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Abstract: Deep Eutectic Systems (DESs) are obtained by combining Hydrogen Bond Acceptors
(HBAs) and Hydrogen Bond Donors (HBDs) in specific molar ratios. Since their first appearance
in the literature in 2003, they have shown a wide range of applications, ranging from the selective
extraction of biomass or metals to medicine, as well as from pollution control systems to catalytic
active solvents and co-solvents. The very peculiar physical properties of DESs, such as the elevated
density and viscosity, reduced conductivity, improved solvent ability and a peculiar optical behavior,
can be exploited for engineering modular systems which cannot be obtained with other non-eutectic
mixtures. In the present review, selected DESs research fields, as their use in materials synthesis, as
solvents for volatile organic compounds, as ingredients in pharmaceutical formulations and as active
solvents and cosolvents in organic synthesis, are reported and discussed in terms of application and
future perspectives.

Keywords: deep eutectic solvents; materials; API formulation; gas sorbents; ionothermal synthesis;
organic synthesis

1. Introduction

The so-called Deep Eutectic Solvents (or DESs) have been firstly described in the
scientific literature in 2003 with the pioneering work of Abbot and co-workers on the
eutectic behavior of urea in the presence of some quaternary ammonium salts [1].

Since this seminal report, many efforts have been devoted in the last decade to the
development of such systems which revealed impressive performances when used as green
solvents. In particular, their peculiar physical properties, such as low volatility, flamma-
bility and vapor pressure, increased chemical and thermal stability could be exploited for
generating a superior class of improved solvents [2]. In addition, by designing DESs with
specific components, it is possible to obtain eutectic mixtures with low toxicity and high
biodegradability [3].

Generally speaking, a DES is obtained by combining in eutectic molar ratio specific
Hydrogen bond Donors (HBDs) and Acceptors (HBAs). The most evident, as easily visible,
parameter related with the formation of a DES is represented by its melting point, which
results lower than the one of the formers HBDs and HBAs, typically with values around the
room temperature. As an example, when the quaternary ammonium salt choline chloride
is mixed with urea (both solid at room temperature) in a 1:2 molar ratio, a viscous liquid
is obtained in a few minutes. When all the possible combinations between any HBA and
HBD are considered, the definition of DES becomes tricky, especially in terms of distinction
between Deep Eutectic (DES) and Eutectic Solvents (ES). This matter has been the subject of
research and discussion for many years. Currently, according to Ryder [4] and Martins [5],
the term deep should be associated with eutectic mixtures that show a decreasing of the
melting point with respect to the ideal eutectic point and not with respect to the melting
points of the former HBA and HBD. In the absence of such a condition, a simple eutectic
mixture (ES) is thus obtained.
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Regarding the possibility to classify a DES according to the nature of the formers
HBA and HBD, Abbott and co-workers [6] defined Deep Eutectic Solvents using the
general formula:

Cat+X− · Y− (1)

where Cat+ is an organic cation (typically an ammonium, but also phosphonium or sul-
phonium are included), X− is the Lewis base counterion (generally a halide ion) and Y
represents a Lewis or Brønsted acid which is involved in the formation of the anionic
complex with X−. Nowadays, the majority of DESs that have been prepared and studied
could be classified into five different classes, as shown in Table 1.

Table 1. Classification of deep eutectic solvents.

DES Classification General Formula Terms

Type I Cat+X− · MClx M = Zn, Sn, Fe, Al, Ga
Type II Cat+X− · MClx · yH2O M = Cr, Co, Cu, Ni, Fe
Type III Cat+X− · RZ Z = CONH2, COOH, OH
Type IV MClx · RZ M = Al, Zn;Z = CONH2,
Type V non ionic COOH, OH

Type I and Type II DESs combine a quaternary ammonium salt and a metal chloride,
the latter both in anhydrous (Type I) or in hydrated form (Type II). DESs can be formulated
by the combination of a quaternary ammonium salt with a HBD, as in the above mentioned
ChCl-based DES, where the HBD species is typically a small organic molecule (Type III
DESs). Type IV, a combination between Type II and Type III DESs, includes the deep
eutectic mixtures formed by a metal chloride hydrate and an organic HBD [6]. Recently, a
fifth class of DES has been integrated in the general classification including all the deep
eutectics composed of only non-ionic, molecular HBAs and HBDs (Type V DESs) [7].

Type III DESs are the most investigated class of DESs. The HBA is typically an ionic
halide salt, such as an ammonium or phosphonium salt. Choline chloride (ChCl), a quater-
nary ammonium salt, is one of the most employed HBAs for the formation of DESs, since
it fulfils several sustainability principles due to its reduced costs, high biodegradability,
low toxicity and bioavailability. The other component of the DES is a generally safe and
bioavailable small molecule as urea, organic carboxylic acids (e.g., mono- or bicarboxylic
acids, citric acid or aminoacids) or polyols (e.g., glycerol, ethylene glycol or carbohydrates).
Some selected examples of HBAs and HBDs are illustrated in Figure 1.

As a matter of fact, the almost unlimited possible combinations and the large pool
of bio-derived and bio-inspired components available offer boundless possibilities to
formulate new DESs with remarkable properties in terms of physico-chemical parameters.
A relevant complementary class of DESs is represented by Natural Deep Eutectic Solvents
(NADESs). The term NADES is generally intended to designate DESs composed only
by naturally occurring compounds. In 2011 Verpoorte observed that a small number of
primary metabolites as carboxylic acids, choline, sugars and aminoacids are present in
high amounts in living organisms, much more abundant than expected on the basis of
their metabolic roles [8]. It has also been proposed that NADESs may be involved in the
resistance of some organisms to low temperatures and drought [9,10]. The hypothesis
put forward to explain the ubiquitous presence of NADESs in living organisms is that the
mixture of metabolites could form eutectic mixtures that would serve as reaction media for
the biosynthesis of non-water-soluble molecules [8].
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Figure 1. Selected examples of HBAs and HBDs for the formulation of DESs. Bn = benzyl, Ph = phenyl.

Taking inspiration from nature, several eutectic mixtures of bioderived compounds
have been prepared and employed for various applications [11–13]. Among the wide
variety in terms of components of NADESs, hydrophobic mixtures based on terpenes
and fatty acids have been reported [14–17]. A growing number of publications report on
very diverse use of NADESs. The special features of NADESs, such as biodegradability
and biocompatibility [11], suggest that they are alternative candidates for concepts and
applications and can be used in replacement to Volatile Organic Solvents (VOCs) in organic
synthesis as well as in extraction processes [2,18,19]. Stemming from the idea that NADESs
are the natural environment for metabolic processes, biocatalysis in NADESs has received
much attention for those transformations in which substrates or products show low water
solubility [20–22]. Most of the applications rely on the use of NADESs as extraction media
for Natural Products (NPs). As NADES species exhibit a superior solubilizing ability for
NPs, this provides a special advantage for NADESs as extraction media. Examples in the
extraction capabilities of NADESs for a large number of natural products are covered in a
pair of excellent recent reviews [23], and more recent references [24–28].

