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ABSTRACT

In this paper, we present HOMULA-RIR, a dataset of room impulse
responses (RIRs) acquired using both higher-order microphones
(HOMs) and a uniform linear array (ULA), in order to model a
remote attendance teleconferencing scenario. Specifically, measure-
ments were performed in a seminar room, where a 64-microphone
ULA was used as a multichannel audio acquisition system in the
proximity of the speakers, while HOMs were used to model 25
attendees actually present in the seminar room. The HOMs cover
a wide area of the room, making the dataset suitable also for ap-
plications of virtual acoustics. Through the measurement of the
reverberation time and clarity index, and sample applications such
as source localization and separation we demonstrate the effective-
ness of the HOMULA-RIR dataset.

Index Terms— sound field reconstruction, acoustic array pro-
cessing, acoustic data set, room impulse response

1. INTRODUCTION

In recent years, teleconferencing platforms have become part of
daily lives of most people, especially after the COVID-19 pandemic.
Applications like source separation [1], speech enhancement [2, 3]
or echo-canceling [4], dereverberation [5] or audio packet loss con-
cealment [6–8] are customarily used in teleconferencing software.
Moreover, with the growing interest within augmented and vir-
tual reality contexts, an increasing number of platforms, including
those for teleconferencing, are incorporating spatial audio features.
To this end, tasks such as sound field reconstruction [9–11] have
gained particular relevance, due to their crucial role in enabling
applications like navigable audio. Nevertheless, to accurately as-
sess the performance of these methods in real-world scenarios, it is
necessary to test them using data measured in real environments.
Additionally, more and more approaches nowadays heavily rely on
machine learning or other data-driven algorithms, that thus need
large amounts of data for training and validation. For these reasons,
several Room Impulse Response (RIR) datasets are present in the
literature. In [12] multichannel responses were measured in a room
with variable reverberation levels, with the aim of evaluating source
separation techniques, while in [13] RIRs in low-reverberation time
rooms were measured to test sound zone control and reconstruc-
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Fig. 1: Photograph of “Schiavoni room” taken during the measure-
ment session.

tion methods. The Multi-arraY Room Acoustic Database (MYR-
iAD) dataset [14] was created by acquiring measurements using
several microphone configurations such as in-ear omnidirectional
microphones in a dummy head, circular arrays and behind-the-ear
arrays in two recording scenarios. Several RIR datasets acquired
through higher-order microphones (HOMs) have also been released.
In [15] measurements were acquired in three rooms, each with a
static source position and more than one-hundred receivers, using
both omnidirectional and B-format microphones. A dataset of six
degrees-of-freedom RIRs in controlled and empty rooms, using dif-
ferent reverberation levels was presented in [16], while the Motus
dataset [17] was created by acquiring Ambisonic [18] RIRs in a
single room and varying the furniture position.

In this paper, we present HOMULA-RIR, a complementary
dataset of RIRs acquired in a real environment using a hybrid setup,
with the objective of representing a realistic teleconferencing sce-
nario. Specifically, we have deployed a linear microphone array to
simulate the acquisition of the main speaker, e.g., a lecturer, by a
teleconferencing audio system; and HOMs densely sampling the
listeners position within the room. Measurements were performed
in “Schiavoni room” located at Dipartimento di Elettronica, Infor-
mazione e Bioingegneria of Politecnico di Milano in Milan, Italy.
The seminar room is named after Prof. Emer. Nicola Schiavoni
and it is employed for lectures and teleconferences by the staff of
the Politecnico di Milano. After the acquisition of the RIRs and
a geometric calibration of the arrays based on acoustic measures,
we estimate the reverberation time and the clarity of the room.
Moreover, in order to validate the HOMULA-RIR dataset, we test
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Fig. 2: Floor plan of Schiavoni seminar room. Sources are depicted in green, ULAs in red, and HOMs in blue. Spatial measurements are
referenced to the orange marker denoting the origin point.

it under two sample applications, namely source localization and
source separation, demonstrating its effectiveness. The rest of the
paper is organized as follows. In Sec. 2 we describe the dataset
in terms of environment and setup, while in Sec. 3 we describe
some objective measurements related to the environment condi-
tions. In Sec. 4 we present two sample applications. Finally, in
Sec. 5 we draw some conclusions. The dataset is freely available at
https://doi.org/10.5281/zenodo.10479726.

