anyone willing to send a message, encoded as an error vector
e of weight t, to compute its syndrome s=He and send it on
a public channel. An adversary willing to recover the message
e will then need to solve the syndrome decoding problem
for an apparently random parity-check matrix H , whilst the
legitimate receiver, knowing S, can compute s′=S−1s and
efficiently solve the syndrome decoding problem for a non-
random H obtaining the original message/error e.

B. Information Set Decoding

Information Set Decoding (ISD) techniques [22] are the
most efficient methods to solve the syndrome decoding prob-
lem for a generic random parity-check matrix H . The main
idea of ISD techniques, as proposed by Prange in [26], is to
consider the syndrome as obtained by the sum of t columns
of H indexed by the positions of the t bits equal to one that
are present in the (unknown) error vector e. To locate these

L

V I

ê

s̄

=

k r

r

r

k

r

eI

eI∗

0

t

t

Fig. 1. Schematic view of the ISD strategy proposed by Prange, after that a
column permuted and row echelon reduced parity-check matrix is obtained.

positions in e, Prange suggests guessing a k-sized set of values
I ⊂ {1, . . . , n}, called information set, hoping that it matches
the indexes of k zero bits in e. The remaining r = n−k index
values form the so-called redundancy set, denoted by I∗.

Starting from the information set, a permutation matrix
P n×n is derived in such a way that the k leftmost columns
of Ĥ = HP , match the columns of H indexed by I. Ĥ it
is then brought in a reduced row echelon form [V r×k | Ir]
applying a Gaussian elimination algorithm. This procedure is
equivalent to finding out the linear transformation U such
that UĤ = [V r×k | Ir]. After this normalization, the r × k
binary matrix V r×k will be a random-looking matrix, while
Ir will be an identity matrix of size r×r. In case the reduced
row echelon form cannot be obtained, i.e., UĤ exhibits a
singular r×r submatrix on its right side instead of an identity
matrix, another information set I is randomly guessed, a new
permutation matrix P is computed, and a new attempt to
obtain the reduced row echelon form Ĥ is made.

Prange observes in [26] that the syndrome s = He can
be seen as the computation of a syndrome associated to
Ĥ if the original (unknown) error vector e is assumed to
be permuted via the inverse of P . Indeed, we have that
s = He = (HP)P−1e = Ĥ(P−1e) = Ĥê, with ê,
ê = P−1e. Considering the row echelon reduced version
of Ĥ , denoted as L = UĤ , we have that

(
UĤ

)
ê =

[V r×k | Ir]ê = s̄ = Us, as shown in Figure 1. Since the
permutation is expected to pack all columns of H indexed
by the bit-positions of the error vector corresponding to an
asserted bit in the r rightmost columns, also the vector ê will
include t asserted bits in its r trailing elements. Denoting as
eI the binary (sub-)vector composed by a copy of the terms
of e whose positions are in I, ê = [eI |eI∗] = [0k×1|eI∗].
As a consequence, s̄ can be thought of as the syndrome of
the permuted error ê through the permuted and row echelon
reduced parity-check matrix L = UĤ = [V r×k | Ir],
i.e.: s̄ = [V r×k | Ir][0k×1|eI∗] = eI∗ . Therefore, if the
permutation P packs k positions of the original (and unknown)
error vector e corresponding to zero bits on its top part, then
multiplying the syndrome by U yields the non-zero part of the
permuted error vector itself. To test if the permutation P did
actually pack k-zero positions of the error in the first k rows,
Prange’s algorithm tests if the Hamming weight of s̄ matches
the one of the error vector, t. If that is the case, the error vector

Algorithm 1: Gaussian Elimination
Input : Ĥ: parity check matrix ∈ Fr×n

2

Output : L: row echelon reduced parity-check matrix L = UĤ
U : non-singular matrix ∈ Fr×r

2

1 k ← n− r,L← Ĥ,U ← Ir
2 for i← 0 to r − 1 do
3 z ← i
4 while z < r and Lz,i+k = 0 do
5 z ← z + 1
6 if Lz,i+k = 0 then
7 return 〈⊥,⊥〉
8 if i 6= z then
9 SWAPROW(Li,:,Lz,:); SWAPROW(U i,:,Uz,:)

10 for z ← 0 to r − 1 do
11 if z 6= i and L(z,i+k) = 1 then
12 Lz,: ← Lz,: ⊕Li,:; Uz,: ← U i,: ⊕Uz,:
13 return 〈L,U〉

is recovered computing P ê = P [0k×1|s̄] = P [0k×1|eI∗] and
tested recomputing the syndrome as s = He. If the test fails,
the algorithm restarts by picking another information set I
(and the corresponding random permutation P).

To determine the complexity of Prange’s algorithm, we
observe that it is a randomized algorithm that always yields a
correct output, i.e., the value of e or it informs about a failure,
in an expected finite runtime. The expected runtime of the
algorithm CPrange-ISD(n, r, t) is obtained given the probability
that a run of the algorithm itself succeeds Prsucc, multiplying
its inverse by the cost of an algorithm iteration CPrange-iter(n, r),
under the assumption that Prsucc is constant among all the
iterations. In Prange’s algorithm, Prsucc is determined di-
viding the number of permuted error vector configurations
having all the t asserted elements in the last r positions
by the total number of possible error vector configurations,
i.e., Prsucc =

(
r
t

)
/
(
n
t

)
. It is worth noting that there is a

comparatively small factor contributing to the failure of a
single iteration of the algorithm, namely the probability that
the computation of the reduced row echelon form of Ĥ fails.
Since the probability that a random r × r binary matrix is
non-singular is

∏r
i=1(1− 1

2i) [22], such a factor converges to
≈ 0.2887 for increasing values of r, contributing by factor of
≈ 4 to the number of repetitions to be done by Prange’s ISD.
The cost of performing a single repetition of the computation
of Prange’s algorithm is dominated by the computation of
the row-echelon form reduction of Ĥ , for which the detailed
classical algorithm is reported as Algorithm 1. The algorithm
operates on a matrix L, initialized as a copy of Ĥ , which will
contain the reduced row echelon form of Ĥ at the end of the
execution, and, in parallel, on a matrix U initialized as an r×r
identity matrix, which will contain the linear transformation to
be applied to map Ĥ into L (line 1). The procedure iterates
on the r rows of L, and for each of them, denoted as Li,:,
0 ≤ i < r, locates the first row Lz,:, i ≤ z < r, such that
Lz,i+k is not null (lines 3–5). If no such row exists, I∗ selected
a singular (right) r × r submatrix of H , and the procedure
aborts. When such a row Lz,: is found, the algorithm swaps
it with Li,:, ensuring that Li,i+k = 1, and keeps track of
the swap also on the rows of U (line 8–9). Finally, the row
Li,: is added to all the other rows Lz,:, i 6= z, whenever
Lz,i+k = 1, tracking the addition also on the rows of U

n n
|χ0〉 Of O†f |χ1〉

Z

OF

(a)

n n
m m|ψ0〉 Uf U†f |ψ1〉

Z

UF

(b)

· · · . . .
.
.
.

|f(x)〉 . . .

p

|0〉 Z

(c)

· · · . . .
.
.
.

p

Z

(d)

Fig. 2. (a) Standard implementation of Grover’s oracle circuit. (b) Our
realization of the Grover’s oracle circuit. (c) Multicontrolled X gate in the
circuit realization of Uf , with p ≤ n+m controlled qubits and target qubit the
ancilla used to store the result of f(x) (d) Optimization of the UF circuit that
replaces the circuit in (c) with a multicontrolled Z gate, denoted as Cp−1(Z).

(lines 10–12). The computational complexity of Algorithm 1
is CGE = O

(
3nr2

4 + nr
4 −

n
2 + 3r2

4 −
r
2

)
bit operations. The

remaining portion of Prange algorithm requires O(r2) and
7r+log2 (r) bit operations to compute Us and the weight
check on s̄, respectively.

