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Abstract— Within the concept of Micro-Grids, the day ahead
energy management plays an important role where the principal
objective is to minimize the cost of the operation. Adequate
strategies are required to find an optimal solution for the sche-
duling of energy flows, that can be formulated as centralized
or distributed optimization problems. Energy storage systems
are becoming an essential component of Micro-Grids due to
their contribution to reducing the peak load and mitigating the
intermittency of renewable resources. However, battery aging
is a latent problem that is not usually considered in energy
management systems. Consequently, this paper presents a day-
ahead dispatch strategy for a set of Micro-Grids, solvable by
centralized and ADMM distributed approaches, and with the
inclusion of battery degradation costs. A detailed simulation
was executed to verify the behavior of the proposed approaches.
It is shown that both, centralized and distributed solutions,
converge to the same minimum with a difference of less than
1%. A Pareto analysis with the ϵ constraint method evidences
that the operative costs can increase up to a 11.7% if the aging
cost of the battery is constrained below its nominal level.

I. INTRODUCTION

In recent years, maintaining the dynamic power balance of
power grids has become a challenge due to the uncertainty
introduced by Distributed Energy Resources (DERs) such as
photovoltaic (PV) and wind energy generators, electric ve-
hicles, etc. These DERs create congestion and imbalance on
the grid due to unmanageable production and consumption
of energy, so, optimal Energy Management Systems (EMS)
are required to operate the grid appropriately. These kinds
of systems can reduce the overall cost of energy supply in
the day-ahead economic power dispatch and in the real-time
operation [1],[2].

Within the concept of Micro-Grid (MG) there are many
technical and economic constraints on the system operation
where Battery Energy Storage System (BESS) can play an
important role, for example by reducing the peak load or
mitigating the intermittency of Renewable Energy Systems
(RES). The main idea is to use the stored energy strategically,
for instance selling it when the price of the energy is high
in order to decrease the cost. However, long-term constraints
emerge, related to the aging of the Battery [3], [4].

Diverse techniques have been proposed in the literature
for the optimal day-ahead energy management in MGs,
where the principal objective is to minimize the cost of
the operation. In addition, the scheduling of the energy can
be seen as a centralized optimization problem where a unit

or entity collects all the information about the status and
behavior of each element of the grid to find an optimal
solution, or as a distributed optimization problem where each
agent solves its own optimization problem based on specific
information shared between the MGs to reach an agreed total
solution. [5] provides an optimal centralized scheduling for
an EMS model that involves a hydrogen production system
integrated with a PV system and Battery energy storage with
the purpose of controlling the electrolyzer’s operating point
to achieve operational and economic benefits. [6] presents
an EMS taking care of the line losses in the optimization
procedure, considering centralized and distributed solutions.
However, it only includes PV systems and BESS. Other stu-
dies propose modifications to the models used to formulate
the cost function in order to improve the final behavior. For
example, [7] presents a day ahead scheduling with a forecast-
based battery model in combination with a grid-connected
PV source with the aim of storing energy during the hours
of high production and low prices. [8] proposes an integrated
electricity and natural gas system, where the EMS is based on
a fast Alternating Direction Method of Multipliers (ADMM)
algorithm with restart taking into account some uncertainties.
Also [9] and [10] propose stochastic optimization methods
for planning the daily schedule considering uncertainty.

The objective of this paper is to present a day-ahead
dispatch strategy for a set of MGs, considering not only the
economic cost of the operation but also the aging costs of
the batteries. The strategy can be solved both in centralized
and distributed frameworks. The system consists of a group
of MGs, where each one is composed of PV and Wind
generators, BESS, and loads. Each MG is able to buy and
sell energy not only to the main grid but also to the other
MGs.

This paper proposes a multi-objective optimization pro-
blem in order to manage and control the DERs that form
the set of MGs, coordinating the power exchanges between
all the agents, and using the BESS to minimize the opera-
tion costs considering the aging of the batteries. The main
contributions are:

• A multi-objective optimization problem that includes
the cost of battery aging.

• A framework to solve the proposed day-ahead dispatch
in centralized and distributed approaches.

• An analysis of the cost of the storage system aging,

2023 European Control Conference (ECC)
June 13-16, 2023. Bucharest, Romania

978-3-907144-08-4 ©2023 EUCA 1

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 06,2023 at 08:49:09 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Micro-Grid Scheme

based on the results given by the approaches used for
solving the optimization problem.

The framework of the paper is as follows. In Section
2, the description of the system model is presented. In
Section 3, the formulation of the Centralized and Distributed
approaches is described. Section 4 describes the analysis of
the BESS aging cost in a case study, followed by Section 5
where is presented the analysis of results and the conclusions
end the paper in Section 6.