2. DATASET DESCRIPTION

The proposed dataset is composed of a collection of RIRs, measured
in a seminar room covering a wide area thereof. Considering the
designated use of the dataset for teleconferencing and spatial audio
applications, we chose to employ a hybrid setup by capturing RIRs
using both uniform linear arrays (ULAs) and HOMs. More specifi-
cally, we opted to position the ULAs in front of the desk, typically
where one or more lecturers are located during a presentation, to
emulate a teleconferencing system capturing the sound in the prox-
imity of the source. The HOMs, instead, are positioned in correspon-
dence of the listeners’ seats, to replicate the listening perspective of
the attendees. The RIRs have been recorded using logarithmic sine
sweeps ranging from 50Hz to 22 kHz, each lasting 10 s and sampled
at 48 kHz. The room responses have been acquired using Reaper
as Digital Audio Workstation and all the audio streams were routed
through the Dante™ Controller to a laptop operating a Dante™ Vir-
tual Soundcard.

2.1. Room conditions

The room in which we performed the measurements, shown in Fig-
ure 1, is typically used for frontal lessons and seminars and thus is
furnished with tables and chairs for both lecturers and the audience.
To preserve and capture the acoustic properties of the actually used
space, we opted to keep the furniture during the collection of the
RIRs. The room is 14.52m long, 5.46m wide and 3.38m high.
The floormap is shown in Figure 2. It features concrete and tile sur-
faces throughout, with windows covered by heavy curtains.

2.2. Sources setup

We considered two sources located behind the main desk in the
room, specifically employing two Genelec 8020D loudspeakers1,
which can be seen in the foreground in Figure 1. The intention is to
replicate the scenario of two speakers or lecturers addressing an au-
dience in the room. With respect to the origin indicated in Figure 2,
the sources are located at positions S1 = [2.28m 0.96m 1.20m]T

and S2 = [3.28m 0.96m 1.20m]T , considering the acoustic
center indicated in the operating manual of the loudspeakers as
measurement point.

2.3. EStick setup

As far as the ULAs are concerned, we used four co-linear EStick
V3, made by Eventide Inc. in collaboration with Politecnico di Mi-
lano [19]. ESticks are modular ULAs, and each unit consists of
16 omnidirectional MEMS microphones with a spacing of 3 cm be-
tween them. One advantage of the system is its versatility in rapidly
deploying various linear and planar array configurations, accommo-
dating up to 64 microphone elements. For our particular setup, vis-
ible in Figure 1, we opted for a linear geometry to achieve a 64-
microphone-long array, positioned in front of the main desk, at the
same height z = 1.20m of the sources. The microphone signals
are accessible through the integrated Dante™ connectivity, using a
single CAT6 cable for each array, which provides both power and
synchronization. Even if the position of each capsule is known a pri-
ori, we have implemented a self-calibration procedure to localize the
ULA within the room, as described in Section 3.1.

2.4. Spatial Mic setup

For the acquisition of the RIRs through HOMs, we adopted the Spa-
tial Mic Dante by Voyage Audio2. The Spatial Mic is based on the
geometry presented in [20], and it features 8 prepolarized condenser
capsules, allowing a higher-order Ambisonics [18] encoding up to
the 2nd order. Similarly to the ESticks, the Spatial Mic features in-
tegrated Dante™ connectivity, using a single CAT6 cable for each

1https://www.genelec.com/8020d
2https://voyage.audio/spatialmic

2

https://doi.org/10.5281/zenodo.10479726
https://www.genelec.com/8020d
https://voyage.audio/spatialmic


unit that provides both power and synchronization. In the consid-
ered setup, we positioned the HOMs in correspondence of the audi-
ence seats, at the same height z = 1.20m of the sources, covering
25 different locations divided in 5 rows. With five devices at our
disposal, we conducted the measurements five times, relocating the
microphones while maintaining precise consistency in the surround-
ing environment and position of the sources. The position of each
capsule has been estimated through acoustic measures computed as
described in Section 3.1.