Further exploitation of NADES properties refers to their use as drug carriers. A
recent study refers to the slightly reduced permeability of chloramphenicol through the
pig skin after NADES application, which most likely was caused by hydrogen bonding
between the NADES and proteins in the skin based on FT-IR-results [29]. Additional areas
of possible further applications of NADES including their use as reaction, extraction and
chromatographic media as well as their biomedical relevance are expected in the next
future as far as the complexity of their supramolecular properties is elucidated.

The intriguing properties of DES make them exploitable not only as green solvents,
but also in other fields of industrial interest. In this context, cutting edge applications of
DESs are emerging, from the designing of functional materials [30], to the development of
innovative medicinal formulations, to the possibility to act as active catalytic systems [31]. A
relevant research line with important industrial applications is related with the employment
of DESs as green solvents for biomass processing. This specific topic has been recently
reviewed in a very exhaustive way by Jablonský and coworkers and thus will not be
discussed herein [32].

In the present review, an overview about the application of DESs as possible organic
liquid semiconductors, as shape directing agents, as solvents for VOCs and as additive
or solvents in pharmaceutical formulations, is reported. In particular, a special focus on
the molecular structure of these systems and the consequences on their performances will
be given.



Materials 2021, 14, 2494 4 of 26

The present review has been divided into five parts.
In the first section, the relationship between the physical properties of DESs and their

molecular structure will be discussed in general terms. Common preparation procedures
will be also considered, as well as the low stability of some common DESs, recently high-
lighted by some Authors. In the second section, the application of eutectics in ionothermal
synthesis and thus to the production of materials will be described. In the third part, the
employment of DESs-based devices to the solubilization of Volatile Organic Compounds
(VOCs) will be discussed. In the fourth section, promising application of some DESs in
medicine (Therapeutic DESs, THEDESs), as in the formulation of improved drugs will
be presented. In the last part, the possibility to employ DESs as non-innocent solvents in
organic synthesis will be reported.

2. Molecular Structure of Deep Eutectic Systems and Properties

The so-called deep eutectic solvents (DESs) were initially considered as sort of room
temperature ionic liquids [33]. Despite this first raw classification, DESs show many
differences from the parent ionic liquids. DESs are not liquid salts, being the components
very often neutral small molecules. They are in fact formed by eutectic combinations of
HBAs and HBDs connected through an intense hydrogen bond network responsible for a
very peculiar supramolecular architecture. In addition, the DESs’ physical properties are
uncommon as their enhanced solvent ability. Indeed, the possibility to produce sustainable
DESs (as NADESs, by choosing appropriate HBAs and HBDs), make them potentially high
performant green solvents. Nevertheless, during the last 15 years, an increasing number
of alternative applications has been reported for many DESs, and some Authors started
to use the term “DES” as short name for deep eutectic systems, in this way comprising
any possible exploitation of such compounds. By the way, these eutectic systems have
grown in importance as they show some peculiar physical properties directly related to
their molecular structure. Several studies have been reported in order to characterize and
classify many DESs considering some physical parameter, such as density, viscosity or
conductivity. In addition, many experimental and theoretical attempts have been done in
order to explain the DESs behavior at molecular level. A DES is usually characterized by a
decreased viscosity, an increased density, a low conductivity and it usually shows liquid
consistency at room temperature. In particular, when its melting point is plotted versus
the molar fraction between the former constituents, a drop is experimentally observed in
correspondence of the eutectic composition. When the drop is deeper than the expected
theoretical melting point, the term DES results appropriately. Otherwise, the resulting
mixture should be addressed as a simple ES (eutectic system) [4,34]. Many researchers
studied the variation of physical properties as density and viscosity [35–38], refractive
index [39] and speed of sound [40] of a DES and how these can be tailored by changing the
nature of HBA, HBD or their composition. The possibility to engineer such systems makes
of high priority the understanding of the supramolecular interactions which govern the
formation of the DES.

In order to explain how the molecular structure and interactions are related to the ex-
perimentally observed melting point depression and to the specific physical characteristics
commonly described, Abbot proposed the extension of the hole theory of Fürth to such
systems [41]. In general, hole models are based on the statement that the vacancies present
at molecular level are randomly distributed [42]. When an ionic mixture melts, the varia-
tion in temperature during the melting process produces fluctuations of the local density,
which are responsible for the formation of empty spaces [43]. The consequent molecular
framework is dynamic and allows, at some specific conditions, the constant movement of
the ions with opportune size to fit in the holes, which move by this mechanism all-over the
network. By exploiting the equations described by Abbot and co-workers, it is possible to
determine the average size of the holes and to relate it with density and viscosity [9]. In
particular, the relationship between the volume of the vacancies and the superficial tension,
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can be exploited to predict which HBAs and HBDs are more appropriated for customizing
DESs with specific properties [44].

Recently, some attempts to compare the molecular structure of different DESs by
meaning of their UV-VIS profile have been reported. Through the UV-VIS based Tauc
plot method, the Band Gap (BG) energy of several hydrophilic choline-based [45] or
hydrophobic phosphonium-based DESs [46] were determined and compared, revealing a
relationship between the BG and the eutectic composition, which is analogue to the one
observed when the melting point is expressed in terms of molar ratio between HBA and
HBD (Table 2 and Figure 2).

Table 2. Band gap energies of some binary DESs.