II. SYSTEM DYNAMICS AND CONSTRAINTS

The scheme of the system is illustrated in Fig. 1. Each no-
de is a MG and has its own bidirectional meter (Mk,MK+1,
...) able to measure the energy received and delivered be-
tween the agents. Mg brings information about the energy
exchange with the main grid. Each MG is constituted of PV
and Wind systems, BESS, and loads.

Each DER and load is tied to a forecast which limits the
power generation/consumption for the day-ahead scheduling,
while the agents are not able to sell and buy energy at the sa-
me moment. All the models associated with the optimization
problem are described below, where k ∈ Ω = {1, 2, ..., N}
denotes the set of agents and t ∈ τ = {1, 2, ..., tend} is the
time index used to solve the problem.

A. Grid Operation and Costs
The net cost of the power exchange of each MG k with

the main grid is specified by

JPTk =

tend∑
t=1

(PGt
buyk ∗ Ĉt

buy − PGt
sellk ∗ Ĉt

sell) ∗∆t (1)

Where PGt
buyk

and PGt
sellk

are the power bought from

and sold to the main grid by agent k at instant t, and Ĉt
buy

and Ĉt
sell are their unitary prices.

The grid operation constraints are given by the following
technical limits,

PGt
buyk + P t

ESDisk
+ P t

PV k
+ P t

WEk
+

N∑
j=1

P t
buyk,j

(2)

= PGt
sellk + P t

ESChk
+ P̂ t

CLk
+

N∑
j=1

P t
sellk,j

P t
sellk,j

− P t
buyj,k = 0 (3)

0 ≤ PGt
buyk ≤ PGbuymax ∗Bt

sbk (4)

0 ≤ PGt
sellk ≤ PGsellmax ∗ (1−Bt

sbk ) (5)

0 ≤ P t
buyk,j

≤ Pbuymax ∗Bt
sbk (6)

0 ≤ P t
sellk,j

≤ Psellmax ∗ (1−Bt
sbk ) (7)

t ∈ τ, k, j ∈ Ω

(2) represents the power balance for the agent k at the time
t that includes all the power from each DER where P̂ t

CLk
is

the forecasted load, P t
buyk,j

is the power bought by agent k
from agent j, P t

sellk,j
is the power sold by agent k to agent

j, P t
ESChk

and P t
ESDisk

are the charge and discharge power
in the BESS, P t

PV k
and P t

WEk
represent power of the PV

and Wind power systems. (3) enforces the complementarity
between the energy sold and bought from another agent.
Finally, the binary decision variable Bt

sbk
is employed in

(4) to (7) in order to avoid buying and selling energy at the
same time.

B. Battery degradation model

Energy Storage Systems have become a key element in
power systems because of the benefits of storing energy, for
example to compensate the variations in renewable energy
sources. However, battery degradation cost must be taken
into account in the operation. The accuracy of battery degra-
dation models changes depending on the application. [11]
provides a comparison of the impact of different battery
aging models, where it is shown that the linear model
approximation has a low computational cost. Considering
that the day-ahead dispatch is related to the amount of energy
used, a linear model presents some advantages over other
models, which add complexity to the optimization problems.
[12] presents a linear model where the battery degradation
cost is associated with the cycle life of a battery which is
obtained by the total amount of consumed energy (kWh).

The lifetime is given by the total amount of energy that
flows throughout it. The battery lifetime throughput Llifetime
is determined as

Ln = Qmax ∗ gn ∗ fn (8)

Llifetime = 1/n ∗
n∑

i=1

Ln (9)

where Qmax is the battery capacity, gn is the depth of
discharge, and fn is the number of cycles to failure and
n is the length of fn or gn. Usually, the information for
calculating Llifetime is given by the fabricant, as shown in
Table I. The battery degradation cost per KWh is defined as

Cdb =
Rcost

Llifetime ∗ ηrtrip
, (10)

where Rcost is the replacement cost of each BESS and ηrtrip
is the square root of the round-trip efficiency of the batteries.
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The battery bank is replaced when the total throughput equals
its lifetime throughput. Therefore, the cost function for aging
BESS becomes

JESk =

tend∑
t=1

Cdbk ∗ (P t
ESChk

+ P t
ESDisk

) ∗∆t (11)

t ∈ τ, k ∈ Ω

Where P t
ESChk

and P t
ESDisk

are the charge and discharge
power at the instant t for agent k, respectively. In order
to avoid a battery malfunctioning and guaranteeing a safe
operation, the BESS is constrained as

