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Abstract

Synthetic Aperture Radar (SAR) is widely used in heterogeneous fields with aims strictly dependent on the objectives of
the application. One of the most common is the exploitation of the Interferometric-SAR (InSAR) to measure millimeter
movements on the Earth’s surface, aiming to monitor failures or measure infrastructures’ health state. In this context,
developing algorithms to detect temporal and spatial changes in the radar targets becomes very important. This paper
focuses on the temporal change detection framework, proposing a non-parametric Coherent Change Detection (CCD)
algorithm called Permutational Change Detection (PCD). The PCD estimates the temporal Change Points (CPs) of a radar
target recognizing blocks structure in the coherence matrix without making any assumptions. The performance analysis
on simulated data is accomplished, considering a realistic scenario where the geometrical and temporal decorrelation are
properly modeled. Finally, the PCD is compared with a parametric CCD algorithm based on the Generalized Likelihood
Ratio Test (GLRT).

1 Introduction

Over the last two decades, Synthetic Aperture Radar (SAR)
has been used successfully for the study of surface defor-
mation phenomena and for monitoring various assets and
infrastructures by applying interferometric techniques (In-
SAR) to long temporal series of radar images acquired over
the same area of interest. Radar targets can be point-wise,
generally corresponding to man-made objects called PS [1]
widely available in urban areas but also distributed DS [2],
present mainly in non-urban areas. The main limitations
of the algorithms used today are due to their difficulty in
dealing with changes in the scenario under analysis. Co-
herent points, whether PS or DS, can change in time, some-
times disappearing and new measurement points can be-
come available. The method proposed moves in the CCD
framework, aiming to detect severe temporal changes by
looking if the coherence matrix of the radar target presents
a block structure, without any assumptions on the number
of changes as well as the extension of the blocks. The algo-
rithm is detailed in Section 2 after a theoretical introduction
to the coherence matrix and the permutation tests. Perfor-
mance analysis on simulated data is carried out in Section
3, considering a scenario where the temporal and geomet-
rical decorrelation are properly modeled. Finally, PCD is
compared with the parametric CCD algorithm proposed in
[3].

2 Permutational Change Detection

The Permutational Change Detection (PCD) is a non-
parametric CCD algorithm that estimates changes in coher-
ence of a radar target and block structure in the modulus of
the coherence matrix Γ̂.

It consists of two steps:

• Change Point Detection (CPD): detection of the can-
didate change point (C-CP);

• Change Point Validation (CPV): validation of the can-
didate;

and gives as outputs:

• Change Detection Matrix (CDM): a matrix of the
same dimension of Γ̂ showing the estimated model
for the target under analysis;

• Change Vectors (CV): vectors of length equal to the
dimension of the dataset, storing the temporal location
of the changes;

To better understand the mathematical details of the PCD
steps (Section 2.2 and Section 2.3), an overview of the most
important theoretical concepts is carried out in 2.1.

2.1 Coherence Matrix and Permutation
Tests

2.1.1 Coherence Matrix
Given a SAR data stack of NI images, for each pixel, Γ̂ is
the [NI,NI] matrix containing the modulus of the inter-
ferometric coherence [4] γ̂ij between the ith and jth im-
age, estimated over a window of dimension L, number of
looks. In formulas

Γ̂ =
1

L

∣∣∣∣∣∣∣
L∑

l=1

y(l)yH(l)√
|y(l)|2 |yH(l)|2

∣∣∣∣∣∣∣ , (1)

where y ∈ CNI is the vector collecting the temporal sam-
ples of the l-th pixel. By following [4] [5] [6], (1) can be



Figure 1 Example of blocks structures. The red and
black squares indicate the block B and N , respectively.
The black dashed line defines the group of images I.

approximated as
Γ̂ ≃ γ0γtγbγn, (2)

where

• γ0: maximum theoretical coherence;

• γt = e−
|Btij |

τ : temporal decorrelation with time con-
stant τ [5];

• γb =
(
1− Bnij

Bc

)
: geometrical decorrelation with Bc

critical baseline [7];

• γn: other noise sources.

Starting from the theoretical analysis in [8] [9], it is possi-
ble to statistically model a pure noise realization. Because
the interest of the PCD are small pieces of Γ̂ that can be
modeled as noise (Section 2.2 and Section 2.3), for sim-
plicity it is assumed to be distributed like a Rayleigh [10]

with scale parameter
√

1
2L .