C. Grover’s algorithm

The algorithmic framework proposed by Grover [27] finds
the value of a vector of binary variables x∗ ∈ Fn2 on which a
given function f : F2n 7→ F2 evaluates to 1 (assuming that in
f(·) only a single such value x∗ exists), employing O(

√
2n)

function computations. This provides a significant speedup
over the classical alternative which needs O(2n) function
computations to derive the same result via exhaustive search.

The framework proposed by Grover relies on four steps, of
which the second and the third are iterated O(

√
2n) times:

i) preparation of an input quantum state, ii) computation of
the so-called oracle function, iii) computation of the diffusion
function, and iv) measurement of the solution. The purpose of
the framework is to obtain a quantum state where the qubits
representing the basis state of x∗, the sought value, will be
measured with non-negligible probability.
State preparation. Grover’s algorithm starts by build-
ing a quantum state obtained from the equal-amplitude
superposition of all the basis states of n qubits, each
labeled with a distinct binary string in {0, 1}n. Such
a superposition is obtained through the joint applica-
tion of n Hadamard gates acting simultaneously on the
n qubits of the input quantum register |00 . . . 0〉, i.e.:
H⊗n |00 . . . 0〉=H⊗n |0〉⊗n= 1√

2n

∑
x∈{0,1}n |x〉. It is com-

mon to use an additional ancillary qubit, initialized to |0〉;
the initial state will be therefore |χ0〉 = H⊗n |0〉⊗n |0〉.

In order to reduce the search space of the algorithm, we con-
sidered, in our adaption of Grover’s algorithm, a proper subset
of {0, 1}n as our input domain. We also added m≥1 additional
ancilla qubits, used to store temporary results. Specifically,
denoting with D⊂{0, 1}n the said domain, with cardinality

|D|=d, our input state |ψ0〉 will be |ψ0〉 = P |0〉⊗n |0〉⊗m |0〉,
where the 2n-dimensional operator P is such that

P |0〉⊗n =
1√
d

∑
x∈D
|x〉 =

1√
d

∑
x∈D\{x∗}

|x〉+ α∗ |x∗〉

and α∗ = 1√
d

is the amplitude associated to state x∗.
Oracle function computation. This step aims at singling-
out the basis state corresponding to the sought value x∗ by
changing the sign of its amplitude alone. To this end, the
unitary operator OF is applied to the input state, producing:

|χ1〉 = OF |χ0〉 =

 1√
2n

∑
x∈{0,1}n\{x∗}

|x〉 − α∗ |x∗〉

⊗ |0〉
and α∗ = 1√

2n
is the amplitude associated to state x∗.

Figure 2a shows the standard implementation of Grover’s
oracle. It makes use of the Of subcircuit, whose purpose is to
implement the Boolean function f(·) and to store the binary

result on the ancillary qubit. The goal of Z =

[
1 0
0 −1

]
,

instead, is to flip the sign of the input state only when the
ancillary qubit is in state |1〉, i.e., when |f(x)〉 = |1〉, which
happens only when x = x∗. Finally, O†f restores all the input
qubits to their starting state, apart from the phase of |x∗〉.

Figure 2b shows our implementation of the Grover’s oracle
circuit, which corresponds to applying the unitary operator
UF = U†f ◦(I⊗(n+m)⊗Z)◦Uf to our input state |ψ0〉, obtaining

|ψ1〉 = UF |ψ0〉 =

 1√
d

∑
x∈D\{x∗}

|x〉 − α∗ |x∗〉

⊗ |0〉⊗m+1

and α∗ = 1√
d

is the amplitude associated to state x∗.
It is possible to perform a local optimization observing that

the computation of Uf can always be written as a quantum
circuit which never involves the bottom qubit until the last

quantum gate, constituted by a multicontrolled X =

[
0 1
1 0

]
gate (see Figure 2c for a graphical depiction of the last
gate). Let us denote with p the number of control qubits of
the said gate controlled X, p≤n+m. Since the last qubit is
subsequently fed into a Z gate, that changes the phase only if
said qubit is in state |1〉, it is possible to build a multicontrolled
Z gate taking one of the aforementioned p qubits as the target
qubit and the remaining p−1 qubits as control qubits (see
Figure 2d). In the next sections, we will denote the Z gate
with one target qubit and p−1 control qubits as Cp−1(Z),
considering it part of our Grover oracle.
Diffusion function computation. This step builds on the
output of the Grover’s oracle stage to obtain a superposition
where the amplitude α∗ of the state corresponding to x∗

increases its modulus and its phase alone is flipped again.
To do so, Grover observed that the output state of the oracle
circuit |χ1〉 can be equivalently expressed as:

|χ1〉 = (|χ0〉 − 2α∗ |x∗〉)⊗ |0〉 ,

and that the application of the diffusion operator D=

2 |χ0〉〈χ0|−I⊗n= H†
⊗n

(2 |0n〉〈0n|−I⊗n)H⊗n to the first n

qubits of |χ1〉 yields

|χ2〉 = (D⊗ I) |χ1〉 =

(
2n − 4

2n
|χ0〉+

2√
2n
|x∗〉

)
⊗ |0〉

The state |χ2〉 is thus a non-uniform superposition of all
basis states in {0, 1}n and the quantum state associated to x∗

exhibits an amplitude increased with respect to one resulting
from uniform superposition. Our implementation of D traces
the Grover’s approach except for the use of our input state
preparation step (which is represented by the 2n-dimensional
operator P), i.e., Dour = P†(2 |0n〉〈0n| − I⊗n)P, yielding:

|ψ2〉 =
(
Dour ⊗ I⊗m+1

)
|ψ1〉 =

(
d− 4

d
|ψ0〉+

2√
d
|x∗〉

)
⊗ |0〉⊗m+1

Operator (2 |0n〉〈0n|−I⊗n) can be implemented by a
Cn−1(Z) acting on the n qubits involved in our input state
preparation subcircuit, with an X gate before each of its input
qubits and another one after each of its output qubits.
Measurement of the solution and number of repetition
of the oracle and diffusion steps. Grover proved that the
repeated application of the oracle and diffusion operators
(D ◦ OF) keep increasing the amplitude of the sought basis
state |x∗〉 (f(x∗) = 1), while reducing the others. It can
be shown that the optimal number of repetitions to have a
probability close to 100% to measure a classic bit equal to
one, acting on |f(x)〉, and consequently to measure the sought
solution x∗, acting on |x〉, is ≈ O(π4

√
2n) or, in our case,

≈ O(π4
√
d). Finally, [28] discusses two important variations

to Grover’s algorithm: how executing half of the aforesaid
number of repetitions provides a success probability close to
50% and how having m distinct solutions reduces the number
of iterations to ≈ O(π4

√
2n

m) or, in our case, ≈ O(π4

√
d
m).

D. Sorting networks

The classical comparator network model of computation
inspired the implementation of a crucial ingredient of our
design for an ISD quantum circuit. In such a computational
model a sorting algorithm can be performed in sublinear time
by executing multiple comparison operations simultaneously.
The implementation of sorting algorithms are denoted as
sorting networks and are described drawing m “wires”, each of
which associated to one of the values to be sorted, and several
comparator elements affixed on pairs of wires (see Figure 3a),
which are in turn are organized in layers (see Figure 3b) in
such a way that no cycles exist on the created graph.