2.5. Data format

The released RIRs have been recorded at a sample rate of fs =
48 kHz and truncated to a duration of 1 s. They are provided as
multichannel wav files, saved at 32 bit per sample. RIRs of in-
dividual arrays are saved as separate files, following the naming
convention: rir-source-array.wav. Here, source can be
either S1 or S2, depending on the considered source, and array
is an acronym representing a specific microphone array, as de-
picted in Figure 2. The term array can take on either ULA for
the ESticks measures, or a pair row-HOM for the Spatial Mics
measures. Specifically, row = {R1, R2, R3, R4, R5} des-
ignates the row where a particular Spatial Mic is positioned, and
HOM = {HOM1, HOM2, HOM3, HOM4, HOM5} denotes a spe-
cific array within each row. The positions of each capsule in every
array are released as csv files, adopting the naming convention
pos-array.csv, where array is the same acronym denoting
a specific microphone array. Additionally, the positions of the two
sources are reported in the file pos-sources.csv.

3. EVALUATION OF MEASUREMENTS

3.1. Calibration

A calibration process is carried out to determine the absolute place-
ment within the room of each capsule of the microphone arrays. This
allows us to provide acoustically precise positions, which are partic-
ularly relevant for many potential applications of the data set. To in-
fer each microphone’s location, the calibration process uses four ad-
ditional loudspeakers (Genelec 8020D), whose positions are known
and which can be seen in the background in Figure 1.

First, we measured the RIRs between each capsule of both the
ESticks and the Spatial Mics, and the additional sources placed
around the area in which the microphones are located. The acquisi-
tion of the RIRs follows the same procedure detailed in Section 2.
From each RIR, by identifying the first peak associated to the direct
path, we compute the Time of Arrival (ToA), which is the time that
it takes for a pressure wave to travel from a source to one of the
microphone capsules. Then, to estimate the unknown positions of
each capsule rm, we solve an optimization least-squares problem in
2D as

(rm, d) = argmin
(rm,d)

∑
m,l

[∥rm − rl∥ − (τm,l · c− d)]2, (1)

where c is the speed of sound, rl is the position of loudspeaker l,
τm,l is the ToA between rm and rl and d is an estimate of the delay
caused by the acquisition system latency, expressed in meters.

3.2. Reverberation time

In order to characterize the acoustic properties of “Schiavoni room”,
we estimate the reverberation time T60 of the environment. In par-
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Fig. 3: Reverberation time as a function of (a) frequency and as a
function of (b) distance from the sources.

ticular, we compute the average room T60 as the mean T60 mea-
sured from each RIR using Schroeder method, in the implementation
provided by the pyroomacoustics package [21]. In particular,
we considered a 30 dB decay in the energy decay curve to actually
estimate the T60. Figure 3a shows the variation of T60 across third-
octave frequency bands, spanning from 125Hz to 4000Hz. Figure
3b, instead, depicts the relationship between T60 and the absolute y
position in the room, providing insights into reverberation time de-
pendence on the distance from the sources. As expected, the rever-
beration time exhibits variability among different frequency bands,
ranging from a minimum of 0.56 s to a maximum of 0.93 s, with a
mean value of 0.74 s. In contrast, there is no discernible dependence
on distance, indicating that the reverberation time remains consistent
throughout different locations within the room.

3.3. Clarity index

The clarity index, as defined in ISO-3382-1 standard, serves as an
estimation of perceived clarity within a room and depends on the
energy ratio between the early and late parts of the RIR [22]. Specif-
ically, we calculated both C50 and C80 clarity indices, using the im-
plementation available in the python-acoustics package. Fig-
ure 4a displays the variation of both metrics across third-octave fre-
quency bands, spanning from 125Hz to 4000Hz. Figure 4b, in-
stead, presents the relationship between clarity index and the abso-
lute y position in the room, enabling the exploration of its depen-
dence on the distance from the sources. Except for the lower fre-
quencies, clarity remains relatively consistent across different fre-
quency bands, converging towards average values of C50 = 0.5 dB
and C80 = 5.4 dB. Conversely, when considering the dependence
on distance, C50 exhibits a decline from 2.5 dB at the front row of
the room to −6.8 dB at the back of the room, while C80 exhibits a
decline from 7.0 dB to 2.4 dB.
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Fig. 4: Clarity index as a function of (a) frequency and as a function
of (b) distance from the sources.

4. SAMPLE APPLICATION

In order to validate the HOMULA-RIR dataset, we conducted vari-
ous tests targeting two classical applications: blind source separation
and source localization. Specifically, blind source separation was
employed to show the use of ULA signals, while source localization
was used to validate the HOMs signals.

