
On a Virtual Network Functions

Placement and Routing Problem:

Some Properties and a Comparison of Two Formulations

Bernardetta Addisa, Giuliana Carellob,, Meihui Gaoa

aUniversité de Lorraine, CNRS, LORIA, F-54000 Nancy, France
bDipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano Milano, Italy

Abstract

The mass diffusion of internet applications, both from computers and mobiles, has
yielded to an increasing demand for network services with which the expensive and not
flexible hardware appliances cannot keep up. On the other hand, computational ca-
pability has become available on the network nodes connected with computing servers
and the cloud. This has suggested the Network Functions Virtualization paradigm: ser-
vices are provided on a software basis thus giving a flexible and cost effective response
to the request for services. The Network Functions Virtualization proposes challenging
optimization problems such as the Virtual Network Functions chaining problem, where
service instances must be located on some network nodes and each demand must be
routed through the services it requires. Most of the literature is currently focused on
heuristic solutions, rather than on studying the problem properties or comparing ap-
proaches. With the aim of investigating the problem properties and comparing existing
formulations, both from the theoretical and the numerical points of view, we consider a
single service Virtual Network Functions chaining problem, with different link and service
capacities and the objective of minimizing the number of installed VNF instances.

Keywords: OR in telecommunications, Networks, Virtual Network Functions, ILP
formulations, Location, Network routing

1. Introduction

The ever increasing diffusion of mobile devices and the consequent rise of the demand
for network services (such as firewalls, proxies or WAN optimizers) have made it difficult
for the hardware-based appliances to keep up with service requests: indeed such appli-
ances cannot be flexibly operated or upgraded with new functionalities. The Network

Email addresses: bernardetta.addis@loria.fr (Bernardetta Addis),
giuliana.carello@polimi.it (Giuliana Carello), arielle1023@hotmail.com (Meihui Gao)

Function Virtualization paradigm has been recently proposed to overcome such limita-
tions: instead of satisfying demands using service-specific hardware-based appliances,
virtualized services, a.k.a. Virtual Network Functions (VNFs), can be dynamically allo-
cated on generic servers and made available for each demand when necessary. In this way,
the ever increasing demand of existing and new services can be met in a more flexible
and cost-efficient way.

Starting from 2012, release date of the ETSI white paper [17], Network Function
Virtualization technology has received much attention from both industry and academia:
several works have been published addressing challenging aspects spreading from the
creation of Network Function Virtualization platforms [18, 11] to the optimization of
VNF based networks with respect to, for instance, resource efficiency [12] or competitive
goals [1].

A key problem arising in implementing the Network Function Virtualization paradigm
is the VNF chaining problem: locating VNFs and routing demands to guarantee that
each demand passes through a sequence (chain) of VNFs that provides the services it
needs. The allocation of demands to VNF instances and the demand routing must sat-
isfy quality requirements, such as delay, congestion, minimal resource utilization (CPU,
energy, etc). We can schematically describe the VNF chaining problem as follows: we are
given a telecommunication network, where the nodes can have computing capability. 1

Traffic demands must be routed on the network and must be served by a set of VNFs
(services), which must be located where computing capability is available. Therefore a
traffic demand that needs to access a VNF located in a node must traverse the node it-
self. For each demand, an order (possibly partial) according to which the VNFs must be
traversed may be given. Several constraints can be taken into account, such as demand
delay [4], flow compression/decompression [1], incompatibility between VNFs [3], thus
leading to several versions of the problem.

1.1. Modeling paradigms: Virtual Network Embedding vs Placement and Routing

In the early works, the VNF chaining problem is modeled using the Virtual Network
Embedding (VNE) paradigm: a virtual network is built for each demand representing
the demand together with the chain of VNFs to serve it. Then, virtual nodes and links
are mapped (embedded) on the physical network. As a consequence, the VNF location
and demand routing are defined according to the mapping solution.

The VNF chaining problem with fixed ordered chain can thus be seen as a special case
of VNE where the virtual networks to be embedded reduce to linear graphs whose both
extreme nodes have a fixed location. Since the VNF chaining problem a special case of
VNE, the VNE complexity results cannot be just extended to the VNF chaining problem.
Indeed, in [2] it is shown that the VNF chaining problem is easier than the VNE in some
particular cases and for some network topologies. Further, the VNF chaining problem
differs from the general VNE problem and the VNE representation paradigm is not

1The computing capability is provided by servers or cloud which are directly connected to the network
nodes. We work under the (commonly used) hypothesis that the network link capacity is tighter than
the capacity of the connection between computational servers and nodes. Therefore, as each server is
connected directly to only one routing node, we use a compact representation where routing nodes and
server nodes are collapsed, simply assigning the computational capacity of a server to the connected
node.

2

always suitable for representing VNF problems, for example when the VNF chain is not
ordered, or just partially ordered, nor does it capture all the features of VNF problems,
for example the possibility of sharing VNF resources among different demands.

More recently, another modeling framework (the Placement and Routing) has been
proposed, where the location and the routing parts of the problem are modeled based
on classical location and network design formulations and then bound together through
suitable constraints.