As shown in Figure 3a, a classical comparator element
receives two distinct values on its input wires, compares them
and then outputs the minimum between them on the top
output wire and the maximum on the bottom one. Under the
assumption that each comparator performs its action in O(1)
(i.e., constant) time, the running time of a sorting network
is the time it takes for all the output wires to receive their
values once the input wires receive theirs. As a consequence,
the largest number of comparators that any input element can
pass through as it travels from an input wire to an output wire
(a.k.a. depth of the network), defines the execution time of
the whole network. An additional figure of merit is given by

b

a

max(a, b)

min(a, b)

(a)

1

0

0

1

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

(b)

Fig. 3. (a) Comparator element. (b) A 4-bit input sorting network.

the number of non-overlapping comparisons done at the same
time as this proves to influence also the depth of the network
other than its total number of comparators.

Knuth [29, Chap. 5.3.4] offers a detailed review of several
sorting networks design strategies. Since we want to reuse the
sorting network in a quantum circuit, our focus has been to
minimize the overall depth of the network. For values of m in
the thousands, as it is the case in our scenario, only a single
asymptotically optimal depth design (i.e., O(log(m)) depth) is
known [30]. However, Knuth [29, Chap. 5.3.4] shows that this
network design is not of practical interest, since the constants
hidden by the asymptotic notation are significant, and the total
number of comparators is increased significantly with respect
to O(log (m)

2
) depth designs. In the following we employ the

sorting network topology detailed in [31, Chap. 27.5], where
a non-asymptotic analysis of the network complexity shows
that the total number of comparators in this type of sorting
network is (m−1) log2 (m) (log2 (m)−1), while the overall
depth is instead 1

2 log2 (m) (log2 (m)+1). An example of such
a network applied to m=4 binary values is shown in Figure 3b.

III. A COMPLETE ISD QUANTUM CIRCUIT

To employ the algorithmic framework proposed by Grover
for Prange’s algorithm, we rephrase the solution of the syn-
drome decoding problem into finding an r-sized set I∗ that
satisfies Prange’s conditions, namely: (i) the columns of the
parity check matrix H indexed by I∗ form an invertible
matrix; and (ii) the Hamming weight of s̄=Us equals t.

This problem is equivalent to identify the input x∗ to a
Boolean function f : D → {0, 1}p, p ≥ 1, constructed in
a way that it outputs 1p if and only if both the previous
conditions are satisfied. Let D ⊂ {0, 1}n be the set of all
the weight-r, length-n Boolean vectors. An element x∈D,
x = (x0, . . . , xn−1) is a Boolean vector of Hamming weight
r in which the indexes of asserted bits are elements of I∗.

A. Preparing a superposition of all permutations

The input state of our algorithm is a superposition of
states encoding all length-n, weight-r Boolean strings. This
quantum state, encoded in an n-qubits register denoted sel,
is known as the Dicke state |Dn

r 〉 and it is defined as

|Dn
r 〉 =

1√(
n
r

) ∑
WEIGHT(x)=r

|x〉 , x ∈ {0, 1}n.

To the best of our knowledge, the most efficient algorithm
in terms of both depth and number of gates to prepare |Dn

r 〉
for a generic value of r is the one detailed in [32], requiring
r X, 5nr− 5r2− 2n CNOTs and 4nr−4r2−2n+1 Ry gates.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r

r

r

r

sel0
sel1
sel2
sel3
anc0
anc1
anc2
h:,0
h:,1
h:,2
h:,3

1 2 3...r+3 1 2 3...r+3 3 4 3...r+3

Fig. 4. The operations corresponding to the first three comparators in the
sorting network of Figure 3b. Each classical comparator is translated into a
CCNOT gate followed by a CSWAP gate, swapping the sel qubits. To
move the columns of Hr×n indexed by sel at the end of the matrix, we
also have CSWAPs between the corresponding qubits of h register, here
represented column-wise for clarity. Notice that each CSWAP involving the
h register is composed by r distinct CSWAPs. The numbers at the bottom
represent the stage (i.e., the depth) at which each gate can be executed.

Using the same assumptions for the depth evaluation of [33],
we can straightforwardly derive the total depth of the circuit
as the sum of the CNOTs and Ry gates, divided by b r+1

3 c−1.
The result for the depth is therefore ≤ 27nr−12n−27r2+3

r−2 .

B. Implementing our Grover oracle operator

The quantum circuit to compute Grover’s oracle operator
UF for the Boolean function f can be described by 5 distinct
steps which compute Uf (the first four) and required phase
flip (the last one). The first four steps are repeated in reverse
order to compute U†f after the phase flip is computed.

1) represent the matrix H and vector s on two quantum
registers, denoted as h and syn; 2) prepare a superposition of
all the columns indexed by all possible values of I∗ on the
right side of H , obtaining a representation of all the possible
Ĥ encoded in h; 3) apply the Gaussian elimination procedure
to h, obtaining on this register the representation of L; in
parallel, apply the same operations to syn to obtain on this
register the representation of s̄; 4) compute the Hamming
weight of syn and check it against the integer value t; 5) flip
the amplitude of the basis state if at step 2) the Gaussian
elimination yielded for it an identity matrix on the qubits
containing the r × r right submatrix of L and the weight
comparison of step 4) was successful.

Step 1) Encoding H and s. The first step of our oracle
encodes H and s in the quantum circuit in two distinct quan-
tum registers, h and syn, of rn and r qubits respectively. The
registers are initialized to |0rn〉 and |0r〉 and we selectively
apply X gates to the qubits representing asserted elements of
H or s. Since H is a random parity-check matrix, we expect
half of its elements to be equal to 1, thus resulting in rn

2 X
gates being used on average. Since also s has a random value,
we expect to need r

2 X on average to initialize s. All the gates
can be applied in parallel, resulting in a depth of 1.

Step 2) Compute all the Ĥ in superposition. We recall
that the sel register contains |Dn

r 〉 at the beginning of the
execution of Grover’s algorithm, and a non-uniform superpo-
sition of the weight-r length-n basis states in the subsequent
iterations of the algorithm itself. Consider one of the basis
states contained in sel, and the corresponding values of the
qubits in h in the same basis state. Our goal is then to bring

all the r columns of h having the qubits in the basis state of
sel in the corresponding position set to 1 in the portion of h
corresponding to the rightmost r × r submatrix. Rearranging
the columns of H according to the permutation encoded in
sel is equivalent to sorting them lexicographically according
to the value taken by the qubits in sel matching the positions
of the columns in H . We therefore sort both the columns of
H and the qubits of sel using a quantum circuit inspired by
the comparator network detailed in Section II-D, performing
the comparisons required only among the qubits of sel. As
such, we design a quantum circuit which swaps two sets of r
qubits from h according to the values taken by two qubits of
sel, together with swapping the qubits of sel themselves.
This circuit is the analog of the comparator in a sorting
network, we thus refer to it as quantum comparator. Figure 4
depicts the first three quantum comparators, placed according
to the topology of the sample sorting network reported in
Figure 3b. Each quantum comparator, consisting of 4 + r
consecutive gates, is depicted in a compact form as 3 gates
for the sake of space. The first quantum comparator acts on
the first two qubits of sel, sel0 and sel1. The comparison
sel0 > sel1 is computed with a CCNOT employing as
controllers the value sel0 and the negated value of sel1

(depicted as a white circle instead of a filled one). We realize
the negated control value through employing an X gate on
sel1 before and after the CCNOT. The CCNOT changes
an ancilla qubit, anc0, originally initialized to |0〉, to |1〉 in
all the basis states where sel0 > sel1. The ancilla qubit
is then employed as a controller for a single CSWAP gate
performing the swap on sel0 and sel1, and for a set of r
CSWAP gates acting on the two sets of r qubits representing
the columns which have to be swapped, i.e., h:,0,h:,1.