HBA 1 HBD 1 Band Gap Energy (eV) Reference

Choline chloride (1) Glycolic acid (1) 4.67 [44]
Choline chloride (1) Levulinic acid (1) 5.22 [44]
Choline chloride (1) Ethylene glycol (2) 5.92 [44]
Choline acetate (1) Glycolic acid (1) 4.73 [44]
Choline acetate (1) Levulinic acid (1) 4.70 [44]
Choline acetate (1) Ethylene glycol (2) 5.30 [44]

Choline chloride (1) Zinc chloride (2) 5.78 [44]
Choline chloride (1) Copper chloride (2) 5.20 [44]
Choline chloride (1) Urea (2) 5.16 [44]
Choline chloride (1) Nickel sulphate (1) 5.18 [45]
Choline chloride (3) Imidazole (7) 4.74 [45]
Choline chloride (2) D-(+)-Glucose (1) 5.85 [45]
Choline chloride (1) Glycerol (5) 5.56 [45]

Triphenylmethylphosphonium
bromide (1) Ethylene glycol (5) 5.34 [45]

Triphenylmethylphosphonium
bromide (1) Glycerol (5) 5.23 [45]

1 The molar equivalents of HBA and HBD are indicated in parenthesis.
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The plot reported in Figure 2 represents the variation of the band gap energy as
function of the molar fraction of choline acetate for the system choline acetate/levulinic
acid. When the system contains equal moles of both the constituents, a drop of the bang
gap energy is experimentally observed. It has been reported for several systems that the
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composition at which the band gap energy deeply decreases corresponds to the eutectic
ratio between the formers HBAs and HBDs.

This UV-VIS-based procedure represents a fast methodology, alternative to the deter-
mination of the melting point, in order to find the correct eutectic composition of HBAs
and HBDs mixtures. In addition, a relevant effect of the water on the BG energy was
observed: the addition of 10% of water to choline based DESs resulted in a reduction of the
BG energy. It is known that water addition on DESs reduces the lattice energy and this in
part explains the trend observed. The possibility to tune some features of eutectic mixtures
by adding specific amounts of water has been an object of intensive research activity, and
many experimental and theoretical studies have been focused on the structural effect of
water addition on eutectics [47]. It has been demonstrated that even low amounts of water
affect sensibly the properties of a DES, but in order to produce a relevant structural varia-
tion, highly amount of water should be added. Hammond and co-workers [48] studied
the water tolerance of the eutectic system composed by choline chloride and urea (1:2),
revealing that only after a water addition superior to 42 wt% the system shows a transition
from an ionic mixture to an aqueous solution, ceasing to exist in form of hydrated DES.
At molecular level, it has been observed that the water tolerance is related to the DES
nanostructure, which can host water molecules up to certain amounts without producing
relevant structural changes [49].

Working below the limit of tolerance, it is possible to take advantage by the addition
of water to a DES. One example of this can be represented by the choline chloride/urea
(1:2) DES, which revealed to change its capacity to solubilize the CO2 by adding even small
amounts of water [50].

Even though the know-how about the specific effect of water content on the interaction
between HBAs and HBDs is important for designing DESs with improved performances,
the intrinsic hygroscopicity of eutectics is even more important. In fact, when DESs are used
in industrial processes, the uptake of water from air cannot be avoided and, in this context,
water is usually considered as an impurity [51]. Chen and co-workers determined the
amount of water adsorbed (after 8 h) by a series of choline chloride based DESs containing
as HBD glutaric acid, glycerol, ethylene glycol, xylitol, urea, glucose, methyl urea and
oxalic acid. Most hygroscopic DESs (containing glycerol or ethylene glycol) showed not
negligible adsorption values, in the range of 5–7 wt% [52]. As discussed before, these
values are not high enough to disrupt the deep eutectic nature of the DES, nevertheless
they must be taken into account in terms of influence on the DES physical properties.
An exhaustive review paper concerning the effect of the water on specific DESs has been
published in 2019 by El Achkar and co-workers [53].

As a matter of fact, the addition of water to a binary DES can be considered as the
conversion of the original binary system in a new ternary one, where the water acts as a
second HBD/HBA. This aspect is of general interest as the understanding of the combined
effect of one HBAs and two HBDs on the properties of the resulting ionic mixture is pivotal
for achieving a customization capacity. Recently, the effects of the preparation procedure,
temperature and addition of a second HBD (water, methanol, 2-propanol, glycerol) were
assessed for ternary mixtures containing choline chloride and ethylene glycol [54]. The
Authors described an important effect of the time in the assessment of the DES structure
after its preparation, indicating a fast ageing of these mixtures which should be considered
for their application.

A further aspect of interest is related to the solvation of the anion in choline chloride
based DESs. In fact, by 35Cl NMR spectroscopy it is possible to describe the behavior of the
anion in the presence of different amounts of water. Gabriele and coworkers correlated the
35Cl linewidth with the increasing of weakness of DES-DES H-bond on samples of choline
chloride/glycol (glycol = diethylene glycol, triethylene glycol, polyethylene glycol 200)
upon addition of increasing amounts of water [55]. The same technology was employed by
Di Pietro et al., who conducted 35Cl NMR measurements on choline chloride based DESs
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(choline chloride/urea or glycolic acid) combined with theoretical studies and described
the variation of the chloride solvation with the hydration of the system [56].

Each aspect related to the molecular structure of DESs and its consequences on their
physical properties and thus on their possible applications should be contextualized in
terms of operational window. In fact, DESs are not free from degradation, due to the simple
fact that their components may decompose and/or react with each other. This possible
issue, being reliable the purity of the single components, may basically occur in two
moments: during and after the preparation of the eutectic mixture, depending, respectively,
on the mixing and storage conditions employed. It has been reported that DESs usually
display a thermal stability which is intermediate between their pure components [57–59],
and HBDs are in general less thermally stable than the HBA. To the best of our knowledge,
the possibility of a thermal degradation of DESs has been considered only for the systems
ChCl/polyols and ChCl/carboxylic acids [60–62], whereas there are no reports on the
thermal behavior of metal-based DESs.

The ChCl/carboxylic acid (e.g., oxalic, malic, malonic, levulinic acid) DESs appear
to be the most sensitive systems compared with ChCl/polyols. As a matter of fact, all
the evidence present in the literature has shown decomposition of the HBDs within the
eutectic mixture even at relatively low temperatures (50–60 ◦C) [60,61]. The decomposition
pathway observed consisted in the esterification between the HBD and ChCl, as inferred
from 1H NMR measurements, likely promoted by the acidic environment of the DES.
Heating the mixtures at different temperatures (60–100 ◦C) for 2 h (Table 3) involves an
increase of both the amount of ester product and water in the mixture (Scheme 1a), as
measured by Karl-Fischer titration [61]. Apparently, the degradation process takes place
regardless the preparation procedure employed, only at room temperature it occurs at
much lower rate [60,61].

Table 3. Fraction of esterified ChCl in mol% after heating for 2 h at different temperatures estimated
through 1H NMR spectroscopy [61].