0 ≤ P t
ESChk

≤ PESChmaxk ∗Bt
esk (12)

0 ≤ P t
ESDisk

≤ PESDismaxk ∗ (1−Bt
esk ) (13)

t ∈ τ, k ∈ Ω

Such that Bt
esk

is a binary decision variable which prevents
charging and discharging at the same time. On the other
hand, PESChmaxk

and PESDismaxk
are the power limits for

charge and discharge.
Finally, the evolution of the State Of Charge (SOC) ,

considering the charge and discharge efficiencies ηESChk
and

ηESDisk
, is

SOCt+1
ESk

= SOCt
ESk

+ (
P t
ESChk

∗ ηESChk
∗∆t

Qmaxk

) (14)

−(
P t
ESDisk

∗∆t

ηESDisk
∗Qmaxk

) t ∈ τ, k ∈ Ω

and the SOC is bounded as

SOCESmink
≤ SOCt

ESk
≤ SOCESmaxk

(15)
t ∈ τ, k ∈ Ω.

C. Photovoltaic and Wind Power Systems
The main objective in photovoltaic and wind power syste-

ms is to acquire and deliver the highest amount of energy
available. This is achieved by using a Maximum Power Point
Tracker (MPPT). However, in the case of exceeding the limits
of power flows or if the cost of buying energy was less than
the cost of producing energy, it is possible to decrease the
power through curtailment, which means that PV and wind
power will be a decision variable and the economic cost is
represented as follows

JPVk =

tend∑
t=1

(P̂ t
PV k

− P t
PV k

) ∗ Ĉt
sell ∗∆t (16)

JWEk =

tend∑
t=1

( ̂P t
WEk

− P t
WEk

) ∗ Ĉt
sell ∗∆t (17)

t ∈ τ, k ∈ Ω

Where P̂ t
PV k

and ̂P t
WEk

are the predicted Maximum Power
Point (MPP) for the PV and Wind power systems, P t

PV k
and

P t
WEk

are the decision variables and Ĉt
sell is the forecasted

energy cost at each time instance. The values of the decision
variables are bounded by

0 ≤ P t
PV k

≤ P̂ t
PV k

(18)

0 ≤ P t
WEk

≤ ̂P t
WEk

(19)
t ∈ τ, k ∈ Ω.

III. ENERGY MANAGEMENT SYSTEM

This section presents the day-ahead dispatch problem for
the EMS. The aim is to minimize the total cost function
of all the agents due to power transactions with the main
grid, it is assumed that the EMS receives the information
about prices, forecasted generation, and consumption of the
MGs, in this case hourly. Also the energy exchanges between
the MGs are free of charge and serve just to minimize the
total cost function. Both, centralized and distributed solutions
are presented. The centralized approach is able to make
decisions over all agents collecting all the information about
the behavior of each of them. In the distributed approach,
each agent solves its own dispatch problem based on limited
information obtained from neighbor agents improving the
performance on large scale scenarios.

A. Centralized Problem Formulation

The problem is solved by just one unit which collects
all the information about the different agents, looking for a
unique solution that fulfills every constraint of each agent
for the tend time intervals.

The Objective Function OF is given by

minimize
PGt

buyk
,PGt

sellk
,

P t
sellk,j

,P t
buyj,k

,

P t
ESDisk

,P t
ESChk

,

P t
PV k

,P t
WEk

,

Bt
esk

,Bt
sbk

N∑
k=1

JPTk
+JPVk

+

JWEk
+JESk

subject to (12), (13), (14), (15), (18), (19), (2),
(3), (4), (5), (6), (7)

(20)

The resulting problem is a Mixed Integer Linear Program
(MILP).

B. Distributed Problem Formulation

The structure of the previously presented centralized pro-
blem allows us to transform it into a distributed one through
a decomposition-coordination procedure, where the solutions
of small local sub-problems are coordinated to achieve the
solution of the main problem.

Note that the problem in (20) is composed of linear
constraints and binary constraints and the global cost is the
summation of local agents’ costs. These characteristics allow
to express it using an ADMM structure taking into account
that (2) and (3) are lineal global constraints, (4) to (7) are
Mixed integer local constraints and the OF is not affected
by the binary decision variables[13].