The focus of the paper is the investigation of changes im-
plying significant alteration of the electromagnetic prop-
erties, such that a target can evolve into new objects.
Whenever a new radar object is born, Γ̂ presents blocks
structure (Figure 1), implying that the change is not re-
versible. Mathematically, a block B is a submatrix of Γ̂
determined by a group of consecutive coherence estimates
much greater than the ones outside the block. Being

D = {1, 2, ..., NI},

the set of the observations’ indexes, and

I =

{
k ∈ D

∣∣ 1
L

∣∣∣∣∣
L∑

l=1

yk(l)yh
H(l)

∣∣∣∣∣ > ϵ∀h ∈ D and h ̸= k

}
the groups of observations’ indexes satisfying the condition
above, then a block B is

B = {γ̂ij ∈ Γ̂ | i, j ∈ I}, (3)

and the relative noise block

N = {γ̂ij ∈ Γ̂ | i ∈ I, j ∈ D \ I} = Bc. (4)

Under these conditions, it is possible to write the ij − th
element of Γ̂ as

γ̂ij =
1

L

∣∣∣∣∣∣∣
L∑

l=1

yi(l)y
H
j (l)√

|yi(l)|2
∣∣yHj (l)

∣∣2
∣∣∣∣∣∣∣ ≃ γBij

γtijγbijγnij
,

(5)
where γtij , γbij and γnij

are respectively the values of the
temporal and geometrical decorrelation and of the noise for
the given interferometric pair. Instead, γBij

is the ij − th

element of the block model of Γ̂, which can be theoretically
modelled as

γBij
=

{
1 if i, j ∈ I,
0 otherwise.

(6)

2.1.2 Permutation Tests
Fisher introduced the permutation test in 1936 [11]. The
idea is very simple: given two statistical populations A and
B with any cardinality, it is possible to perform a test of
significance to verify a certain hypothesis H0 or H1, by
properly designing a test statistic T (X) and estimating the
p − value(p̂). The estimation is carried out repeating Np

times the same measurement T (X) over new populations
with the same cardinalities of the original ones, Ã and B̃,
randomly drawn from the pooled ensemble. Then p̂ can
be expressed as the number of times the measurements T ∗

over the permuted populations are greater than the value of
T (X) over the original population (T0) [12]. In formulas

p̂ =
#(T ∗ > T0)

Np
. (7)

The caveat on the accepted transformations of the data is
that they must be likelihood-invariant; this means that if
a paired dependence between the units of the populations
exists, it must be preserved by the transformation so that
the test is exact. Finally, the significance test demonstrates
H0 with a significance level α if p̂ < α, where α can be
fixed equal to a certain value or adaptively updated like it
will be shown later on (Section 2.2). It is worth noticing
that p̂ asymptotically tends to the true one, meaning that
the higher Np, the lower the bias affecting the estimation.
Of course, not all the possible permutations are needed to
reach a good estimation, but a number dependent on the
type of application as well as the type of test statistic that
represents a crucial aspect in designing this kind of oper-
ation: a general approach is to define a test statistic being
stochastically greater under H1 than under H0 [12].

2.2 Change Point Detection
Before starting the detection on the ith line of Γ̂, a pre-
liminary check is performed considering a noise threshold
thn. The threshold is obtained by modeling the probabil-
ity distribution of Nr independent realizations of the max-
imum of the noise coherence matrix, as Weibull distribu-
tions from the Generalized Extreme Value distribution the-
ory [13]. Taking γn ∈ [0, 1]W , the vector containing W
equispaced values between 0 and 1, it is possible to write



the probability density function of a single realization r asfr(γn;L) = k
√
L
(√

Lγn

)k−1

e−(
√
Lγn)

k

,

k =
∣∣2− e−L+5

∣∣ ,
for large L (L > 5). Considering now Nr independent re-
alizations, the joint probability density function will be the
product of the marginal probability density functions.
By setting a tolerance pe, then the threshold thn is the
value satisfying

pe =

∫ thn

0

f(γn;L) dγn. (8)

Defining γ̂i ∈ [0, 1]NI the ith line of Γ̂, if max(γ̂i) > thn,
it performs the following:

• Screening and Candidates Selection: calculation of
a screening function s for the selection of the candi-
date change points (C-CPs). Supposing that γ̂i is not
affected by noise, an abrupt change can be directly
identified by separating the vector progressively into
two populations and by comparing the maxima of the
two. In formulas, s ∈ [0, 1](NI−i)−1 is defined as

s(j − i) = max
k=i+1,...,j

γ̂i(k) − max
h=j+1,...,NI

γ̂i(h) ,

∀j = i+ 1, i+ 2, ..., NI − 1.
(9)

In the ideal case, the CP is uniquely identified by the
sample where s saturates. The only exploitation of s
is not enough in a more realistic case when the noise
strongly affects Γ̂, but it is possible to recover some
useful properties of the function in correspondence of
the candidate changes; in fact, they can be recognized
as the local maxima and flex points. Considering γ̂i
and defining Z ⊆ D as Z = {i+ 1, ..., NI − 1}

C-CPs = {z ∈ Z
∣∣∆s(z) = 0 , ∆2s(z) = 0}. (10)

If #C-CPs ̸= 0, the CPD goes on; otherwise, it re-
peats the same operations on the next line;

• Candidate Election: election of the C-CP among the
C-CPs, by unpaired permutation tests. The choice of
using this kind of test instead of the classical statisti-
cal hypothesis tests is due to its non-parametric frame-
work, its flexibility in designing an ad hoc test statistic
in dependence on the application, and, in particular, to
the evaluation of the p − value which substitutes the
classical integral calculus with a Monte Carlo simula-
tion (7). Given the C-CPs at γ̂i, if a real abrupt change
happens at index z∗ ∈ C-CPs then

γ̂
(nr)
i+z∗ = γ̂(nr) =


γ̂i+z∗(i)

γ̂i+z∗(i+ 1)
...

γ̂i+z∗(i+ z∗ − 1)


∼ Rayleigh

(√
1

2L

)
,

(11)

meaning that the observed samples before z∗ at the
(i + z∗)th line, namely the noise restricted, is iden-
tically distributed like noise (H0). Under this rea-
soning, one good example of T (X) is the two-sided
Kolmogorv-Smirnov statistic (12)

T (X) = sup
X

∣∣Fγ̂(nr)(X)−Fth(X)
∣∣ . (12)

The criterion followed to set Np is based on the sen-
sitivity with which CPD must work. A wise choice
is to privilege the cases when #γ̂(nr) is low, because
they are much more difficult to detect and the exact
p − value makes the step much more robust. In the
opposite cases, lower Np can be accepted because of
the effectiveness of the designed test statistic and be-
cause of the other PCD’s steps. It can also be shown
that the estimation of p by permutation tests in terms
of MSE is much more affected by L than Np. By this
reasoning, the decision to rule Np as follows

Np =


20 +

⌈
NI
2

⌉
if

(
2#γ̂(nr)

#γ̂(nr)

)
> 103,(

2#γ̂(nr)

#γ̂(nr)

)
otherwise.

After the estimation of all the p̂ − values, are kept
only the points such that

C-CPse =
{
z ∈ C-CPs

∣∣ p̂(z) < α = (#C-CPs + 1)
−2
}
.

The significance level α is adaptive because of the
noise’s impact on the calculation of the C-CPs (10):
the lower L, the higher the impact of the noise, and
the higher will be the number of elements in C-CPs
so that, putting in α a dependence on the cardinality
of C-CPs, will imply more stringent condition for the
demonstration of H0. Finally, the C-CP is the point
having the maximum p̂ because it is supposed to be at
the border of demonstrating H1;

• Cross Validation: cross validation of the C-CP and
eventual re-election, by applying classical KS test
moving along the diagonal. It has a double function
because, in case of short-term changes, it will sim-
ply re-validate the CP; on the other, it will prevent
the misclassification of CP by checking if it is due to
decorrelation phenomena.

2.3 Change Point Validation
Given the ith tested line and the related C-CP, the CPD
isolates the relative N (4) and tests if it is distributed like
noise. The strength of the validation step is due to the dou-
ble information about the starting and ending point of the
block. It performs the following:

• Noise Block Validation: after the extraction of N ,
the validation is carried out through a two sided
Anderson-Darling test where the probability distri-
bution of N is tested against the theoretical one, to
demonstrate H0. The choice of the test is due to its



statistical power [14]. Because of the robustness of
CPD, it is possible to relax the condition on the sig-
nificance level α, putting it equal to 0.05;

• Cross Validation: after the Noise Block Validation,
the same CPD’s cross-check is performed.