DES
ChCl Esterification (mol%)

60 ◦C 80 ◦C 100 ◦C

ChCl/lactic acid (1:2) 2 4 7
ChCl/levulinic acid (1:2) 2 10 17

ChCl/malic acid (1:2) 2 3 6
ChCl/oxalic acid (1:1) 0 6 17

ChCl/glutaric acid (1:1) 10 29 34
ChCl/malonic acid (1:1) 3 8 17
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In addition, DESs with a bicarboxylic acid component such as ChCl/malonic acid
(MA) easily undergoes decarboxylation of MA to acetic acid, even occurring during its
preparation if the operating temperature is above 50 ◦C, as demonstrated independently
by Gontrani et al. [60] and Rodriguez Rodriguez et al. [61] This additional degradation
pathway may increase the deterioration of the DES through a further esterification reaction
between ChCl and acetic acid (Scheme 1b).

TGA studies demonstrated that degradation of ChCl/Gly (1:2) required elevated
temperatures to occur [62]. FTIR data of the evolved gases suggest that over 200 ◦C CO2,
formaldehyde, acetaldehyde and water are formed as degradation products of Gly, possibly
due to an intramolecular redox reaction under the harsh conditions (Scheme 2a). On the
other hand, the ChCl constituent decomposed at higher temperatures (>300 ◦C), in line with
the usual greater resistance of the HBA. ChCl likely degrades to chloromethane obtained
by nucleophilic attack of the chloride anion on the methyl group of the ammonium moiety,
liberating N,N-dimethylaminoethanol (Scheme 2b).
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3. DES for Ionothermal Synthesis

The know-how about the molecular structure of DESs can be exploited even for appli-
cations of industrial interest, as the synthesis of porous materials. Concerning this aspect,
two subsequent key aspects should be considered: (I) the possibility to take advantage
from the peculiar molecular structure of DES, (II) the chance to customize the DES structure
by varying the nature of the HBA and HBD, and by modulating the preparation protocol.

In 2004 Cooper and co-workers reported an alternative protocol to the known hy-
drothermal synthesis for fabricating new zeotypes frameworks which was based on the
unique properties on the DES formed by choline chloride and urea [63]. The Authors
reported an innovative protocol for generate novel porous materials by exploiting the
increased solvent ability of a DES combined with its well-established molecular structure,
which resulted in being able to direct the synthesis toward specific spatial parameters.
The possibility of using a DES not only as a solvent but also as Structure-Directing Agent
(SDA) opened the way to several applied research lines. To date, many porous materials
have been obtained in laboratory scale by exploiting specific combinations of HBA and
HBD, and many review papers have well discussed the topic [64]. The process, named as
ionothermal synthesis, can be performed with ionic liquids (ILs) or DESs and extended to
the production of several porous materials (Table 4).
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Table 4. Materials produced by ionothermal synthesis during the period 2016–2021.

Material DES as Structure-Directing Agent

Imide-Linked Covalent Organic Frameworks NaCl/KCl/ZnCl2 [65]
Layered double hydroxides Choline chloride/urea [66]

Fe-LEV aluminophosphate molecular sieves Succinic acid/choline
chloride/tetraethylammonium bromide [67]

Ti3C2 MXene a Choline chloride and oxalic acid [68]
Triazine and heptazine polymeric carbon

nitrides (PCNs) NaCl/KCl [69]

MCM-41-supported metal catalysts Choline chloride/glucose [70]
Fe3O4 magnetic nanoparticles Choline chloride/urea [71]

Nanostructured ceria Choline chloride/urea [72]
NEU20 b Choline chloride/oxalic acid [73]

Cu-doped Fe3O4 nanoparticles Choline chloride/urea [74]
gallium phosphate

Ga3(PO4)4(C2N2H8)·(H2C2N2H8)2·Cl Choline chloride/imidazolinone [75]

NiCo2O4 Nanorods Decorated MoS2
Nanosheets Choline chloride/urea [76]

High-silica zeolites

Tetramethylammonium
chloride/1,6-hexanediol
Tetrapropylammonium

bromide/pentaerythritol [77]
Choline chloride/urea [78]

a Two-dimensional (2D) transition metal car- bides/nitrides from the 60+ group of MAX phases. b Photochromic
inorganic–organic complex [C10N2H10]2[C10N2H8][Ga2(C2O4)5].

4. Deep Eutectic Solvents for Gas Solubilization

The exclusive structure of DESs, which can be enriched with many functional groups
by choosing opportune combinations of HBAs and HBDs, can be exploited to increase
their gas sorption ability. This topic is of particular interest as Volatile Organic Compounds
(VOCs) are common by-products in many industrial processes [79] and they are considered
as hazard chemicals often associated with many diseases [80]. VOCs are produced in
large amounts in the transport sector, and they are common ingredients of many cleaning
products, representing one of the major sources of air pollutants [81,82]. Reduction of
VOCs emission represents a priority, and it has been considered mandatory by several
national and international normative [83].

From a technological point of view, trapping VOCs from gas streams with liquid
sorbents represents a very efficient way for decreasing their presence in the environment.

The effectiveness of such an approach is related to two main aspects: (I) the availability
of high performant sorbents, (II) the sustainability of the developed sorbents. Since a few
years ago, the approaches employed to solve the above-mentioned problems have been
revealed to be not efficient. The employment of organic solvents for VOCs removal cannot
be pursued due to the toxicity and pollution associated with the sorbent devices [84,85].
On the other hand, the development of water and water-based sorbent devices would
represent the best green alternative. Unfortunately, this possibility is precluded by the
low solubility of the hydrophobic moieties contained in VOCs in the presence of water.
More recently, the possibility to exploit ionic liquids for trapping VOCs has been explored
with good results [86]. Nevertheless, high prices associated with the complex synthetic
conditions of ionic liquids drastically reduce the overall sustainability of the process [87].
In this context, a possible advancement of the current available technology for VOCs
treatment can be represented by the use of DESs. As discussed above, DESs are generally
cheap, low pollutant, liquid at room temperature and they strongly interact with organic
molecules. Theoretically, the design of highly efficient DESs- based VOCs sorbents consti-
tutes the best technological solution to air pollution. Early studies about the employment
of ammonium-based eutectics as solvent for the CO2 were reported since 2015 (Li [88],
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Mirza [89], Leron [90], Lu [91]) and the technology was extended to other VOCs two years
later by Moura and co-workers [92].

In particular, Moura reported the possibility to use both hydrophilic choline chloride-
based and hydrophobic tetrabutylphosphonium bromide-based DESs as adsorbents for
toluene, acetaldehyde and dichloromethane (Table 5). Good results were reported, espe-
cially in the case of acetaldehyde which was adsorbed in percentages reaching the 99%
with respect to the initial amount. Since these pioneering works, few extensions of the
topic have been reported so far, especially in terms of VOC adsorbed.