The objective function of each agent is obtained by the
decomposition of the Lagrangian according to the ADMM
method. The Lagrangian is augmented with a quadratic
regularization term, leading to a set of Mixed Integer Qua-
dratic Programs (MIQP) that are solved iteratively until the
distributed solutions converge, see [6].
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The resulting local regularized costs are

Jν
LGk =

tend∑
t=1

{ N∑
j=1

λν
t,j ∗ P t

buyk,j
−

N∑
j=1

λν
t,k ∗ P t

sellk,j
+ (21)

[
m ∗ ρ ∗ ⟨

N∑
j=1

∗(P̂ t
buyj,k − P t

sellk,j
)2 −

N∑
j=1

∗(P t
buyk,j

− P̂ t
sellj,k)

2⟩
]}

∗∆t

t ∈ τ, k, j ∈ Ω

Where ν is the iteration counter and the shared variables
during the decentralized iterations are denoted by as P̂ t

buyj,k
,

P̂ t
sellj,k

and λν
t,k is the Lagrange multiplier according to the

ADMM method. Finally, the objective function minimized
by each agent, denoted as OF ν

k , is

minimize
PGt

buyk
,PGt

sellk
,

P t
sellk,j

,P t
buyj,k

,

P t
ESDisk

,P t
ESChk

,

P t
PV k

,P t
WEk

JPTk
+JPVk

+JWEk
+

JESk
+JLGk

subject to (12),(13),(14),(15),(18),(19),
(2),(4),(5),(6),(7)

(22)

where the power exchanges must be shared with all the
agents at the end of each iteration. Once all the agents have
minimized their own optimization problem, the solution of
the entire EMS is the summation of each agent solution, i.e.,

OF =

N∑
k=1

OFk (23)

The Lagrange multipliers are updated by the primal residual
term at the end of each iteration ν, taking into consideration
that the values of P t

sellk,j
, P t

buyj,k
are already known for

every agent, that is,

rνt,k =

N∑
j=1

P t
buyj,k −

N∑
j=1

P t
sellk,j

, (24)

λν+1
t,k = λν

t,k + 2 ∗m ∗ ρ ∗ rνt,k. (25)

When ∥rνt,k∥∞ < ϵ ∀(t ∈ τ, k ∈ Ω) the iterative
procedure concludes and the dispatch solution is found. ϵ
is the allowed power tolerance.

IV. ANALYSIS AND RESULTS

In this section, a case study with three MGs, based on
the scheme shown in Fig. 1, is employed to validate the
approaches proposed in the previous section. Each agent is
subject to different profiles of load, PV and wind generation,
while the price profile for buying and selling energy to
the main grid is the same for all agents, as well as the
characteristics of the BESS. All the profiles are presented
in Fig. 2 and the characteristics for the BESS are shown in
Table I. All the data sets are based on previous studies, see
[12],[14],[15]. Also, all the operational limits are consigned
in Table II.

This section is divided into two parts, the first one shows
the comparison between the Centralized and Distributed
approaches, and the second one presents an analysis of the
effect of the battery degradation costs on the dispatch.

TABLE I: BESS Parameters

Depth of discharge (%) [ 0.1, 0.25, 0.35, 0.5,
0.6, 0.7, 0.8, 0.9 ]

Number of Cycles (n) [ 5700, 2100, 1470, 1000,
830, 700, 600, 450 ]

Max Capacity (kWh) 500
Round-trip Efficiency (%) 0.8

Efficiency Battery Charge (%) 0.95
Efficiency Battery Discharge (%) 0.9

Cost Replace BESS ($) 900

TABLE II: Micro grids operational limits

PESChmax
(kW) 100

PESDismax
(kW) 100

SOCESmin
(%) 0.5

SOCESmax (%) 1
SOCInicial (%) 1
PGbuymax (kW) 500
PGsellmax (kW) 500
Pbuymax (kW) 500
Psellmax (kW) 500
∆PV (kW) 100
∆Wind (kW) 100
∆Battery (kW) 50

A. Comparison of Centralized and Distributed Approaches

Both, the centralized and distributed dispatch solutions,
(20) and (22), have been solved for the operational constrain-
ts and profiles described above. A MATLAB simulation was
employed, Yalmip [16] was used to describe the optimization
problems and CPLEX was used to solve the MILP and MIQP
programs.

Fig. 3 describes the cost obtained hourly by both ap-
proaches where the two solutions are consistent. The OF
with the centralized approach is 1.0691 ∗ 105 and with the
distributed one it is 1.0791 ∗ 105, the small difference is
due to the tolerance in the iteration stop criterion. Note that
the centralized approach uses all the information about the
agents’ behavior while the distributed one only share power
exchange information. Fig. 4 shows the ADMM convergence
where the Y-axis is the value ∥rνt,k∥∞ for each iteration until
the value is less than ϵ. In this case the problem was solved in
thirty iterations, after five iterations the cost value is closed to
the optimal one, increasing marginally, while the algorithm
needs more iterations to achieve the tolerance margin on the
power balance.