The gate count of a single quantum comparator is thus 2
X gates, 1 CCNOT and r + 1 CSWAPs. The overall cost
of the computation of the superposition of all the values of
Ĥ in h is obtained multiplying the cost of a single quantum
comparator, by the number of comparators in the network,
namely (n − 1) log2 (n) (log2 (n) − 1) (see Section II-D).
Scheduling whole quantum comparators in the same topology
of a classical comparator network from Section II-D yields a
total depth of 1

2 log2 (n) (log2 (n)+1) multiplied by the depth
of a single comparator, namely 4 + r. To reduce the overall
circuit depth, we observe that, at each layer of the sorting
network, CCNOTs and CSWAPs belonging to different quan-
tum comparators can be executed in parallel. Furthermore, the
CSWAPs involving h can start in parallel with the execution
of the next layer of the sorting network, which only requires
that the CCNOT involving the sel register has already been
executed. The total depth is therefore equal to twice the depth
of the classical sorting network — since the first CCNOT and
CSWAP are executed sequentially — plus an r factor due to
the CSWAP gates involving the qubits in h. This scheduling
leads to a total depth of log2 (n) (log2 (n) + 1) + r.

Step 3) Gaussian elimination computation and s̄ com-
putation. h now contains in superposition all the column
permutations which correspond to packing an r column set
indexed by I∗ on the right side of H . Thus, we now

Algorithm 2: Quantum Circuit Friendly Gauss. Elim.
Input : Ĥ: parity-check matrix ∈ Fr×n

2 , s: syndrome
Output : L: parity check matrix L = UĤ = [V |Ir]

s̄: transformed syndrome, s̄ = Us
1 k ← n− r,L← Ĥ
2 for i← 0 to r − 1 do
3 for z ← i+ 1 to r − 1 do
4 if Li,i+k = 0 and Lz,i+k = 1 then
5 Li,: ← SWAP(Li,:,Lz,:) si ← SWAP(si, sz)

/* the swaps can be replaced by
Li,: ← Li,: ⊕Lz,: si ← si ⊕ sz */

6 for z ← 0 to r − 1 do
7 if z 6= i and Lz,i+k = 1 then
8 Lz,: ← Lz,: ⊕Li,: sz ← sz ⊕ si
9 return L, s̄

compute the reduced row echelon form of this superposition,
via Gaussian elimination, and check which of all the possible
r × r rightmost submatrices are invertible. To this end, we
translate the Gaussian elimination algorithm (Algorithm 1)
in an appropriate quantum circuit. The hindrances to the
translation in the Gaussian elimination are: 1) a data-dependent
early-abort (lines 6–7) 2) the presence of non-countable loops
(lines 4–5) 3) conditional operations which act on data also
present in the condition calculation.

We start by rewriting Algorithm 1 into a semantically
equivalent one, Algorithm 2, taking care of removing the first
and second hindrances. We report an example of a complete
circuit for a 4×3 element Ĥ in Figure 5. Algorithm 2 also in-
cludes the computation of the transformed value of s, namely
s̄ = Us. Indeed, this computation can be easily interleaved
with the Gaussian elimination performing swaps and additions
between single elements of s. The first hindrance, i.e., the early
abort of Algorithm 1 due to a potentially singular submatrix
selected by I∗, is managed through an a posteriori check on
the presence of an identity submatrix in L when the check
on the condition of the oracle function on the basis state is
performed. We therefore removed altogether the runtime check
in Algorithm 2. The second hindrance, i.e., the presence of a
non-countable loop to find the pivot (lines 4–5, Alg. 1) is
overcome with a countable loop strategy ensuring that the i-th
row in the execution of the outermost loop contains a pivot.
This strategy consists in computing a countable loop sweeping
over the lines starting from the i + 1-th to the r − 1-th and
swapping the row being swept with the i-th only if the i-
th row does not contain a pivot. This approach, reported in
Algorithm 2, lines 3–5 only employs a countable loop.

Managing the need to compute operations depending on
the computation of a condition which involves also one of
their operands (lines 4–5 and lines 7–8 of Algorithm 2)
requires to encode the conditional operations as quantum
circuits. We solve this third hindrance by storing the outcome
of each condition computation on a dedicated ancilla qubit.
These ancilla qubits are then employed as control qubits in
appropriate control gates to perform the computation contained
in the conditional statements. We thus introduce two quantum
ancillae registers, pswap and radd, where the result of the
computation of the condition driving row swaps (line 4), and
the result of the computation of the condition determining row
additions (line 7) are stored, respectively. To accommodate

Fig. 5. Quantum circuit employed for the reduced row echelon form of a 3 × 4 matrix, considering as pivot elements the ones belonging to the rightmost
3 × 3 submatrix. The gates in red, although present in the straightforward implementation of the algorithm, can be eliminated. Note that the last row does
not have a pseudo swap subpart since it cannot be swapped with any other row.

row0
X X X X

row1
X X

row2

pswap

radd

Row 0 swaps Row 0 additions Row 1 swaps Row 1 additions Row 2 additions

all the values, the size of pswap is determined considering
number of times the body of the loop at lines 3-5 is executed
in a complete Gaussian elimination. Such a number is derived
to be 1

2r(r − 1) considering that the outer loop at lines 2–8
is computed r times. Through an analogous line of reasoning,
the size of radd is determined to be r(r − 1).

The computation of the swap control condition (line 4) and
the actual swaps have the same effect of employing a CCNOT
gate controlled by the two qubits in h storing Li,i+k and
Lz,i+k, taking care to negate the first one, and acting on an
ancilla in pswap. This CCNOT will toggle the ancilla qubit
to |1〉 only if the i-th row does not contain a valid pivot and
the z-th does. It is thus possible to employ the ancilla qubit
to drive a sequence of CSWAP gates performing the swap
between the rows in h and the appropriate bit in syn (line 5).
In case CNOT gates are cheaper to synthesize than CCNOT
gates, and CCNOT gates are cheaper than CSWAP, as it is
the case with the commonly used and universal Clifford+T
gate set, it is possible to optimize the computation of the
swap control and the application of the swap itself as follows.
Observe that substituting a row swap with the addition of
the newly found pivot row (the z-th in Algorithm 2, line 5)
to the one lacking it (the i-th one) will still yield a correct
Gaussian elimination algorithm. Note that such an addition
is necessary only when the i-th row lacks a pivot, leading
to a simpler condition to be checked with respect to the one
at line 4, allowing the test to be performed with a CNOT
gate controlled by the negated qubit representing Li,i+k in h
instead of a CCNOT. The resulting optimized design of the
compare-and-add functionality is reported in Figure 5, where
it is also highlighted the fact that it is possible to uncompute
only once the negation on Li,i+k omitting some X gates.

The computation of the row addition control condition (line
7) can be done simply considering the Lz,i+k = 1 portion,
and abiding to the z 6= i clause by not implementing the
corresponding portion of the quantum circuit. The strategy
to implement the comparison and addition is analog to the
optimized one described above for the alternate strategy to
row swapping. The row addition stage can be optimized

observing that adding together the qubits representing values
of L belonging to columns between k and i + k is not
required, as they will all contain zeroes by virtue of the
Gaussian elimination actions performed. As a consequence,
the corresponding additions, performed via CCNOT gates,
can be omitted as depicted in Fig. 5 (removable gates in red).

After performing the aforementioned optimizations, count-
ing the number of gates required to perform the actual
pseudo swaps and row additions on elements of h we obtain
1
6r(r − 1)(3n − r + 2) CCNOT for the pseudo swaps and
1
2r(r−1)(2n−r+1) CCNOT for the row additions, for a total
of 1

6r(r−1)(9n−4r+5) CCNOTs. Considering our optimized
proposal, i.e., the one employing CNOTs and CCNOTs
instead of CCNOTs and swaps, the condition calculation
portion of the circuit will need 3

2r(r−1) CNOTs, and 2(r−1)
X gates. Concerning the gates required to apply the same
operations on the contents of the syn quantum register to
compute the corresponding s̄ superposition, we have a single
CCNOT for each pseudo swap or row addition subcircuit. The
total number of additional CCNOT is therefore 3

2r(r − 1).
The total depth of the circuit is given by the number of
CCNOT gates involving rows, as the computation of the X
gates required for the negated controls can be executed during
the preceding row addition phase, and the CCNOT gates used
for the computation of s̄ can be interleaved with the ones
involving rows.