1.2. A short literature review

As mentioned, the early papers mainly exploit the VNE paradigm. Even if this
paradigm was proved not to be suitable for describing the general VNF chaining prob-
lem (see [1] and [3] for more details), we report, in what follows, also some of the works
that are based on it, as VNE-based approaches were the first proposed in the telecom-
munication community. In [9], authors introduce a VNE based MIP formulation. In [4],
a VNE based ILP formulation is proposed along with a dynamic programming based
heuristic to deal with large size instances. Similarly, a VNE based representation of
the problem is proposed in [15], where the focus is on the online version of the VNF
chaining problem: three greedy algorithms and a tabu-search based heuristic method
are proposed to deal with the VNF online mapping and scheduling. The problem of
embedding VNF chains is addressed also in [14], where demands may be rejected and
the subset of accepted demands must be maximized while limiting the number of service
chains considered. In [12], the authors propose an ILP model based on the mapping of
VNF chains on a physical network, although without naming it explicitly. The mapping
exploits precomputed paths. The ILP model is used as a step in a heuristic procedure
based on a dichotomic search on the number of located VNFs.

The more recent networking literature exploits the fact that the VNF chaining prob-
lem shares features with both facility location and network design problems. In [5], the
specific Deep Packet Inspection VNF placement problem, where a single type of service
is asked, is targeted and modeled as an adaptation of the multicommodity flow problem
model. Small instances are solved with a standard ILP solver and for larger instances a
centrality-based greedy algorithm is proposed: at each step a new VNF is located in the
node that has the highest centrality until all the traffic flows are served or all nodes have
a VNF. In [1], authors provide a facility location and demand routing MILP formulation
with a generic number of services and no fixed order in the chain, taking into account
different latency regimes and traffic compression properties. Their work investigates the
trade-off between a legacy traffic engineering related goal (namely maximum link utiliza-
tion) and the VNF installation cost (calculated as the number of allocated CPUs). An
extension of this work [8] considers also ordered (or partially ordered) chains. A math-
heuristic is presented to speed up the solution phase. A model similar to [8] is proposed
in [3], where additional constraints are added to take into account the incompatibility of
certain VNFs and thus imposing that they are located in different nodes. Furthermore,
in this work, some demands can be rejected, therefore their routing and VNF assignment
can be neglected. A greedy algorithm based on the decomposition of the problem into
two steps (routing and location) is proposed. Flows are allocated one by one, and then
the VNFs are located on the selected paths.

3

1.3. Some remarks on the current state of the art

As shown by the above brief review (see [7] for a comprehensive view), most of the
works tackle application related problems and focus on developing heuristic methods
to solve the problem within a reasonable computational time, mostly by decomposing
the problem into two steps (placing the VNFs and then routing the demands). To the
best of our knowledge, the different formulations and solution strategies have not been
compared on a common data set yet (aside from [8], where a small data set is provided
to compare two matheuristics) and the theoretical properties of the problem have not
been thoroughly studied, except for some results on the computational complexity [2,
13]. We believe that studying more accurately the VNF chaining problem is of interest,
not only for the telecommunication community, where more efficient solution strategies
can significantly reduce the management cost and improve the quality of service, but
also for the optimization community, indeed, the VNF chaining problem shares features
with network design problems (for the demand routing part) and with facility location
problems (for the VNF location and the server dimensioning). Both problems are widely
studied in the literature. Even if some combinations of facility location and network
design problem have been studied in the optimization literature [6], the VNF chaining
problem peculiarities (completely general network, different level of capacities: nodes,
links, etc.) are still not explored in the optimization literature and provide a challenging
topic. Further, as mentioned before, the problems addressed in the literature differ in
the considered technical features and assumptions, therefore it is almost impossible to
compare the quality of existing solution strategies on a common base.

1.4. Paper contribution

Our goal is to study the VNF chaining problem and its properties from an optimiza-
tion point of view, starting from a simplified, yet significant version of it: VNF instances
are capacitated, as well as network connections. Further, each demand requires a single
service, which is the same for all the demands, and must be routed on a simple path
(as in [3, 8]). 2 The goal is to minimize the number of installed VNF instances. First
of all, we show some properties of the aforementioned problem. Then, we compare the
formulations proposed in the literature both theoretically and computationally on a set
of instances derived from the SNDLib [16]. The two formulations that can be derived
from the literature can be summarized as follows:

• the Split Path (SP) formulation, where the path of each demand is split into two
subpaths, one from the origin to the service node and one from the service node to
the destination. The SP shares some modeling features with VNE based models,
but different from them, it can be easily generalized to the many services chain
case (increasing the number of subpaths with the increase of VNFs in the chain,

2 This assumption is justified by some considerations derived by the real application. First of all,
for some telecommunication technologies implementing paths with cycles is not straightforward: for
example in label-switching where for each packet (of a given demand) labels are used to signal the next
node to be reached (therefore, without adding an additional “memory-policy” of the type “when you
pass by a given node change the forwarding path”, paths with cycles cannot be implemented); second,
but not less important, the introduction of VNF must be transparent for the user and therefore it must
produce routing similar to the ones used before introducing the function virtualization paradigm (that
usually do not have cycles).