2.4 PCD Outputs
The PCD produces two different outputs:

• Change Detection Matrix (CDM): CDM is the
[NI,NI] matrix, showing the estimated block model
for Γ̂ (Figure 2). It is filled following these rules:

– Every time the condition on thn is not met as
well as no C-CPs have been found during CPD,
the correspondent line and column are equal to
0.5;

– Every time a CP is found, the PCD fills the cor-
respondent block B in the CDM with 2 or 1,
respectively, if cross validation was or was not
needed;

• Change Vectors (CV): the CV is simply a [NI, 1] vec-
tor where the entries are one if a change happens at the
correspondent image.

Figure 2 Example of CDM for the matrix Γideal with its
Γ̂L=100 and Γ̂L=20.

3 Performance Analysis

This section provides a detailed description of the perfor-
mance of the PCD varying the number of looks L and NI ,
in an ideal setting where the extension of the blocks is⌈
NI
#B

⌉
.

3.1 Metrics
The assessment is carried out by defining metrics that sum-
marize true and false, positive and negative classes. In par-
ticular:

• Accuracy (ACC): It is the overall correctness

ACC =
TP+TN

TN+FP+TP+FN
;

• F1 score (F1): It is a summary metric

F1 =
2 ∗ PRE ∗ REC

PRE+REC
,

where

– Precision (PRE): It is the capability of predict-
ing a specific category

PRE =
TP

TP+FP
;

– Recall (REC): It is the ability to detect a specific
category

REC =
TP

TP+FN
.

3.2 Simulation settings and results
The performance has been measured out of 5000 Monte
Carlo simulations assuming blocks of equal extension. The
settings are summarized in Table 1. Figure 3 shows the re-

Table 1 Simulation Parameters in a realistic scenario.

tr τ Bn Bc L #B NI
[days] [days] [m] [m]

12 365 [-200, 200] 1300 5, ...,55 2,3 30, ...,60

sults of the simulations as a function of L and NI , for the
cases when #B is 2, on the left, and 3, on the right. The
performances are better increasing L as expected, passing
from 0.57 to 0.74 in F1 in case of #B equal two, and from
0.70 to 0.82 in the other, preserving overall a good accu-
racy. By comparing the two analyzed cases, it follows that

Figure 3 F1 and ACC for #B = 2 and 3. The perfor-
mances improve by increasing L and NI .

the improvement of the performance is also correlated with
the length of the dataset, meaning that the higher the num-
ber of blocks, the better the performance at higher NI . The
deductions and comments drawn about the PCD are ex-
tremely useful and preparatory to understanding the com-
parison carried out with the GLRT-CCD algorithm pre-
sented in [3]. This approach is based on the Generalized



Likelihood ratio Test (GLRT), which compares the pos-
terior probabilities of the observations given the null hy-
pothesis H0 if no changes occurred, with the alternative
one, i.e., if a change occurred after NIc acquisitions. H1.
The detection of the changes is triggered if the LR func-
tion presents a single minimum or different minima below
a threshold whose choice is fundamental. In order to make
a comparison between the PCD and the GLRT-CCD, an
adaptive evaluation of the threshold is implemented follow-
ing the same reasoning behind 8. In fact, given the indexes
of the minima of the LR function, it is possible to validate
the detected change points by simply comparing the maxi-
mum value in the detected N with thn. After the definition

Table 2 Simulation Parameters in an ideal scenario.

tr τ Bn Bc L #B NI
[days] [days] [m] [m]

12 NI
2 tr [-1,1] 1300 20, ...,55 2,3 30, 60, 80

of the threshold, the comparison between the algorithms is
performed by considering blocks of equal extension in two
different settings:

• Ideal scenario: the impact of γb and γt is basically
absent, simulating the cases where an optimum phase
calibration has been performed. The simulation pa-
rameters are summarized in Table 2;

• Real scenario: the same simulation parameters sum-
marized in Table 2, where Γ̂ is affected by all the com-
ponents in 2.