Applications in SO2 adsorption have been reported with quaternary ammonium salts-
based DESs (HBD = glycerol [93], levulinic acid [94], guaiacol or cardanol [95]), with some
thiocyanate-based DESs [96], and by employing eutectics formed by betaine or L-carnitine
and ethylene glycol [97].

Regarding the application of DESs to the sorption of ammonia, a consistent family of
DESs has been developed in the last years. Akhmetshina et al. reported a study on the
gas sorbent properties of the DES 1-butyl-3-methyl imidazolium methanesulfonate/urea
toward ammonia, hydrogen sulfide and carbon anhydride, with good results relative to
the sorption capacity of the ammonia [98]. This study follows the results presented by
Zhong [99,100] about phenol-based ternary DESs, by Yang using the hybrid DES choline
chloride/resorcinol/glycerol (1:3:5) [101], Deng with protic NH4SCN-based DESs [102]
and Vorotyntsev who employed methanesulfonate-based DESs.

A different approach to the development of suitable DESs-based systems for trapping
VOCs was reported by Di Pietro and co-workers [103]. The Authors demonstrated the
possibility to change the ability of cyclodextrin to encapsulate toluene and aniline by
performing the process in DES (choline chloride/urea 1:2). The reporting of this hybrid
DES-cyclodextrin system opens to new possibilities of engineering by designing opportune
eutectics and combining them with specific macromolecules.

Table 5 reports a resume of the main DESs employed as VOCs solvents and the
corresponding adsorption capacity.

Table 5. Selected DESs employed as VOCs absorbents. The best adsorbing system in terms of
temperature and pressure is herein reported.

VOC DES a Adsorption Capacity Reference
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CH2Cl2

ChCl /U (1:2) 2.0 wt% b (303 K) [92]
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TBPB/GLY (1:1) 2.8 wt% b (333 K) [92]
TBPB/LA (1:6) 2.8 wt% b (303 K) [92]
TBPB/DA (1:2) 3.0 wt% b (303 K) [92]
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Table 5. Cont.

VOC DES a Adsorption Capacity Reference

CO2

TBAB/TEA (1:5) 2.5 wt% b (303 K) [88]
TEAB/TEA (1:5) 2.9 wt% b (303 K) [88]

ChCl/MDEA (1:4) 3.0 wt% b (303 K) [88]
Ch/Cl/TEA (1:5) 3.0 wt% b (303 K) [88]

ChCl/MDEA (1:5) 4.0 wt% b (303 K) [88]
ChCl/TEA (1:4) 6.0 wt% b (303 K) [88]
ChCl/DEA (1:4) 15 wt% b (303 K) [88]
TBAB/MEA (1:5) 16 wt% b (303 K) [88]
TBAC/MEA (1:5) 17.5 wt% b (303 K) [88]
TEAB/MEA (1:5) 18 wt% b (303 K) [88]
TEAC/MEA (1:5) 22.5 wt% b (303 K) [88]
ChCl/MEA (1:4) 23 wt% b (303 K) [88]

TMAC/MEA (1:5) 23 wt% b (303 K) [88]
ChCl/MEA (1:5) 25 wt% b (303 K) [88]

TEAC/MEA/TEA 23 wt% b (303 K) [88]
ChCl/MEA/TEA 23 wt% b (303 K) [88]

TEAC/MEA/MDEA 23 wt% b (303 K) [88]
ChCl/MEA/MDEA 23 wt% b (303 K) [88]
TMAC/MEA/TEA 23 wt% b (303 K) [88]

TMAC/MEA/MDEA 30 wt% b (303 K) [88]
TMAC/MEA/FeCl3 (1:5:0.1) 25 wt% b (303 K) [88]
TMAC/MEA/CuCl2 (1:5:0.1) 26 wt% b (303 K) [88]
TMAC/MEA/NiCl2 (1:5:0.1) 26 wt% b (303 K) [88]
TMAC/MEA/CoCl2 (1:5:0.1) 26 wt% b (303 K) [88]
TMAC/MEA/NH4Cl (1:5:0.1) 28 wt% b (303 K) [88]
TMAC/MEA/ZnCl2 (1:5:0.1) 30 wt% b (303 K) [88]
TMAC/MEA/LiCl (1:5:0.1) 30 wt% b (303 K) [88]

ChCl/U (1:2) 3.559 molVOC/kgDES
(303 K, 5.654 bar) [90]

1-butyl-3-methyl imidazolium
methanesulfonate /U (1:1)

0.422 molVOC/kgDES
(303 K, 6.984 bar) [98]

NEt3

ChCl/PhOH/EG (1:5:4) 9.619 molVOC/kgDES
(298 K, 101 kPa) [99]

ChCl/PhOH/EG (1:7:4) 7.652 molVOC/kgDES
(313 K, 101 kPa) [99]

ChCl/U (1:2) 2.213 molVOC/kgDES
(298 K, 95 kPa) [100]

ChCl/resorcinol/GLY (1:3:5) 9.982 molVOC/kgDES
(298 K, 101 kPa) [101]

ChCl/D-fructose/GLY (1:3:5) 6.471 molVOC/kgDES
(313 K, 101 kPa) [101]

NH4SCN/GLY (2:3) 10.353 molVOC/kgDES
(298 K, 101 kPa) [102]

SO2

ChCl/guaiacol (1:3; 1:4; 1:5) 0.528; 0.501; 0.479 gVOC
for gDES [95]

ChCl/cardanol (1:3; 1:4; 1:5) 0.196; 0.170; 0.149 gVOC
for gDES [95]

ChCl/LA (1:3) 0.557 gVOC for gDES [94]
TBAC/LA (1:3) 0.622 gVOC for gDES [94]
ChCl/EG (1:2) 2.25 mol SO2/mol DES [104]
ChCl/MA (1:1) 1.40 mol of SO2 mol DES [104]
ChCl/U (1:2) 1.57 mol of SO2 mol DES [104]

ChCl/ thiourea (1:1) 2.37 mol of SO2 mol DES [104]

NH3
1-butyl-3-methyl imidazolium

methanesulfonate /U (1:1)
4.150 molVOC/kgDES

(313 K, 5.258 bar) [98]
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Table 5. Cont.