4

see Appendix B). It is worth noticing that, whereas the VNE paradigm is not
correct to describe the general VNF chaining problems, the resulting formulation
is quite effective to solve some special cases (see [8]).

• the Placement and Routing (PR) formulation, which is directly derived by the
combination of network routing and facility location formulations.

Our results show that the SP formulation must be preferred to the recently most
commonly used PR formulation, since SP allows both to solve exactly larger instances
(where the PR formulation fails even to find a feasible solution) and to reduce the com-
putational times for small size instances, allowing also to improve existing (and future)
ILP-based heuristics.

The remainder of the paper is organized as follows. In Section 2, we formally define the
problem and investigate its properties. In Section 3, we introduce the two aforementioned
problem formulations and describe their features and relation in terms of continuous
relaxation bounds and solutions. We present and analyze the results of computational
experiments in Section 4. Finally, Section 5 concludes the paper.

2. Problem description and properties

In this work, we focus on a VNF chaining problem where a single type of VNF is
considered. The network is represented by a graph G(N,A), where N represents the
set of nodes and A represents the set of arcs (or links). An instance of the VNF can
be installed on any node in N . Both links and VNFs are capacitated: let u denote the
arc capacity and q the service (VNF) capacity. The network demands are represented
by the set D: each demand k ∈ D is characterized by a source (origin) node ok, a
destination (terminal) node tk, a demand amount dk. The demand must be served by
(pass through) an instance of the VNF (service), but a demand can pass through a node
without using a VNF installed on it. Demands cannot be split and must be routed on
simple paths, i.e., the demand is not allowed to deviate from its path to “search” the
VNF. Let us denote the problem as Virtual Network Function Placement and Routing

with Simple Path (VNF-PRSP). In Figure 1, a small example is reported. Two demands
are considered with their respective origin and destination nodes. The node in gray
represents the service location which serves both the demands. The dashed and dotted
lines represent the routing for demand 1 and demand 2, respectively.

The VNF-PRSP in its decision form is NP-complete even with only one type of ca-
pacity (either link or service capacity): in [13] the problem is proved to be difficult if
nodes are capacitated (the same approach can be used for the service capacity case),
while in [2] it is proved to be difficult if only arc capacity is considered.

2.1. General remarks

We assume that only one type of service is available and all the demands require it.
However many results can be extended to the multiple service case. In particular, if all
the demands ask for the same sequence of services (same types of VNF and same order)
the single service and the multiple services cases are equivalent 3.

3Despite the fact that these assumptions may seem quite strong to hold for realistic settings, the
property is interesting: it can be usefully exploited in ILP-based and decomposition heuristics methods

5

o1

o2

t2

t1

Figure 1: An example of a VNF-PRSP solution: two demands are considered, the gray node represents
the service node.

Property 2.1. Let us consider two problems P1 and P2 that share the same features
except for the cardinality of the required chain of services:

• in P1 each demand requires the same service a;

• in P2 a set of VNF types T is given; each VNF type in T has the same capacity of
service a, all the demands require the same sequence of services, both in terms of
service types and order.

If there exists an optimal solution for problem P1, then an optimal solution for P2

can be derived by installing all the required services in the sites selected by the optimal
solution of P1 and routing the demands according to the optimal solution of P1.

Proof. A feasible solution for P1 is given, that is to say a subset of nodes hosting the
instances of service a such that all the demands can be routed from their source to their
destination passing through an instance of the service a, and respecting link capacity,
service capacity and simple path constraints.

Now, let us consider the problem P2. By installing an instance of each service type
in T on the same nodes where the instances of service a are located, and by keeping the
same demand-service instance assignment and routing as in the P1 solution, we obtain
a feasible solution for P2. In fact, installing instances of several different VNF types on
one node does not affect either the link capacity constraints or the routing constraints.
Furthermore, as the VNF types have the same capacity, if a service a instance installed
in a given node i can serve all the demands assigned to it, then any service instance
installed on node i can serve the same set of demands.

As any feasible solution of P1 has the same number of service instances per service
type as the derived solution of P2, if the P1 solution location is optimal then it is optimal
also for P2.

�

(for example clustering demands according to their requested VNF chain and solving the problem on
such clusters) to tackle large size realistic versions of the VNF chaining problem.

6

We can observe that under the hypothesis that the set of required service types is ex-
actly the same, the two problems are equivalent even if they account for different service
orders. 4

2.2. Impact of biconnected components and articulation points

A lower bound on the number of VNF instances (and thus on the objective function)
can be obtained if the graph contains at least one articulation point. Let us recall that
a graph is biconnected if by removing any node the graph remains connected. Further,
a biconnected component of graph G is a maximal induced biconnected subgraph of G.
Biconnected components are connected to each other at shared vertices called articulation

points : an articulation point of a graph G is a vertex v such that G\v has more connected
components than G.