A first qualitative comparison between the two approaches
is carried out through the analysis of the CDM, consider-
ing NI = 60, #B = 3 of equal extension and Γ̂ estimated
by means of L = 55, 20. As it is possible to notice in Fig-
ure 4, in the case of a realistic scenario, the impact of the
estimation’s noise of the coherence matrix much more af-
fects the model estimated through GLRT-CCD. In fact, if
in the case L = 55 the two CDM are the same, in the case
L = 20, only the PCD estimate is preserved except for
the extension of the first block. Instead, the GLRT-CCD
estimate is only spotting the pieces of the blocks defined
by coherence values γ̂ij that are basically constant, in line
with what is stated in [3]. In addition to that, the GLRT-

Figure 4 Example of CDM out of PCD and GLRT-CCD
in a realistic scenario. PCD shows higher robustness in its
estimate even lowering L.

CCD estimate is strongly biased by the value of thn. In
fact, by putting thn = {0.3, 0.5, 0.7} without proceeding
through the proposed adaptive evaluation, the GLRT-CCD
completely changes its estimate (Figure 5).
The GLRT-CCD starts detecting changes by increasing the
value of thn. Instead, the CDM produced by PCD remains
unchanged except for the presence of the 0.5 crosses in the
case thn = 0.7 (Section 2.4). The reason behind this result

Figure 5 CDM out of PCD and GLRT-CCD, obtained
by varying thn. The GLRT-CCD estimate is strongly af-
fected by the thn. On the contrary, the non-parametric
nature of PCD implies an unchanged estimated model.

is related to the different roles played by thn: in the GLRT-
CCD algorithm, the threshold is a fundamental parameter
for the validation of the detected change points instead, the
non-parametric nature of PCD, relegates thn to being only
a simple threshold useful for deciding whether or not to test
a line of Γ̂.
Considering instead the example shown in Figure 6, in the
case of ideal scenario emerges that the GLRT-CCD is now
more able to correctly detect the CPs regardless L, that
on the contrary can generally affect more PCD as happens
in the shown example. In the case of L = 20, the PCD
merges the first and second blocks because the coherence
values defined by the first 20 images and those at the end of
the second block are not negligible. To give a quantitative

Figure 6 CDM out of PCD and GLRT-CCD in an ideal
scenario. The GLRT-CCD is more able to correctly detect
the CPs regardless L, that can generally affect more the
PCD.

measure of the comparison, the F1 for both algorithms is
measured through 5000 Monte Carlo simulations and com-



bined into a single one called F1 Ratio (13)

F1R =
F1PCD

F1GLRT−CCD
. (13)

The results of the simulations are shown in Figure 7. The

Figure 7 F1R [dB] in the case of ideal and real sce-
nario, respectively on the left and on the right, considering
#B = 2, 3 of equal extension.

GLRT-CCD, as expected, performs better in the ideal sce-
nario, with a gain increasing exponentially with L. Instead,
in a more realistic scenario, PCD shows much more robust-
ness, particularly in the case of lower L, where it reaches
very high F1R values. Moreover, the F1R in the ideal
case increases with #B in both scenarios. Focusing the
attention on the #B = 2 cases, L = 30 represents a turn-
ing point: in fact, the shape of the function diminishes the
slope. This change translates in the realistic scenario for
the cases NI = 60, 80, in a gain of 1dB of the GLRT-
CCD. This is because of the effect of temporal decorrela-
tion together with the block extension. Instead, by increas-
ing the number of blocks, the change in the slope in the
ideal scenario is much less pronounced, implying overall
better performance of the PCD. In conclusion, increasing
#B, the behavior of F1R in the realistic settings seems to
approach the one in the ideal in a dual sense: in fact, PCD
exponentially gains in performance by decreasing L.

4 Conclusions

This paper presents a non-parametric algorithm for Coher-
ent Change Detection, the Permutational Change Detec-
tion. The novelty introduced allows the users to apply PCD
without having the need to make strong assumptions about
the data and without the need to model parameters that can
strongly affect the final results when the model’s hypothe-
ses are not perfectly met, as happened for the GLRT-CCD.
The algorithm’s strength is represented by its robustness
in detecting changes in coherence in any scenario and the
flexibility with which it can be adapted for any application
by simply modifying the test statistic T (X) to fit the users’
needs. The main limitation can be represented by the com-
putational time, dependent on NI and how dynamic a tar-
get is. It can be reduced by means of parallelization or by
strongly reducing the bandwidth of considered images or
implementing simplest T (X).
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