VOC DES a Adsorption Capacity Reference

H2S 1-butyl-3-methyl imidazolium
methanesulfonate /U (1:1)

1.034 molVOC/kgDES (303
K, 6.450 bar) [98]

a ChCl: choline chloride, U: urea, GLY: glycerol, EG: ethylene glycol, LA: lactic acid, DA: decanoic acid, TBPB:
tetrabutylphosphonium bromide, TBAB: tetrabutylammonium bromide, TEA: triethylamine, TEAB: tetraethy-
lammonium bromide, MDEA: methyldiethanolamine, MEA: methylethanolamine, TEAC: tetraethylammonium
chloride, TMAC: tetramethylammonium chloride. b Data extrapolated from the plots reported by the Authors.
The numbers reported in the table are approximated.

5. Deep Eutectic Solvents in Medicine

One of the major challenges of the pharmaceutical industry is the improvement of
existing active pharmaceutical ingredients (APIs) in terms of efficiency and pharmacologi-
cal action, which are strongly correlated with a multitude of physico-chemical parameters
such as solubility, permeation and bioavailability [105,106]. This approach is crucial in
view of the development of new therapeutic agents, since it suppresses the clinical trial
costs required in the drug development process.

In this context, the use of eutectic mixtures in the pharmaceutical field has a long-
standing history and has found several applications both in drug delivery, whereas eutec-
ticity improves drug solubility and permeability, and as reaction media in biocatalyzed
reactions [107,108]. Recently, DESs and their derivatives have shown a great promising
potential as drug delivery systems owing to their outstanding physico-chemical properties
in terms of tunability, stability and low toxicology profiles [109,110]. In addition, some
classes of DESs have been investigated as potential intrinsic therapeutic agents, showing
a promising preliminary bioactivity in vitro against certain microorganisms and cancer
cell lines. The applications of DESs as pharmaceutical tools have been a matter of a huge
amount of research efforts over the last five years, and their improvement is currently
under continuous development. The remarkable results achieved in this field have been
recently extensively reviewed in the literature [111] and are summarized in Figure 3.
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Figure 3. Pharmaceutical applications of Deep Eutectic Solvents: state-of-the-art.

DESs represent a safer and biocompatible alternative to organic solvents for the solu-
bilization of poorly water-soluble APIs, in particular for topical formulations. Promising
results on the solubilization of different classes of drug (nonsteroidal anti-inflammatory
drugs, antifungal, anesthetics and analgesics) have been reported using mostly ChCl-based
eutectic mixtures. While the HBA portion of these DESs (ChCl) is a safe and non-expensive
compound which fulfils most of the sustainability principles, the choice of the HBDs has to
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be carefully addressed since many HBD components might possess a significant toxicity.
Several drugs have shown a dramatically increase of their solubility in DESs compared
to water, raised up to 5400-fold for ibuprofen [112], 6400-fold for posaconazole in binary
eutectic systems [113] and up to 53,600-fold for the antifungal drug itraconazole in a ternary
ChCl:Glycolic acid:oxalic acid (1:1.6:0.4) deep eutectic mixture [111]. Furthermore, DESs
could improve the chemical stability of APIs, as observed for aspirin [110] and β-lactams
antibiotics [114]. Several factors affect the solubility of APIs in DESs, among them the HBD
ratios which can increase or decrease the solubility depending on the nature of both the
drug and the eutectic, as a consequence of the different substrate-environment interac-
tions [112]. Even the addition of an appropriate proportion of water to DESs or NADESs
may significantly change their physicochemical properties and APIs solubility. As an
example, the solubility of the benzylisoquinoline alkaloid berberine in a series of NADESs
is enhanced up to 12-fold compared to water when switching from binary eutectics, where
berberine solubility is lower than in water, to quaternary NADESs including water as a
component [115].

Another powerful approach which has been extensively investigated to enhance APIs’
solubility entails the incorporation of the active pharmaceutical species as a constituent
of the deep eutectic mixture itself (API-DES or THEDES, Therapeutic Deep Eutectic Sol-
vents) [116]. These eutectics can be designed using a variety of APIs (acting as HBAs or
HBDs) and counterparts (e.g., metabolites) to fulfil specific therapeutic purposes [117].
API-DES formulations have shown remarkable results in the permeation enhancement of
transdermal drug delivery systems. Several drugs such as ibuprofen [118], lidocaine [119]
and itraconazole [120] incorporated with several permeation enhancers (terpenes or other
drugs) in API-DES mixtures have shown both a remarkable solubility enhancement and an
increased transdermal delivery in isotonic solution. API-DESs have been also exploited to
improve some drug’s oral bioavailability (e.g., CoQ10) [121], the intestinal absorption of
daidzein [122] and the solubility and permeability of several drugs such as paeonol [123],
ibuprofen and aspirin [112,124]. Moreover, the development of dual-drug eutectic systems
incorporating two different APIs in the same eutectic formulation has opened the way to
new fascinating strategies for synergic multimodal therapies using drugs with enhanced
solubilization and permeation properties [125–127].

API-DES have been also exploited to control drug delivery as monomers for polymer
production. These eutectic systems represent a significant advance in the development
of controlled drug delivery systems, since they are able to (a) provide the API and (b)
act both as monomer and reaction media for the polymerization reaction as a single for-
mulation [128]. As an example, lidocaine has been incorporated in acrylic or methacrylic
acid containing DESs which, after polymerization, allowed the controlled release of the
anesthetic drug triggered by several parameters such as pH and ionic strength [129]. In
addition, polymeric eutectic systems provide a simpler and greener alternative method for
the incorporation of drugs and polymers. Several drug delivery systems have been investi-
gated in (bio)polymer-based API-DES mixtures, among them anticancer (doxorubicin [130],
Paclitaxel [131]), anti-inflammatory (ibuprofen [132], dexamethasone [133]) and anesthetic
(prilocaine [134], lidocaine [135]) drugs, using poly(vinyl alcohol) (PV) and poly(acrylic
acid) (PA) polymers, ammonium salts, SPCL (starch and poly-ε-caprolactone polymeric
blend), cellulose [136], poly(octanediol-co-citrate) elastomers and gelatine [137] to tune the
APIs release profiles.

In addition to drug delivery applications, DESs have recently shown promising
pharmaceutical activities as antimicrobial (antiviral, antibacterial and antifungal) [138] and
anticancer [139] agents. Preliminary studies in this field suggest that eutectic mixtures
themselves have the potential to be further deeply investigated for the development of
novel bio-inspired therapeutic agents.
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6. Recent Advances in the Employment of DESs Both as Non-Innocent Solvents and as
Active Co-Catalysts

The pursuit for the setup of sustainable processes in organic synthesis is a topic of
paramount importance both from the academic and the industrial points of view. In this
context, DESs have emerged as excellent solvents for environmentally benign reactions [4],
especially in comparison with ILs, which have shown significant toxicity and extremely
difficult preparation and purification procedures in several cases. Over the last fifteen
years, DESs have extensively been used as reaction media for a large number of organic
transformations, namely alkylation, condensation and multicomponent [18], organometal-
lic reactions [140], together with sporadic bio- and transition metal-catalyzed processes [74].
DESs have also proven their feasibility as media in different types of processes, being em-
ployed for polymerization reactions [141], delignification of biomass feedstocks [142] and
for the extraction [143] and purification of organic compounds from complex matrixes [144].