Fig. 5 shows the exchange of energy between agents
considering that the results of Centralized and Distributed
approaches are equivalent. Fig. 5a shows that agent 3 is the
one who gets more energy from other agents. This is caused
by the reduced local power generation of this agent and also
its high power consumption. This energy is acquired from
agents 1 and 2, as shown in Fig. 5b, reducing the amount of
energy bought from the main grid.

B. Cost Analysis with Battery Degradation Model

Now we analyze the changes in the OF as a function
of the battery degradation costs. Table III summarizes the
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Fig. 2: Data sets used in the case study. (a) Load Power, (b)
Photovoltaic Power, (c) Wind Power, (d) Grid energy Prices.
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Fig. 3: Hourly dispatch cost of centralized and distributed
approaches
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Fig. 4: ADMM convergence average value of ∥rνt,k∥∞ at
each iteration
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Fig. 5: Exchanges between agents, (a) Acquired power (b)
Supplied power.
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Fig. 6: Evolution of SoC for agent one. Continuous line: op-
timal solution considering aging costs. Dotted line: optimal
solution without aging costs.

nominal values of the economic cost JEco = JPT + JPV +
JWE and the battery degradation cost JES when solving the
dispatch in (20). It is noticed that JES is negligible, then the
total cost OF is marginally affected by the aging term.

Considering the previous analysis, the dispatch in (20) is
solved without the battery degradation cost in order to see
how the behavior in the system changes. The evolution of
the SOC for one agent is shown in Fig. 6. The use of the
battery is reduced when the cost is included in the problem,
however, the difference is minor.

Finally, a Pareto analysis is performed between the econo-
mic and battery aging costs, in particular using an ϵ constraint
method. Let ĴES be the battery aging cost as shown in
Table III. A new dispatch is solved by minimizing only the
economic cost imposing a limit on the battery degradation
cost as

minimize
PGt

buyk
,PGt

sellk
,

P t
sellk,j

,P t
buyj,k

,

P t
ESDisk

,P t
ESChk

,

P t
PV k

,P t
WEk

N∑
k=1

JPTk
+JPVk

+

JWEk

subject to (12), (13), (14), (15), (18), (19), (2),
(3), (4), (5), (6), (7),
N∑

k=1

JESk ∗∆t ≤ (1− α) ∗ ĴES

(26)
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Fig. 7: Pareto front between JEco and JES

The battery aging cost JES is constrained with a reduction
factor α w.r.t. ĴES . As α goes from 0 to 1, the allowed aging
costs is reduced from the nominal value ĴES to zero.

TABLE III: Cost Comparison of the Objective Function

OF = JEco + JES [$] JEco [$] JES [$]

106912.5 106900.4 12.1

As JES decreases, the cost of JEco rises considerably, this
means that by limiting the usage of batteries the operation
costs will be higher. The maximum aging cost is $12.1, while
the variation in the economic cost in the Pareto front is
around $1.104, i.e., an 11.67% increase. The new problem
formulated in (26) is able to limit the battery aging cost
through α which allows finding a new operation point by
the trade-off between the battery aging and the economic
cost of the grid operation.

V. CONCLUSIONS

In this work we have presented a day-ahead dispatch stra-
tegy for a set of Micro-Grids. A multi-objective optimization
problem which includes the cost of battery aging is solved
by both centralized and ADMM distributed approaches, and
finally an analysis of the cost of the storage system aging is
performed.

A set of three MGs, subject to different DER profiles, was
used to validate the behavior of the proposed approaches. It
was exemplified that both, centralized and distributed solu-
tions are consistent and the difference between their solutions
is less than 1% for each validated scenario. However, despite
the small discrepancy, the centralized approach required the
whole information of every agent to find a solution, which
means that it needs to store a large amount of information.
Then, as the problem grows by the number of agents, it will
become computationally too complex. On the other hand, the
ADMM distributed approach is an alternative to reduce the
amount of information shared between agents, however, the
number of iterations for finding the solution can be a limiting
factor if the problem is not well constrained.

By analyzing the effect of adding the battery aging cost
to the objective function, it was noticed that the degrada-
tion cost is negligible with respect to the other objectives,
nevertheless, by a Pareto analysis, it was evidenced that
the difference between including or not the battery in the
dispatch increases the operative cost in 11.67%.

Interesting future research directions are sensitivity ana-
lysis of aging costs for different load/generation profiles,
varying the number of agents, taking into account seasonality
and geographical locations. On the other hand, we plan to
explore how to solve both the centralized and distributed
approaches considering uncertainty on resources such as
renewable energies.
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