Let us consider a VNF-PRSP problem defined on a graph G containing biconnected
components and suppose that there exists at least one demand whose origin and desti-
nation nodes are both in the same biconnected component. Further, suppose that such a
biconnected component has only one articulation point. Let us refer to such biconnected
components as biconnected components with internal demands and a single articulation

point. The following property can be stated.

Property 2.2. It is necessary to install at least one service inside each biconnected com-
ponent with internal demand and a single articulation point. Furthermore, there exists
an optimal solution5 where each of such articulation points hosts a service.

Proof. Let us consider a biconnected component, a demand with both endpoints within
it and a node i outside it. If the demand is served by a service installed on node i then
its routing must pass first through the articulation point to reach the service and then
it must pass again through the same articulation point to complete its routing, thus
violating the simple path routing constraint. Thus, in a feasible solution, a service must
be installed within a biconnected component to serve the demands whose source and
destination belong to the biconnected component itself. Similarly, a demand with both
endpoints outside the biconnected component cannot be served by a node in the bicon-
nected component, if it is not the articulation point. Thus a solution where a service is
installed in the articulation point is always at least as good as one in which the service is
in the biconnected component but not in the articulation point. Therefore, the minimum
number of service instances is at least equal to the number of articulation points connect-
ing biconnected components with internal demands and a single articulation point. �

Thanks to Property 2.2, it is possible to determine a lower bound on the number
of VNFs to install combining the number and structure of the biconnected components
with the source and destination of the demands. Furthermore, a partial solution can be
built, installing services on articulation points. A preprocessing can be devised, which
aims at

4We recall that it is always possible to schedule the services allocated on the same server in any
order, and that in the application problem this order is determined by a suitable scheduling algorithm
performed at the server/cloud level.

5if the instance is feasible

7

1. detecting the number of biconnected components with internal demand and a single
articulation point, thereby installing one service on each of such articulation points;
the search for articulation points can be done in polynomial time through a modified
graph search (see [10] for details);

2. forbidding the assignment of a demand to the VNF which is outside of the bicon-
nected component the demand origin and destination belong to.

3. Mathematical formulation

In this section, we present the two formulations derived from the literature which we
aim to analyze and compare: the Split Path formulation and the Placement and Routing
one.

The first formulation (SP) is based on the decomposition of the path of each demand
into several subpaths, each associated with a service instance serving the demand. A sim-
ilar formulation is presented in [5] (also here a single VNF type is considered, but there is
no simple path assumption). The second one (PR) is directly inspired by network design
and facility location problems: a set of variables and constraints represent the demand
routing and a set of variables and constraints represent the service (facility) location and
the demand to service allocation part, connecting constraints are used to couple the two
subproblems. It can be considered as the adapted version of the formulation presented
in [1] to our VNF-PRSP problem.

In Table 1, the notation is summarized and the variables used by the two formu-
lations are reported. As some variables are common to both formulations and some
are formulation dependent, in the last column we report the formulation in which the
parameter/variable is used.

In both formulations, binary variable yi represents the location of an instance of the
VNF on node i ∈ N and binary variable zki represents the assignment of demand k to
the instance of the VNF located on node i. The two formulations differ in the way the
routing is modeled. In both, arc binary variables are used, which are equal to one if a
given arc is used by a given demand. In PR, these variables are xk

ij . In SP, the path
is explicitly divided into two subpaths: the first from the origin ok to the service node
(described by variables xk1

ij) and the second from the service node to the destination tk
(described by variables xk2

ij).
As we want to enlighten the common points and differences between the two formu-

lations, we present them in parallel, starting from the common part (a summary of the
constraints characterizing the two formulations is reported in Table 2).

min
∑

i∈N yi (1)
∑

i∈N zki = 1 ∀k ∈ D (2)

zki ≤ yi ∀k ∈ D, i ∈ N (3)
∑

k∈D dkz
k
i ≤ q ∀i ∈ N (4)

8

Notation Formulation
Sets

N set of nodes both
A set of arcs both
D set of demands both

Capacities (Network and Services)
u arc capacity both
q service capacity both

Demand parameters
ok origin of demand k ∈ D both
tk destination of demand k ∈ D both
dk bandwidth of demand k ∈ D both

Variables common to both formulations (binary)
yi 1 if a service is located on node i ∈ N both
zki 1 if demand k ∈ D uses the service on node i ∈ N both

Routing variables (binary)
xk
ij 1 if arc (i, j) ∈ A is used by demand k ∈ D PR

xk1
ij 1 if arc (i, j) ∈ A is used by demand k on subpath 1 SP

xk2
ij 1 if arc (i, j) ∈ A is used by demand k on subpath 2 SP

TSP-like labeling variables (continuous non-negative)
πk
i position of node i ∈ N in the path used by demand k ∈ D PR

Table 1: Mathematical notation

The objective function (1) minimizes the sum of the opened services (i.e., instances of
the VNF). Constraints (2) impose that each demand is assigned to exactly one instance
of the service. Inequalities (3) guarantee that if no VNF instance is installed on a node,
then no demand can be assigned to it. Constraints (4) impose that each instance of the
VNF can serve a maximum quantity q of demand.