Step 4) Hamming weight compute and check To compute
the Hamming weight of the syn register, that at this stage will
contain the representation of s̄, we use two additional set of
registers, cin and cout. Figure 6a reports the full Hamming
weight circuit for a size 4 syn register.

We build our circuit as a binary adder tree where the results
of two child adders are employed as addends in their father.
We compute the values of the Hamming weights of our r qubit
register syn employing a log2 (r) deep adder tree, where the
first layer is constituted by 1 qubit operand adders employing
a qubit from cout to store their carry-out. Following layers
compute the sum on the output of the previous layers, and

sum0 A
d
d

sum1

A
d
d

cout0
cout2 XOR

with

(t)2

cout1 A
d
d

sum3
sum2

(a) Hamming weigh computation cir-
cuit acting on sum

a

b X X

c

(b) Our optimized 1-qubit
operand adder

Fig. 6. (a) shows the Hamming weight compute and check subcircuits for the
sum register of the running example. The result of the computation, stored on
cout2, cout1 and sum3, is compared against the Boolean complement of
the natural binary representation of the constant t−p. (b) shows our proposal
for an adder taking as input two 1-qubit register. The sum of a+ b is stored
in c and b, with c being the most significant bit.

they use adders involving addends whose qubit size increases
by 1 with respect to the previous layer.

To realize multi-qubit adders we employed the design
proposed by Cuccaro [34], a reversible variant of the ripple
carry adder. The Cuccaro adder stores the sum of its inputs
a and b in the qubits where b is stored, with one additional
qubit for the carry-in and another one for the carry-out. The
design by Cuccaro restores the initial state of the carry-in
qubit, allowing its reuse. We employed this feature to use a
number of carry-in qubits equal to the one of the first layer
adders, and reusing the same carry-in qubits in all subsequent
layers (which need a smaller number of them). To determine
the gate count for this sub-circuit, we note that a Cuccaro adder
operating on r qubit inputs requires 2r−1 CCNOT gates,
5r+1 CNOT gates and 2r X gates, and has a circuit depth of
2r+6 gates. For r=1, we improved the proposal by Cuccaro,
realizing an adder (Figure 6b) requiring 1 CCNOT, 1 CNOT
and 2 X gates with depth 4. The number of layers of the
adder tree circuit is log2 (r). In the i-th layer, r/(2i) adders are
employed, leading to a total count of

∑log2(r)
i=1

r
2i =r−1 adders.

Therefore, we need exactly r
2 carry-in and r − 1 carry-out

ancillary qubits. Each adder of the i-th layer of the adder tree
takes as input two distinct i-qubit strings. The overall number
of gates required is given by

∑log2(r)
i=1

r
2i ADDER COST(i),

where ADDER COST(i) denotes the gate cost of an adder
taking as inputs two i-qubit strings. Expanding the summation
yields the gate-count in Table I. Since all the adder at the
same level have identical depths and can be run in parallel,
the overall depth is simply given by the sum of the depth of
a single adder per each level. At level i, the result is stored
on exactly i+ 1 qubits, as Cuccaro’s design reuses the qubits
of one of the operands to store part of the result. Hence, in
the final stage, the final sum will be stored on a log2 (r) + 1
qubits register, denoted as hwreg.

At this point, we should check that hwreg contains the
binary representation of t. To this end, we xor into the qubits
of hwreg the boolean complement of the natural binary
representation of t. This is done to ensure that, if a given
state is such that WEIGHT (syn) = t, then all the qubits
contained in the hwreg register will become |1〉. In this way,
they can be used as control qubits in the multi-controlled gate
of the next stage. This operation is performed via a set of

X gates, as the number being added (at most log2 (r) + 1
if t = 0) is smaller than r, and can thus be represented
on the same number of qubits. We need therefore to use
log2 (r)+1− log2 (t) = log2 (r/t)−1 X gates to perform the
xor. Thus, if the output of previous stage contains a state with
the binary encoding of t, the basis state is transformed into a
log2 (r) + 1 all-ones state contained in the hwreg register.

Step 5) Oracle phase flip As explained in Section II-C, we
can apply a Cp−1(Z) to invert the phase of |x∗〉 in the oracle
stage. We determine whether the basis state is |x∗〉 checking a
collection of p qubits, belonging to both h, as we need to check
if its right r×r submatrix is an identity, and to hwreg, for the
Hamming weight value check. Given the Gaussian elimination
procedure, it is sufficient to test whether the right submatrix
of h has an all-one diagonal to test if it did succeed, in turn
allowing us to test if the corresponding r qubits are asserted.
Thus, the Cp−1(Z) gate acts on p = r + log2 (r) + 1 qubits.

C. Implementing our Grover diffusion operator

We recall from Section II-C that we implement Grover’s
diffusion operator Dour = 2 |ψ0〉〈ψ0|−I⊗n = P†(2 |0n〉〈0n|−
I⊗n)P realizing the (2 |0n〉〈0n| − I⊗n) function with a multi-
controlled Z gate, Cn−1(Z), acting on the n qubits provided by
our input state preparation subcircuit, with an X gate in front
of each of its input qubits and another X gate following each of
its output qubits. In our algorithm, those qubits are the n qubits
of the sel register. Since we have to apply an X gates before
and after the multi-controlled phase flip gate, in this stage we
need 2n X gates and a single Cn−1(Z) gate. We complete the
implementation of Dour recalling that P corresponds in our
case to the circuit for the preparation of the Dicke state on
the sel register, which is computed twice: at the beginning
of Dour (in reverse) and at the end.

IV. FUNCTIONAL AND SECURITY ASSESSMENT

We validated the functionality of the proposed quantum
circuit testing each one of its components on the Atos Quan-
tum Learning Machine [35] simulator. All the components
were validated as functional, and are freely available at https:
//github.com/paper-codes/2021-IQW.

A. Evaluating the cryptanalytic effort on NIST post-quantum
code based cryptosystems standardization candidates

We employ the gate counts obtained for our quantum
ISD implementation to quantify the amount of computation
required to solve ISD instances for cryptographic grade code
parameters. In particular, we consider one parameter sets
for each of the NIST security levels for both the Classic
McEliece [36] cryptosystem, the finalist in the NIST Post
quantum standardization effort among code based cryptosys-
tems, and BIKE [37], one of the alternate candidates. The
NIST security levels are defined as the computational effort to
break one of the three AES variants, and therefore correspond
to a computational effort of about 2128 (level 1), 2192 (level
3) or 2256 (level 5) AES encryptions.

In order to provide a quantification of the computational
effort in terms of elementary gates, we require a translation

TABLE I
NUMBER OF REQUIRED QUANTUM GATES AS A FUNCTION OF THE PRANGE ISD PARAMETERS FOR THE DIFFERENT SUBCIRCUITS. EXCEPT FOR THE

MULTI-CONTROLLED Z GATES, ALL THE FIGURES OF THE ORACLE PHASES SHOULD BE MULTIPLIED BY 2 TO TAKE INTO ACCOUNT THE UNCOMPUTATION
STAGE. EACH MULTI-CONTROLLED Z, DENOTED AS Cm(Z), INVOLVES m+ 1 QUBITS, m OF WHICH ACTS AS CONTROLLERS AND ONE AS TARGET.