Among the impressive number of reports on the application of DESs in organic
synthesis [18], those in which at least one component of the DES strongly participates to
the transformation appear as the most appealing. The active role of the DES is achieved
by reacting with other molecules present in the environment or by actively promoting
the process, demonstrating a non-innocent effect of the eutectic mixture on the chemistry
involved. After a careful examination of the literature, the examples that have shown a
peculiar or a highly different impact of DESs with respect to VOCs on the same reaction
can reasonably be grouped in three main classes: (i) polar organometallic chemistry; (ii)
acid-mediated and (iii) transition-metal-catalyzed processes (Figure 4). The purpose of this
section is to give an overview of the most interesting and recent advances in this scenario,
which is continuously evolving, highlighting the employment and the great potential of
these unconventional media as true protagonists and not only as mere spectators within
the aforementioned areas.
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6.1. Polar Organometallic Chemistry

The unravelling of the employment of highly reactive organometallic species, i.e., Grig-
nard and organolithium (RLi) reagents in hydrophilic protic DESs is due to the seminal
work of García-Álvarez’s and Hevia’s groups. They introduced the use of organomagne-
sium and RLi species in DESs for the reaction with ketones [145], non-activated imines [146]
and for polymerization reaction to achieve synthetically relevant polyolefins [147], reach-
ing high yields in several cases. All the reactions proceeded with high rate at 25–40 ◦C
under air, giving in several cases improved yields and selectivity than standard protocols
performed under inert atmosphere (Scheme 3).
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Hence, it was demonstrated that the rate of addition of the organometallic species
could successfully compete with their protonation by the DES medium, unlocking a new
reactivity for the construction of several and diverse molecular frameworks.

Shortly afterwards, Mallardo et al. developed a methodology for the directed ortho-
metalation (DoM) of 2,2-diphenyltetrahydrofuran (THF) using t-BuLi in the “greener”
solvent CPME and sequential quenching with several electrophiles in ChCl/Gly (1:2) at
0 ◦C, gaining the o-substitution products chemoselectively at one phenyl ring with yields
up to 90% within 10 min (Scheme 4) [148].
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Scheme 4. Sequential DoM and quenching with electrophile for selective functionalization of 2,2-
diphenylTHF.

Sassone et al. demonstrated that o-tolylTHF derivatives could undergo unprece-
dented alkylative ring-opening induced by directed lateral lithiation (DLL) in CPME/DES
(ChCl/Gly (1:2)) mixture [149]. After quenching with several electrophiles, a functional-
ized primary alcohol is obtained (Scheme 5). It is worth pointing out that in the former
paper the generation of the lithiated species was described in CPME, whereas in the latter
the reactions occurred in a one-pot fashion. It appears that the addition of CPME to the
DES mixture is required in order to stabilize the reactive RLi species over the competitive
protonolysis process under these reaction conditions (Scheme 5).
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The beneficial effect of CPME in this type of processes has also been observed by
Ghinato et al. [150]. The authors described the reaction between the sterically hindered
(hetero)arene N,N-diisopropylamides with RLi in CPME/DES (ChCl/Gly 1:2), easily mod-
ulating the chemoselectivity by changing the nature of the organolithium reagent. When
R = t-Bu, ultrafast DoM process occurred and, after addition of the proper electrophile,
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functionalized amides were obtained (up to 95% yield), whereas using the less hindered
MeLi, n-BuLi and n-HexLi, the nucleophilic character of the lithiated species prevailed,
providing the corresponding ketones (up to 70% yield) via SNAc (Scheme 6). Impressively,
all the reactions occurred after 2 sec for the DoM process and within 1 min for the SNAc
reaction (0–25 ◦C). Interestingly, the use of pure VOCs or ChCl/Gly (1:2) led to a signif-
icant decrease in conversion and chemoselectivity, suggesting that the employment of a
CPME/DES mixture is mandatory to achieve high yields of the desired products.
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The authors extended their methodology and investigated the lateral lithiation (LL)
in DES on several o-tolyl-tertiary amides, sulfonamides and oxazolines, providing the
DLL products functionalized with several electrophiles, over very short reaction times
(Scheme 7) [151].
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6.2. Acid-Mediated Reactions

Acid-based DESs have significantly been employed as media and reagents in dif-
ferent transformations, such as esterification [152], polymerization reactions [153] and
for biomass valorization through the cleavage of chalcogenide moieties present in lignin
feedstocks [154]. An interesting overview on the chemical and technological applications
of Brønsted and Lewis acid based DESs, together with a discussion of their structural and
acidity characteristics is offered by the recent survey of Qin et al. [155].

Among the acid-mediated processes, the Nazarov cyclization has arisen as a facile and
highly atom economic route for the obtainment of cyclopentenone derivatives from divinyl
ketone precursors. The process consists in a 4π conrotatory electrocyclization promoted
by Brønsted or Lewis acids. Extensive studies employing (supported) organocatalysts
and transition metal complexes have been performed [156], but only one example in DESs
has been reported by Nejrotti et al. [157]. From their screening of several Brønsted-acid-
based DESs, the authors found out ChCl/MA (malonic acid), ChCl/OA (oxalic acid) and
ChCl/TsOH (p-toluenesulfonic acid) to be suitable system for promoting the reaction under
mild conditions and in reasonable time (60 ◦C, 16 h). The scope was extended to complex
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molecular frameworks, accessing fused (hetero)polycyclic systems present in naturally
occurring compounds containing the cyclopentenone motif (Scheme 8). Interestingly, the
reported data indicated that carboxylic acids such as MA are not able to mediate the
Nazarov cyclization in VOCs, hinting an increasing effect on the acidity of MA when it is
a part of the DES mixture. This fact could be ascribed to its peculiar structure made of a
thick network of hydrogen bonds created during the formation of the eutectic system.
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In addition, the reaction has proved to be performed on a gram-scale (E-factor = 19.5)
and ChCl/MA has shown a good level of recyclability, mediating the process up to 4 runs
with an overall acceptable yield (42%). The catalytic activity dramatically dropped at
the 5th cycle, suggesting that the DES system could undergo decomposition processes
throughout the reaction and the recycle conditions employed, likely decarboxylation of the
acid component and trans-esterification between MA and the alcohol moiety of ChCl (cf.
Section 1).