The link capacity constraints are similar for the two formulations:

SP:

∑

k∈D

dk(x
k1
ij + xk2

ij) ≤ u ∀(i, j) ∈ A (5)

PR:

∑

k∈D

dkx
k
ij ≤ u ∀(i, j) ∈ A (6)

We now present the constraints characterizing each formulation. The main difference
is in the way the routing is managed, and, as a consequence, in how the formulations deal
with the coherence between service assignment and routing. In short, in the SP formu-
lation routing and assignment are implied by modified flow balance constraints, while in
the PR formulation the routing is implied by the classical flow balance constraints and

9

Constraint family SP PR
VNF assignment (2) (3) (2) (3)
VNF capacity (4) (4)
link capacity (5) (6)
demand routing (7) (8) (11)
simple path (9) (10) (13)
additional/connecting - (12)

Table 2: Summary of the constraints defining the SP and PR formulations

the consistency between assignment and routing is implied by coherence constraints and
isolated loop elimination constraints.

Routing and assignment are modeled as follows:

SP:

∑

j:(i,j)∈A

xk1
ij −

∑

j:(j,i)∈A

xk1
ji =

{

1− zki if i = ok

−zki otherwise
∀k ∈ D, i ∈ N (7)

∑

j:(i,j)∈A

xk2
ij −

∑

j:(j,i)∈A

xk2
ji =

{

zki − 1 if i = tk

zki otherwise
∀k ∈ D, i ∈ N (8)

∑

j:(j,i)∈A

(xk1
ji + xk2

ji) ≤ 1 ∀k ∈ D, i ∈ N (9)

∑

j:(i,j)∈A

(xk1
ij + xk2

ij) ≤ 1 ∀k ∈ D, i ∈ N (10)

Each demand is routed on two subpaths: from the source node to the VNF node
(equations (7)), then from the VNF node to the destination node (equations (8)).
These two constraints impose that the routing of the demand passes through the
VNF instance assigned to the demand itself, therefore ensuring that the assignment
is consistent.

Simple path routing6 is imposed by constraints (9) and (10): for each demand, at
most one of the subpaths can pass through a node.

PR:

∑

j:(i,j)∈A

xk
ij −

∑

j:(j,i)∈A

xk
ji =

1 if i = ok

−1 if i = tk

0 otherwise

∀k ∈ D, i ∈ N (11)

6Isolated cycles with no service can be part of a feasible solution. Such cycles can be removed
obtaining a cycle-free equivalent feasible solution.

10

zki ≤
∑

(j,i)∈A

xk
ji ∀k ∈ D, i ∈ N \ {ok} (12)

πk
j ≥ πk

i + xk
ij − |N | (1− xk

ij) ∀k ∈ D, (i, j) ∈ A (13)

Each demand is routed from its source to its destination with the classical flow
balance constraints (11) and it is forced to pass through the VNF instance to which
it is assigned by constraints (12), that impose that a demand k can be assigned to
a service located on node i only if the routing path of the demand passes through
the given node. The simple path and the elimination of isolated cycles are enforced
using the TSP-like labeling variables π and constraints (13): continuous variables
πk
i represents the position of node i in the routing path of demand k.

Both formulations can be straightforwardly generalized to take into account multiple
service types, even hosted on different nodes. However, when a partial (or no) order is
asked, the SP formulation needs a new set of variables to partially decouple the path-
splitting and service order allocation (see Appendix B). Further, the number of subpaths,
and of the related variables, increases linearly with the increasing number of services in
the chain. Instead, the PR formulation can be simply generalized to deal with any
imposed order (full, partial, none). In fact, variables π can be used, together with
additional constraints, to impose a given full or partial order of the services along the
demand path (see [8] for details).

3.1. Relation between the two formulations

In this section, we highlight some properties of the feasible regions of the continuous
relaxations of the two formulations. In what follows we will refer to the continuous
relaxation of SP (PR) as SPr (PRr). The main property is the following:

Theorem 3.1. The SPr produces a continuous relaxation bound that is always not worse
than the one produced by PRr.

Furthermore, it can be shown that for some instances the gap between the two relax-
ations is greater than zero (see Example 3.1).

The full proof of Theorem 3.1 is reported in Appendix A, however we believe that it
is worth reporting here the main ideas (and properties) behind the proof, as they give
some insights into the structure of the feasible regions of SPr and PRr.

Remark 3.1. The SPr forbids demands to be served, even partially, by a VNF instance
installed on an isolated cycle. Instead PRr accepts solutions with an isolated cycle and
a partial service installed on it. 7

7As for Travelling Salesman Problem (TSP), isolated loop elimination constraints (13) are effective
only in the integer formulation.

11

Therefore we can partition the feasible region of the SPr into two subsets: in the first
there are no isolated cycles while in the second one isolated cycles are present, but they
do not host a service. Any solution of the second subset has an equivalent in the first
one (as in classical flow problems).