State Preparation Oracle Diffusion

Cost metric Dicke Data Pack Gaussian Hamming weight Amplitude
state preparation columns elimination compute and check flip

X r r+rn
2 2(n−1) log2 (n) (log2 (n)−1) 2(r−1) 4r−log2 (r/t)−3 0 n+ 2r

CNOT 5nr − 5r2 − 2n 0 0 3
2r(r − 1) 9

2r − 5 log2 (r)− 11 0 10nr−10r2−4n
CCNOT 0 0 (n−1) log2 (n) (log2 (n)−1) 1

6r(r−1)(9n−4r+5) 3r−2 log2 (r)−3 0 0
CSWAP 0 0 (n−1) log2 (n) (log2 (n)−1)(r+1) 0 0 0 0

Ry 4nr−4r2−2n+1 0 0 0 0 0 8nr−8r2−4n+2
Clog2(r)+r(Z) 0 0 0 0 0 1 0

Cn−1(Z) 0 0 0 0 0 0 1

Depth ≤ 27nr−12n−27r2+3
r−2 1 log2 (n) (log2 (n)+1)+r ≤ 1

6r(r−1)(9n−4r+5) log2
2 r+7 log2 (r)−4 1 ≤ 27nr−12n−27r2+3

r−2

Qubits n r+rn (n−1) log2 (n) (log2 (n)−1) 3
2r(r−1) r + r

2−1 0 0

TABLE II
NUMBER OF GATES AND QUBITS REQUIRED BY OUR ISD CIRCUIT DESIGN COMPARED TO THE ASYMPTOTICAL ESTIMATES OF [19] FOR TWO

CODE-BASED CRYPTOSYSTEMS: MCELIECE AND BIKE. WE REPORT THE OVERALL DEPTH OF THE CIRCUIT FOR OUR PROPOSAL

Algorithm AES Code parameters Grover Grover gates Total Asymp. Total Asymp. Total
Equiv. n k t Iterations X CNOT CCNOT CSWAP RY CZ gates gates qubits qubits depth

BIKE
128 24, 466 12, 233 134 268 297 299 2111 2105 298 269 2111 2112 229 230 2111

192 49, 318 24, 659 199 2100 2132 2133 2146 2139 2133 2101 2146 2148 231 232 2146

256 81, 946 40, 973 264 2133 2166 2167 2181 2174 2166 2134 2181 2183 232 233 2181

McEliece
128 3, 488 2, 720 64 272 294 296 2104 2101 296 273 2104 2108 222 224 2104

192 4, 608 3, 360 96 293 2116 2119 2127 2124 2118 294 2127 2130 223 225 2127

256 8, 192 6, 528 128 2151 2175 2178 2186 2183 2177 2152 2186 2190 224 226 2186

of the m-controlled Z into a sequence of elementary gates.
We chose the approach proposed in [38], which requires m
additional qubits and 2m CCNOT, plus 1 CZ. While an
alternate approach which does not require extra qubits was
in [39], it requires 2m − 2 CNOT gates and 2m − 1 gates
∈ SU(2). Given that the value of m is in the hundreds for
cryptographically relevant parameters, employing the approach
of [39] would imply a significant cost increase.

A second parameter to set is the success probability of each
execution of Grover’s algorithm, as this in turn determines the
number of its iterations. We choose to reach the probability
closest to 1 to observe one of the |x∗〉 upon measurement.
Indeed, having a probability close to 50% only halves the num-
ber of iterations, a factor that, given the total computational
effort, does not have a huge impact on the overall figures.

Table II reports the number of gates, split by kind, and the
number of qubits needed to build the ISD circuit according to
our design, comparing them with the asymptotic results for the
same algorithm presented in [19]. In [19], the author analyzes
the feasibility of computing Prange’s ISD on a quantum
computer, reporting that it is expected to employ nO(1) qubits,
i.e, polynomial in n. Since this asymptotic bound does not
allow to have a direct comparison, we assumed a sensible
bound of O(n2), as the method described in [19] represents
the generator matrix of the code, and will also require, when
concretized in a quantum circuit, ancillary qubits. The estimate
for the number of gates in [19] is O(n3) for a single Grover
iteration. The number of iterations of Grover’s algorithm is
the same in both our realization and Bernstein’s asymptotic

estimates. Indeed, our function has
(
n−t
k

)
inputs satisfying

the constraints of the ISD, out of
(
n
r

)
possible column per-

mutations selecting an r×r. This in turn leads to a number
of iterations equal to π

4

√(
n
r

)
/0.2887

(
n−t
k

)
, considering the

probability that the selected submatrix is non-singular.
We note that the asymptotic analysis in [19] does not

consider the gate cost of the input preparation and diffusion
stages in the gate counts. However, the preparation of the
Dicke state, which is required to minimize the number of
basis states fed to Grover’s algorithm, and it is used also in the
diffusion stage, is significantly more complex than the depth-1
stage of Hadamard gates required in the traditional version of
Grover’s algorithm. Also, the multi-controlled Z gate involved
in the diffusion stage and its linear-depth decomposition in
basic gates, requires a non-negligible amount of additional
resources. The results in Table II allow us to state that the
asymptotic estimates in [19] capture quite well the cost of
computing concretely Prange’s ISD on cryptographic grade
parameters. However, we note that, despite the fact that [19]
aims at providing a conservative estimate of the cost, not
counting some required gates, our proposed realization is still
smaller than the asymptotic estimates by a factor of ≈ 24.

B. Comparing computational efforts with breaking AES

Since the bar chosen by NIST to evaluate the cryptographic
strength of post-quantum code based cryptosystems is the
computational effort required to break AES finding its key
via Grover-based key search, we now evaluate our solution,
comparing it with the current state-of-the-art solutions.

TABLE III
SUMMARY OF THE COST OF TRANSLATING THE GATE SET EMPLOYED IN

DESCRIBING OUR QUANTUM ISD IN CLIFFORD+T GATES

Gate to Type & no. of gates for translation Equivalent
translate H CNOT T T-depth

X 2 0 4 4
CCNOT 2 7 7 3
CSWAP 2 8 7 4

CZ 2 1 0 0

To this end, we need to express our solution in terms of the
widely used Clifford+T gate set, defined by {H,CNOT,T ≡
4
√

Z}. The choice of this set of gates is justified by the
fact that it can be efficiently implemented in a fault-tolerant
manner [38], [40], and was thus adopted in the current state-of-
the-art quantum AES implementation [9]. Among the gates in
the Clifford+T set, T gates require extensively more resources
to be implemented in a fault-tolerant fashion [41]. Common
metrics for quantum circuit costs are the number of employed
T gates and the so called T-depth, i.e., number of sequential
stages in the circuit involving T gates. An additional measure
used proposed in [25] is the product of the number of qubits
times the depth of the circuit. This measure is intended to
capture the computational effort if identity operators have to
be applied when no gate acts on a qubit in a given instant.

We thus translate all the gates required in our solution as
per Table I into combinations of Clifford+T gates. Table III
reports the costs and T-depth of each one of such translations,
for elementary gates. The only gate among the one employed
by us for which there is no straightforward translation into a
Clifford+T gate combination is the Ry gate, as it acts on a
continuum. To this end, we consider the fact that an Ry gate
can be expressed as a combination of 2 H gates, 4 T gates
and a Rz gate [42], namely Ry(θ) = TTHRz(θ)HT†T†.

Different algorithms were proposed to synthesize Rz gate
up to an arbitrary precision ε, trying to optimize the number of
T, based on the consideration that T gate requires extensively
more resources than any of the Clifford gates. In [42], the
authors proposed an exact synthesis algorithm and showed
how, on average, 3.067 log2 (1/ε) − 4.322 T are required to
achieve a given quality of approximation. An ε = 10−15, a
value sufficient for most applications [42], gives us a T-count
of ≈ 149 that, added to the previously shown decomposition,
gives us a T-count of ≈ 153 for a single Ry.