4.1. Blind source separation

The task of blind audio source separation involves extracting multi-
ple unknown audio signals (sources) by processing their combined
mixture. This process is referred to as blind because the algo-
rithm has access only to the mixed signals and lacks information
about the individual source signals. To achieve this, we exploit the
Ray-Space-Based Multichannel Nonnegative Matrix Factorization
algorithm (RS-MNMF), originally proposed in [23]. The algorithm
leverages the Ray Space Transform [24], to project the microphone
signals acquired by ULAs (the ESticks) into the Ray Space domain.
In such domain, the position of sources is encoded directly into the
magnitude of the ray-space-transformed signals. This results in an
effective use of the spatial information present in the mixture and
encoded in the ray space data, allowing for a direct application of
the conventional multichannel NMF algorithm [23].

Results are computed in terms of three classic blind source sep-
aration metrics, namely Source to Distortion Ratio (SDR), Source to
Interferences Ratio (SIR) and Sources to Artifacts Ratio (SAR) [25].
The tests were conducted considering 3 s long speech signals, and
the average value of these metrics over all the microphone signals is
taken into account. It can be noticed that the results remain consis-
tent for both examined sources, S1 and S2, indicating that the sepa-
ration can be successfully performed considering either sources and
independently from the locations. Additionally, the obtained values
align with those presented in [23] using a similar setup.

Source S1 Source S2

0

2

4

6

8

[d
B
]

SDR SIR SAR

Fig. 5: Blind source separation results: SDR, SIR and SAR metrics
for both considered sources.

4.2. Source localization

In the context of acoustic signal processing, source localization is the
task of identifying the direction of arrival (DOA) of a sound emitted
by a source from a multichannel acquisition. In this work, we lever-
age on SHD-LRA [26], a DOA estimation approach that exploits
low-rank signal approximations in the spherical harmonic domain.
In particular, the algorithm makes use of the spherical harmonics
representation in order to estimate the direction-dependent compo-
nents that characterize the source position by means of low-rank de-
composition of the expansion coefficients [26].

As in [26], results are evaluated in terms of two performance
metrics: the probability of detection (PD) and the root mean squared
error (RMSE) of the DOA. In particular, the former is computed as
the percentage of DOA estimates below an absolute DOA error of
10◦. Using the microphone signals captured by the Spatial Mics and
considering the acoustically calibrated positions as ground truth, a
probability of detection of 79% can be achieved. This aligns with
the results presented in [26] when dealing with reverberant room
conditions. Also the RMSE values are consistent with those in [26]
computed for non-ideal conditions, yielding an azimuth RMSE of
3.33◦ and an elevation RMSE of 6.10◦.

5. CONCLUSION

We presented HOMULA-RIR, a dataset of RIRs measured in a sem-
inar room, acquired through the use of both ULAs and HOMs. This
diverse and versatile configuration guarantees suitability for a broad
range of application scenarios in the context of telecommunications,
teleconferencing, and spatial audio. We provide precise measure-
ments, together with acoustically calibrated microphone positions.
Various analyses, including the measurement of reverberation time
and clarity, have been conducted to offer a comprehensive under-
standing of the acoustic characteristics within the environment. To
validate the usability of the dataset, we performed tests with two
classic applications: blind source separation and source localization.
Results prove the effectiveness of the dataset in these contexts, show-
casing its potential for the intended applications.
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[17] G. Götz, S. J. Schlecht, and V. Pulkki, “A dataset of higher-order am-
bisonic room impulse responses and 3d models measured in a room
with varying furniture,” in 2021 Immersive and 3D Audio: from Archi-
tecture to Automotive (I3DA), pp. 1–8, IEEE, 2021.

[18] F. Zotter and M. Frank, Ambisonics: A practical 3D audio theory for
recording, studio production, sound reinforcement, and virtual reality.
Springer Nature, 2019.

[19] M. Pezzoli, L. Comanducci, J. Waltz, A. Agnello, L. Bondi, A. Can-
clini, and A. Sarti, “A dante powered modular microphone array sys-
tem,” in Audio Engineering Society Convention 145, Audio Engineer-
ing Society, 2018.

[20] E. M. Benjamin, “A second-order soundfield microphone with im-
proved polar pattern shape,” in Audio Engineering Society Convention
133, Audio Engineering Society, 2012.

[21] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: A
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