Then it is necessary to prove that any solution belonging to the first subset can
be transformed into a solution of PRr. The mapping of variables x, y and z is quite
straightforward. To map π variables, for each demand k, it is necessary to decompose
the resulting solution flow into flow on simple paths (Pk: set of simple paths) and flow
on cycles (Ck: set of cycles). As for the paths, if the value of routing variables xk

ij is
considered as the length of the corresponding arc (i, j) then, for any node i belonging
only to simple paths, the πi variable can be set as the longest path distance of such node
i from the source node ok. Such values satisfy constraints (13) by construction for all
couples of nodes both belonging to the path. As for the cycles, we resort to the following
remark:

Remark 3.2. Let us consider a feasible solution of SPr (x1, x2, y, z), a demand k and the
path-cycle decomposition {Pk, Ck} of its routing. Let us suppose that a cycle c ∈ Ck

exists that shares at least one node with a simple path p ∈ Pk.
If a (partial) service is located on a node belonging to the cycle c ∈ Ck, but not to the
path p, the routing variables inducing the path and the cycle are fractional and their
value is less than or equal to 1

2 .
8

We can now determine a value of π for the nodes belonging only to a cycle (nodes
from m to ℓ in Figure 2).

ℓ

i

m

Figure 2: An example of a cycle sharing some nodes with a simple path

Let us consider the two nodes ℓ and m, corresponding to the smallest (πk
ℓ) and largest

(πk
m) value of variables π on the cycle, respectively. If for all the nodes i ∈ Nc, we chose

πk
i =

πk
m + πk

ℓ

2

constraints (13) are always satisfied. The proof is based on the fact that variables π are
bounded by |N | − 1 and that the (SPr) routing variables for any arc (i, j) belonging to
the cycle, but not a path, are bounded by 1

2 .
We now provide an instance in which the bound provided by SPr is stricter than the

one provided by PRr.

8The proof is presented in Appendix A, see Property A1.

12

Example 3.1. Let us consider the symmetric graph in Figure 3 (in the following figures,
each pair of symmetric arcs is represented by the corresponding edge). The services are
uncapacitated, and the link capacity is 5. There are 4 demands, whose characteristics
are listed in Figure 3b.

1

2

3 4

5

6

k1

k2

k3 k4

(a) Topology and demands distribution.

k ok → tk dk
1 4 → 3 5
2 5 → 2 5
3 3 → 1 ∀d3 ∈ (0, 5]
4 4 → 6 ∀d4 ∈ (0, 5]

(b) Demands.

Figure 3: The SPr bound is strictly better than the one of PRr: a numerical example

The SPr optimal solution value is equal to 2, while the PRr one is 1, for any value
of the demands k3 and k4 in (0, 5]. In Table 3, we report an optimal solution for the two
formulations: the location of service instances on nodes is reported in bold. As for the
SPr formulation, one service is located on node 4 and one on node 3. Demands k1, k2
and k4 are served by the service located on node 4, while demand k3 is served by the
service located on node 3. As for the solution of PRr, half service is installed on node 4
and the other half on node 5; each demand uses both services.

demand
SPr PRr

paths fp zki paths fp zki

k1
p11 : 4 → 5 → 2 → 3 1 1 p11 : 4 → 5 → 2 → 3 0.5 0.5

p124 → 3 0.5 0.5

k2
p21 : 5 → 4 → 3 → 2 1 1 p21 : 5 → 4 → 3 → 2 0.5 0.5

- p21 : 5 → 2 0.5 0.5

k3

p31 : 3 → 1 1 1 p31 : 3 → 1 1 -
-

p32 : 5 → 4 → 5 0.5
0.5
0.5

k4
p41 : 4 → 6 1 1 p41 : 4 → 6 1 0.5

- p42 : 5 → 6 → 5 0.5 0.5
services y3 = 1 y4 = 1 y4 = 0.5 y5 = 0.5

Table 3: Routing and assignment/location for SPr and PRr

This example allows us to make some observations on the structure of the feasible
solutions of the two relaxations. Indeed, there exist some families of solutions that are
feasible for PRr, but not for SPr. In this example, we can see two of them (see Figure 4):

- any solution where a source-destination path does not pass through any service node
and an isolated loop hosts a (partial) service (as for demand k3) (see Remark 3.1)

13

- any solution where the routing variables on a path (fp in the table) have a different
value from the assignment variables (path p1 for demand k3 and path p1 for demand
k4).

Remark 3.3 highlights an additional property that is required by the SPr formulation (but
not PRr), indeed, for SP, the routing and assignment variables have to be consistent also
in the continuous relaxation. In this sense, the SP formulation shares some similarities
with the min-cost-flow problem: each service node can be imagined as both sink and
source of a demand and assignment variables zki as the quantity of demand that is
absorbed/produced by the node (depending if we are looking at the subpath entering or
exiting the node). The main difference is that in our problem the sink/source nodes are
decision variables and not given data.