Table IV reports a comparison of the results between our
approach, after translating all gates in the Clifford+T set, and
a Grover based AES key search employing the state-of-the-art
design in [9]. Since [9] only proposes a design for a quantum
circuit implementing AES, we computed the cost of an entire
Grover based AES key search circuit following the state-of-
the-art design in [10]. To do so, we considered that the number
of AES circuits required for the Grover oracle finding its key
is 2, 2 and 3 for AES-128, -192, -256 respectively, and each
one of them needs to be uncomputed, effectively doubling
its gate count. Finally, the Grover oracle also needs a multi-
controlled X gate, with the number of controls depending on
the number of outputs of each AES box. For this reason, we
need a C128×2(X) gate, a C192×2(X) gate and a C256×3(X)

TABLE IV
COMPUTATIONAL EFFORT REQUIRED TO BREAK AES VIA GROVER-BASED

KEY SEARCH USING THE AES IMPLEMENTATION IN [9] COMPARED TO
THE COMPUTATIONAL EFFORT TO SOLVE THE ISD PROBLEM ON CLASSIC

MCELIECE AND BIKE WITH OUR ISD IMPLEMENTATION.

Sec. Level Primitive Qubits T-Count T-Depth Depth·Qubits

AES-128
AES [9] 210 282 277 288

BIKE 228 2182 2110 2138

McEliece 221 2180 2103 2124

AES-192
AES [9] 211 2114 2109 2120

BIKE 230 2251 2145 2176

McEliece 223 2224 2126 2149

AES-256
AES [9] 212 2147 2141 2153

BIKE 232 2318 2180 2212

McEliece 224 2341 2185 2209

gate for AES-128, -192, -256, respectively. By using the same
decomposition shown in IV-A, we need an additional number
of qubits equal to 256, 384 and 768 for the three AES key
size. We report that [9] use a different definition of T-depth:
they consider the T-depth to be the depth of the CCNOT
gates. We adapted their definition to the T-depth definition
given before, hence simply multiplying their depth by 3.

We observe from our results that both Classic McEliece and
BIKE require considerably more effort to be broken than the
corresponding symmetric ciphers employed as a gauge of their
security level. These results indicate that, with respect to an
attack conducted with our implementation of Prange’s ISD,
the choices made by the proposers of Classic McEliece and
BIKE are strongly conservative in terms of security.

V. CONCLUDING REMARKS

We presented a fully-detailed quantum circuit to speed up
the execution of Prange’s variant of ISD, together with detailed
figures for the width, depth and gate size. We translated our
generic gate set into the widely-employed Clifford+T gate
set, the most promising choice for fault-tolerant computa-
tion, providing figures for the T-count and T-depth of our
implementation. Our proposal shows how the NIST finalist
cryptoscheme parameters are overdesigned with respect to
the security margins required by NIST. In implementing our
circuit, we proposed quantum circuits to compute matrix
column permutations, the Hamming weight of a qubit string,
and a Gaussian elimination of a binary matrix which may be
of independent interest.

An interesting future research direction is to investigate the
quantum efficiency of algorithmic improvements to Prange’s
ISD, evaluating approaches such as the one by Lee and
Brickell, for which a partial accelerator is proposed in [43]. In
particular, we note that our approach to Gaussian elimination is
readily adapted to any prime field replacing the additions over
F2 with additions over Fp such as the one described in [17].

To conclude, we highlight that our algorithm solves a
general combinatorial problem, and it can be seen as a binary
constraint satisfaction problem.

ACKNOWLEDGMENT

The research activity was partially funded by Atos Italia
S.p.A. with a research grant on quantum computing.

REFERENCES

[1] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer,” SIAM Rev.,
vol. 41, no. 2, pp. 303–332, 1999. [Online]. Available: https:
//doi.org/10.1137/S0036144598347011

[2] National Institute of Standards and Technology, “Post-Quantum Cryp-
tography Standardization process,” https://nist.gov/pqcrypto, 2017.

[3] European Telecommunications Standards Institute (ETSI),
“Quantum-Safe Cryptography,” https://www.etsi.org/technologies/
quantum-safe-cryptography, 2020.

[4] T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke,
“Computation of a 768-Bit Prime Field Discrete Logarithm,” in
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, ser. Lecture Notes in Computer Science,
J. Coron and J. B. Nielsen, Eds., vol. 10210, 2017, pp. 185–201.
[Online]. Available: https://doi.org/10.1007/978-3-319-56620-7\ 7

[5] M. Delcourt, T. Kleinjung, A. K. Lenstra, S. Nath, D. Page, and
N. P. Smart, “Using the Cloud to Determine Key Strengths - Triennial
Update,” IACR Cryptol. ePrint Arch., vol. 2018, p. 1221, 2018.
[Online]. Available: https://eprint.iacr.org/2018/1221

[6] T. Kleinjung, J. W. Bos, A. K. Lenstra, D. A. Osvik, K. Aoki,
S. Contini, J. Franke, E. Thomé, P. Jermini, M. Thiémard, P. C.
Leyland, P. L. Montgomery, A. Timofeev, and H. Stockinger, “A
heterogeneous computing environment to solve the 768-bit RSA
challenge,” Clust. Comput., vol. 15, no. 1, pp. 53–68, 2012. [Online].
Available: https://doi.org/10.1007/s10586-010-0149-0

[7] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L.
Montgomery, “Solving a 112-bit prime elliptic curve discrete logarithm
problem on game consoles using sloppy reduction,” Int. J. Appl.
Cryptogr., vol. 2, no. 3, pp. 212–228, 2012. [Online]. Available:
https://doi.org/10.1504/IJACT.2012.045590

[8] C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia,
“Improved Classical Cryptanalysis of SIKE in Practice,” in Public-Key
Cryptography - PKC 2020 - 23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Edinburgh,
UK, May 4-7, 2020, Proceedings, Part II, ser. Lecture Notes in
Computer Science, A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
Eds., vol. 12111. Springer, 2020, pp. 505–534. [Online]. Available:
https://doi.org/10.1007/978-3-030-45388-6\ 18

[9] J. Zou, Z. Wei, S. Sun, X. Liu, and W. Wu, “Quantum Circuit
Implementations of AES with Fewer Qubits,” in Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II,
ser. Lecture Notes in Computer Science, S. Moriai and H. Wang,
Eds., vol. 12492. Springer, 2020, pp. 697–726. [Online]. Available:
https://doi.org/10.1007/978-3-030-64834-3\ 24

[10] S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing
Grover Oracles for Quantum Key Search on AES and LowMC,”
in Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part II, ser. Lecture Notes in Computer Science,
A. Canteaut and Y. Ishai, Eds., vol. 12106. Springer, 2020, pp. 280–310.
[Online]. Available: https://doi.org/10.1007/978-3-030-45724-2{\ }10

[11] R. Anand, A. Maitra, and S. Mukhopadhyay, “Grover on SIMON ,”
Quantum Inf. Process., vol. 19, no. 9, p. 340, 2020. [Online]. Available:
https://doi.org/10.1007/s11128-020-02844-w

[12] ——, “Evaluation of Quantum Cryptanalysis on SPECK,” in
Progress in Cryptology - INDOCRYPT 2020 - 21st International
Conference on Cryptology in India, Bangalore, India, December
13-16, 2020, Proceedings, ser. Lecture Notes in Computer Science,
K. Bhargavan, E. Oswald, and M. Prabhakaran, Eds., vol. 12578.
Springer, 2020, pp. 395–413. [Online]. Available: https://doi.org/10.
1007/978-3-030-65277-7\ 18

[13] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in
8 hours using 20 million noisy qubits,” Quantum – the open journal
for quantum science, vol. 5, p. 433, Apr 2021. [Online]. Available:
http://dx.doi.org/10.22331/q-2021-04-15-433

[14] N. Kunihiro, “Quantum Factoring Algorithm: Resource Estimation and
Survey of Experiments,” in International Symposium on Mathemat-
ics, Quantum Theory, and Cryptography, T. Takagi, M. Wakayama,