Very recently, the same authors reported the unprecedent Nazarov cyclization of a
model divinyl ketone in two phosphonium-based DESs, (TPMPBr/EG (1:3) TPMPBr/AA
(1:3)) using a two-level full factorial Design of Experiment approach for the optimization of
the reaction conditions, in terms of reaction time, temperature and substrate concentration.
In this case, the data indicate a strong cooperation between the two components of the DESs
in promoting the Nazarov cyclization. Surface Responding Analysis (SRA) confirmed the
synergic effect between the former components of the DES, which increases the expected
performances of the system. Thus, conversions >90% with high chemoselectivity were
reached under mild conditions (43 ◦C) [158].

6.3. Transition-Metal-Catalyzed Reactions

Lately, special attention has been devoted to the pursuit of sustainable catalytic
reactions [159–162], and especially to transition-metal-mediated processes in DESs, with
applications in Pd-catalyzed cross-coupling [163], Cu-catalyzed Ullmann type [164], Ru-
catalyzed redox isomerization [165,166] and metathesis reactions [167]. Notwithstanding
the increased sustainability in several cases, a distinct impact of the DES with respect to
conventional systems (e.g., enhanced catalytic activity), is difficult to be addressed in the
aforementioned examples. Particularly, two cases showing a strong participation of the
DESs employed are worth mentioning and describing.
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Cavallo et al. reported for the first time the Ru-catalyzed transfer hydrogenation of
carbonyl compounds and imines using the DES both as reaction medium and H2-source
for the reduction process in the presence of TEA as the base under air [168]. After a
thorough screening of different Ru-complexes and DESs, the most suitable system resulted
TBABr/HCOOH, formic acid being the H2-source in the presence of the diphosphane
complex [RuCl2(p-cymene)]2-µ-dppf as the pre-catalyst (Scheme 9). Notwithstanding the
highly reactive Ru-species involved in the transfer hydrogenation processes, no significant
changes in the conversion were observed when the reaction was carried out under inert
atmosphere. The recovery of the hydrogenated products was achieved after 4–16 h under
mild conditions (40–60 ◦C) and the chemoselectivity generally ranged from moderate to
excellent, showing clean crude mixtures in most cases.
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Interestingly, when the reduction of acetophenone was performed in VOCs (i.e., CPME,
toluene, 2-MeTHF) with an equimolar mixture of HCOOH/NEt3, the Ru-complex was
not able to catalyze the process, as well as when a solution of TBABr and HCOOH was
employed, even after several hours, indicating that the presence of the peculiar DES
network was crucial for attaining the catalytic reduction (Scheme 9). However, the novel
system does not appear to provide an easy recycling or regeneration procedure of the DES.

A bright example of a green transition-metal-catalyzed transformations has recently
been reported by González-Sabín’s and García-Álvarez’s groups on the Meyer-Schuster
rearrangement of propargylic alcohols [169]. In this work, the cheap eutectic mixture
FeCl3·6H2O/Gly (3:1) successfully mediated the reaction of non-functionalized terminal
and internal alkynols to their corresponding α,β-unsaturated carbonyl compounds with
full conversions and yields up to 92%. The reactions proceeded very fast (5–30 min.) in the
case of 1,1-diarylalkynols at room temperature, while the rearrangement required longer
reaction times to occur (1–8 h) with 1,1-dialkylalkynols at a slightly higher temperature
(40 ◦C). FeCl3·6H2O/Gly (3:1) could be easily recycled up to ten runs without appreciable
loss of catalytic activity, showing a great stability of the system employed. It is noteworthy
that the incorporation of FeCl3·6H2O within the reaction medium allows the recycling of
both the catalyst and the solvent (Scheme 10).
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In addition, the successful although preliminary use of FeCl3·6H2O/Gly (3:1) in hy-
drolysis, cyclization and hydration reactions was also explored. It is worth pointing out that
iron salts have scarcely been employed as catalysts for the Meyer-Schuster rearrangement
in VOCs, but they required initiators or additives, higher temperatures (110–120 ◦C) and
much longer reaction times (16 h). All the data demonstrate a reactivity enhancement of
FeCl3·6H2O when part of the DES network with respect to its employment in conventional
solvents. Notably, the mild reaction conditions, the facile recycle of the system and the
use of a low-cost transition metal salt with no additional ligands in the place of expensive
complexes confer to the process green credentials for sustainability.

7. Conclusions

During the last 20 years DESs have characterized a huge part of the overall research
activity. The possibilities offered by the almost infinite number of eutectic combinations
between HBAs and HBDs opened to the development of engineerable and modular systems.
This fact, combined with the superior physical properties with respect to ILs, produced
an intensive exploration of such systems in many research and applied fields, including
many industrial applications. Some strategic fields of industrial interest have been herein
discussed. The high levels of performance reached in ionothermal synthesis by using DESs
both as solvents and as shape-directing agents are remarkable and open to the synthesis
of new materials. In addition, the environmental impact of such systems when employed
in VOCs treating devices is outstanding. In addition, the wide utilization of DESs in the
pharmaceutical industry revealed their great promising potential as drug delivery systems
to improve the pharmacokinetic properties of APIs and, in some cases, to act as APIs
themselves. As a matter of fact, the exploitation of DESs is just in its early stages. In fact, as
the understanding of their behavior at molecular level increases, new possibilities arise.
The dual role of eutectic mixtures, as solvent and co-catalyst, together with their easy
recyclability, observed in transition metal- and acid-mediated transformations could allow
to upgrade many industrial processes in terms of efficiency and sustainability. Finally,
the possibility to tune the structural disorder of mixtures of hydrogen bond acceptors
and donors could give a relevant contribution to the development of new liquid organic
semiconductors, with a cascade of industrial application currently incalculable. Regarding
future outlooks, we can expect that DESs exploitation will take two main roads in the next
years. From one side the relevant know-how available will be exploited for developing
high effective systems in the fields of biomass conversion and in medicinal chemistry. From
the other side, the extending of the eutectic concept not only to melting point but also to
other physical features (as the band gap or Urbach energies) will open new application in
the fields of optoelectronic, for the developing of organic liquid semiconductors of for the
doping of existing systems. In addition, additional structure-activity studies are needed in
order to understand how tailoring a specific hydrogen-bond network with the aim to direct
the behavior of a chemical system, as an organic transformation or a catalytic process.
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