1

2

3 4

5

6

p31

p32p32

(a) Routing of demand k3

1

2

3 4

5

6

p41

p42

p42

(b) Routing of demand k4

Figure 4: Routing solution for demand k3 and k4 for the PRr

Solutions with isolated loops hosting a partial service may be profitable when the
capacity of a cut is small and some demands cannot reach the services installed on the
other side of the cut itself: using a service on an isolated cycle is then the best option for
PRr. Looking again at the example described in Figure 3, we can observe that demands
k1 and k2 saturate the cut {4, 5, 6} , {1, 2, 3} forcing SPr to install a service in each side of
the cut to serve also demands k3 and k4. Instead, PRr does not open two services, thus
providing a weaker bound. The bound provided by SPr is stricter even if the amount of
flow of demands k1 and/or k2 decreases and thus the cut is not fully saturated, as long as
the residual capacity on the cut {4, 5, 6} , {1, 2, 3} is not enough to allow the full demand
k3 to pass through it and back (or symmetrically demand k4 for the reversed cut). A
feasible solution is then selected by PRr as described in Figure 5, where the demand is
half routed (x = 0.5) on the path and is completely served by partially using the two
services located in node i and j.

Such solution is instead infeasible for SPr,
9 resulting in the following general remark:

Remark 3.3. Let us consider a feasible solution for SPr formulation where a fraction of
a demand k is routed on a path pk. Let us consider the services located along this path
and the corresponding assignment variables zki , and suppose that such services are not

9The larger the fraction of demand k3 that can pass the cut, the smaller the gap between the two
continuous relaxation bounds.

14

i j

zi = 0.5

x = 0.5
x = 0.5

zj = 0.5

Figure 5: Example of infeasible flow acceptable for PRr

used by demand k along other paths. Then:

xk1
lm ≥

∑

i∈pk:i=succ(lm)

zki (14)

where with succ(lm) we represent all the nodes that appear in the path pk not before
arc (l,m) (node m is considered belonging to succ(lm)).

This property is a direct consequence of the modified flow balancing constraints (7)-
(8). In Figure 6 a schematic illustration is presented.

i j

zi = α

x1 = ζ + α
x1 = ζ

(a) flow balance on node i

i j

zj = β

x1 = δ + β
x1 = δ

(b) flow balance on node j

i j

x1 = δ + α+ β

x1 = δ + β

x1 = δ

(c) resulting feasible values for x1

Figure 6: Relation between routing and assignment variables for SPr

3.1.1. Impact of the biconnected components

Network topology has also an impact on the quality of the bounds produced by
SPr and PRr. In fact, SPr can produce a tighter bound in presence of biconnected
components, even in the uncapacitated case, thanks to the combination of simple path
constraints and routing/assignment constraints.

15

1

2

3

4 5

6

7

8

k1

k2

k3

(a) Topology and demands distribution.

k ok → tk dk
1 1 → 2 1
2 4 → 5 1
3 7 → 8 1

(b) Demands.

Figure 7: The SPr bound is strictly better than the one of PRr: a numerical example with biconnected
components

Let us consider the graph in Figure 7a, and a set of three demands described in Fig-
ure 7b. Service and link capacities are unbounded. The graph contains two articulation
points (nodes 3 and 6) and 3 biconnected components:

BC1 = {1, 2, 3}, BC2 = {3, 4, 5, 6}, BC3 = {6, 7, 8}.

The SPr bound for this instance is 4
3 , the one obtained by the PRr is the trivial

bound (1).
In Table 4, solutions10 for the SPr and the PRr formulations are reported. For each

path, the node where the (partially) used service is located is reported in bold. In SPr

solution, partial services are installed on nodes 2, 5 and 8, half for nodes 2 and 8, and
one third for node 5. Demand k1 (k3, respectively) is served by the half service installed
on node 2 belonging to its connected component BC1 (node 8 in BC3 respectively)
and by half service installed on node 8 in connected component BC3(node 2 in BC1,
respectively). Demand k2 is split on three paths, and each of them is served by a (partial)
service in a different connected component.

For the PRr formulation, each demand is routed on the direct arc connecting its
origin to its destination, thus satisfying the flow balance constraints (11). To reach the
service, both demand k2 and k3 use two isolated cycles each in the connected component
BC1. It is worth noticing that a single cycle would not be enough to satisfy both
the coherence constraints (12) and the TSP-like cycle elimination constraints (13) (only
fractional solutions can have cycles).

It is worth noting that in this example the bound provided by Property 2.2 is 2, which
improves upon both the SPr and PRr ones.

10For both formulations several equivalent solutions exist, both for location and routing. For the
sake of clarity, we chose to show a “compact” solution for both formulations, preferring symmetric, less
fractional solutions, with short routing and a reduced number of isolated cycles.