K. Tanaka, N. Kunihiro, K. Kimoto, and Y. Ikematsu, Eds. Singapore:
Springer Singapore, 2021, pp. 39–55.

[15] M. Wroński, “Solving discrete logarithm problem over prime fields using
quantum annealing and n3

2
logical qubits,” Cryptology ePrint Archive,

Report 2021/527, 2021, https://eprint.iacr.org/2021/527.
[16] T. Häner, S. Jaques, M. Naehrig, M. Roetteler, and M. Soeken,

“Improved Quantum Circuits for Elliptic Curve Discrete Logarithms,”
in Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings,
ser. Lecture Notes in Computer Science, J. Ding and J. Tillich,
Eds., vol. 12100. Springer, 2020, pp. 425–444. [Online]. Available:
https://doi.org/10.1007/978-3-030-44223-1\ 23

[17] M. Roetteler, M. Naehrig, K. M. Svore, and K. E. Lauter, “Quantum
Resource Estimates for Computing Elliptic Curve Discrete Logarithms,”
in Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II, ser. Lecture Notes in Computer Science, T. Takagi
and T. Peyrin, Eds., vol. 10625. Springer, 2017, pp. 241–270. [Online].
Available: https://doi.org/10.1007/978-3-319-70697-9\ 9

[18] G. Banegas, D. J. Bernstein, I. van Hoof, and T. Lange, “Concrete
quantum cryptanalysis of binary elliptic curves,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2021, no. 1, pp. 451–472, 2021. [Online].
Available: https://doi.org/10.46586/tches.v2021.i1.451-472

[19] D. J. Bernstein, “Grover vs. McEliece,” in Post-Quantum Cryptography,
Third International Workshop, PQCrypto 2010, Darmstadt, Germany,
May 25-28, 2010. Proceedings, ser. Lecture Notes in Computer Science,
N. Sendrier, Ed., vol. 6061. Springer, 2010, pp. 73–80. [Online].
Available: https://doi.org/10.1007/978-3-642-12929-2\ 6

[20] G. Kachigar and J. Tillich, “Quantum Information Set Decoding
Algorithms,” in Post-Quantum Cryptography - 8th International
Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28,
2017, Proceedings, ser. Lecture Notes in Computer Science, T. Lange
and T. Takagi, Eds., vol. 10346. Springer, 2017, pp. 69–89. [Online].
Available: https://doi.org/10.1007/978-3-319-59879-6\ 5

[21] E. Kirshanova, “Improved Quantum Information Set Decoding,”
in Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018,
Proceedings, ser. Lecture Notes in Computer Science, T. Lange and
R. Steinwandt, Eds., vol. 10786. Springer, 2018, pp. 507–527.
[Online]. Available: revisedversionat\url{https://crypto-kantiana.com/
elena.kirshanova/Papers/quantumISD.pdf}

[22] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “A
Finite Regime Analysis of Information Set Decoding Algorithms,”
Algorithms, vol. 12, no. 10, p. 209, 2019. [Online]. Available:
https://doi.org/10.3390/a12100209

[23] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On
the inherent intractability of certain coding problems (Corresp.),” IEEE
Trans. Information Theory, vol. 24, no. 3, pp. 384–386, 1978. [Online].
Available: https://doi.org/10.1109/TIT.1978.1055873

[24] M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, and J. M. Schanck,
“Estimating Quantum Speedups for Lattice Sieves,” in Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II,
ser. Lecture Notes in Computer Science, S. Moriai and H. Wang,
Eds., vol. 12492. Springer, 2020, pp. 583–613. [Online]. Available:
https://doi.org/10.1007/978-3-030-64834-3\ 20

[25] S. Jaques and J. M. Schanck, “Quantum Cryptanalysis in the RAM
Model: Claw-Finding Attacks on SIKE,” in Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, ser.
Lecture Notes in Computer Science, A. Boldyreva and D. Micciancio,
Eds., vol. 11692. Springer, 2019, pp. 32–61. [Online]. Available:
https://doi.org/10.1007/978-3-030-26948-7\ 2

[26] E. Prange, “The use of information sets in decoding cyclic codes,”
IRE Trans. Information Theory, vol. 8, no. 5, pp. 5–9, 1962. [Online].
Available: https://doi.org/10.1109/TIT.1962.1057777

[27] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database
Search,” in Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
1996, pp. 212–219. [Online]. Available: https://doi.org/10.1145/237814.
237866

[28] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quan-

tum searching,” Fortschritte der Physik: Progress of Physics, vol. 46,
no. 4-5, pp. 493–505, 1998.

[29] D. E. Knuth, The Art of Computer Programming, , Volume III,
2nd Edition. Addison-Wesley, 1998. [Online]. Available: https:
//www.worldcat.org/oclc/312994415

[30] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n log n) Sorting
Network,” in Proceedings of the 15th Annual ACM Symposium on
Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA,
D. S. Johnson, R. Fagin, M. L. Fredman, D. Harel, R. M. Karp,
N. A. Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo,
and J. I. Seiferas, Eds. ACM, 1983, pp. 1–9. [Online]. Available:
https://doi.org/10.1145/800061.808726

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[32] C. S. Mukherjee, S. Maitra, V. Gaurav, and D. Roy, “Preparing Dicke
States on a Quantum Computer,” IEEE Transactions on Quantum
Engineering, vol. 1, pp. 1–17, 2020.

[33] A. Bärtschi and S. J. Eidenbenz, “Deterministic Preparation of Dicke
States,” in Fundamentals of Computation Theory - 22nd International
Symposium, FCT 2019, Copenhagen, Denmark, August 12-14, 2019,
Proceedings, ser. Lecture Notes in Computer Science, L. A. Gasieniec,
J. Jansson, and C. Levcopoulos, Eds., vol. 11651. Springer, 2019, pp.
126–139.

[34] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A
New Quantum Ripple-Carry Addition Circuit,” arXiv preprint quant-
ph/0410184, 2004.

[35] Atos, “Quantum Learning Machine,” 2019. [Online]. Available:
\url{https://atos.net/en/solutions/quantum-learning-machine}

[36] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier,
J. Szefer, and W. Wang, “Classic McEliece: conservative code-based

cryptography,” https://classic.mceliece.org/nist/mceliece-20201010.pdf,
2020.

[37] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy et al.,
“BIKE: Bit Flipping Key Encapsulation,” https://bikesuite.org.

[38] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

[39] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary Gates for
Quantum Computation,” Physical Review A, vol. 52, no. 5, pp. 3457–
3467, Nov. 1995.

[40] P. O. Boykin, T. Mor, M. Pulver, V. P. Roychowdhury, and F. Vatan,
“A New Universal and Fault-Tolerant Quantum Basis,” Inf. Process.
Lett., vol. 75, no. 3, pp. 101–107, 2000. [Online]. Available:
https://doi.org/10.1016/S0020-0190(00)00084-3

[41] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A Meet-in-
the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum
Circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 6, pp. 818–830, 2013. [Online].
Available: https://doi.org/10.1109/TCAD.2013.2244643

[42] V. Kliuchnikov, D. Maslov, and M. Mosca, “Practical Approximation
of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T
Circuits,” IEEE Trans. Computers, vol. 65, no. 1, pp. 161–172, 2016.
[Online]. Available: \url{https://doi.org/10.1109/TC.2015.2409842}

[43] S. Perriello, A. Barenghi, and G. Pelosi, “A Quantum Circuit to Speed-
up the Cryptanalysis of Code-based Cryptosystems,” in Proceedings
of the 17th EAI International Conference on Security and Privacy
in Communication Networks - SecureComm 2021, Canterbury, Great
Britain (online), September 6-9, 2021. International Workshop on Post-
quantum Cryptography for Secure Communications (PQC-SC)., ser.
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering. Springer, Cham, 2021. Springer,

2021.