16

demand
SPr PRr

paths fp zki paths fp zki

k1
p11 : 1 → 2 0.5 0.5 p1 : 1 → 2 1 1
p12 : 1 → 3 → 6 → 8 → 6 → 3 → 2 0.5 0.5 -

k2

p21 : 4 → 5 1/3 1/3 p21 : 4 → 5 1 -
p22 : 4 → 3 → 2 → 3 → 6 → 5 1/3 1/3 p22 : 1 → 2 → 1 0.5 0.5
p23 : 4 → 3 → 6 → 8 → 6 → 5 1/3 1/3 p23 : 1 → 3 → 1 0.5 0.5

k3

p31 : 7 → 8 0.5 0.5 p31 : 7 → 8 1 -
p32 : 7 → 6 → 3 → 2 → 3 → 6 → 8 0.5 0.5 p32 : 1 → 2 → 1 0.5 0.5

- p32 : 1 → 3 → 1 0.5 0.5
services y2 = 0.5 y5 = 1/3 y8 = 0.5 y1 = 1

Table 4: Routing and assignment/location for the biconnected components case example for SPr and
PRr

3.2. Enriching the formulation

The formulations can be enriched by adding two types of additional constraints. To
derive the first one, we can observe that the total demand that can be served by a service
located on the node i is limited not only by the service capacity, but also by the overall
capacity of incident links (except for the demands served in the origin node i). The same
reasoning can be applied to the outgoing links. Therefore, the maximal demand that can
be served by a node can be calculated as follows:

q̄i = min

q,max

∑

(i,j)∈A

u+
∑

k∈D:tk=i

dk,
∑

(j,i)∈A

u+
∑

k∈D:ok=i

dk

(15)

This allows us to obtain a strengthened version of constraint (4) (using both the service
location variable yi and the capacity q̄i):

VI1:
∑

k∈D

dk zki ≤ q̄i yi ∀i ∈ N (16)

When the capacity of a single VNF instance is not large enough to serve all the
demands, a bound on the number of needed VNF instances can be calculated (similar to
bin-packing problems):

VI2:
∑

i∈N

yi ≥

⌈
∑

k∈D dk

q

⌉

∀i ∈ N (17)

In the following, we will refer to inequality (16) as VI1 and to inequality (17) as VI2.

4. Computational Results

We performed computational tests on the SP and PR formulations to

- compare the performance of the two formulations and evaluate the impact of the
VIs (Section 4.1)

17

- evaluate the scalability of the two formulations (Section 4.2)

- evaluate the impact of Property 2.1 and the impact of increasing the number of
services (Section 4.3)

- evaluate the impact of the articulation point based preprocessing (Section 4.4)

To this purpose we have generated a test bed based on 24 instances from the SNDLib [16].
For each instance (topology and set of demands), we have generated different capacity
profiles to analyze the impact of the VNF and the link capacity:

- as for the links, two levels of capacity have been generated: low and high. The high
capacity is such that each link can host all the demands, thus leading to uncapaci-
tated link instances. The low capacity is computed as the minimum capacity such
that a feasible routing exists, neglecting the services;

- as for the services, three levels of capacity are considered: low, medium and high.
The high capacity is computed to guarantee that all the demands can be served
by a single VNF (service uncapacitated instances). Low VNF capacity is twice the
total amount of the demands divided by the number of nodes, that is, we need to
install a VNF in at least half of the nodes (for lower values many instances were
not feasible due to network topologies). Medium capacity is the average between
high and low.

In the following, we denote with h, m and l the high, medium and low capacity level
respectively. For example instances marked with l h are the ones where service capacity
assumes the lowest value and the link the highest (therefore uncapacitated with respect
to links). The features of the obtained 144 instances are summarized in Table 5, where
each row refers to a network topology. Columns 3 to 5 report the network features from
SNDLib (number of nodes, number of links and number of demands). Column 6 gives
the sum of the demand amount based on the SNDLib values. Such a value corresponds
to the high capacity value both for links and services. The last 3 columns give the
remaining values of capacity of VNFs and links: the first 2 report the medium and low
capacity values for the VNFs and the last 1 reports the low capacity value for the links.
The first 16 network topologies, from di-yuan to norway, have less than 30 nodes (small-
medium) and are used in the formulations comparison; 6 topologies, from india35 to
germany50, have more than 30 nodes and less than 50 (large) and are used to assess
formulation scalability; for the abilene, atlanta and dfn-bwin topologies instances have
been generated with three types of services to assess the relevance of Property 2.1; the
topologies france, ta2 and zib54 have articulation points (AP), thus they have been used
to assess the impact of adding the articulation point based preprocessing.

Models are implemented with AMPL and instances are solved with IBM ILOG
CPLEX 12.7.1.0 on an Intel Xeon, CPU E5-1620 v2 (4 cores), 3.7 GHz with 32 GB
of RAM. A time limit of 3600s and a tree memory limit of 3000 MB are set, but for solv-
ing the large instances: when assessing the scalability, the time limit has been extended
to two hours.

18

size
Data from SNDLib Capacity

Network |N | |A| |D|

∑

k∈D dk Service Link
(high cap) medium low low

sm
al
l-
m
ed

iu
m

di-yuan 11 42 22 53 31 9 5
pdh 11 34 24 4621 2730 840 384
polska 12 18 66 9943 5800 1657 995
sun 27 51 67 476 255 35 53
dfn-bwin 10 45 90 548388 329032 109677 55916
nobel-us 14 21 91 5420 3097 774 486
nobel-germany 17 26 121 660 368 77 74
abilene 12 15 132 3000002 1750001 500000 829282
atlanta 15 22 210 136726 77478 18230 19404
newyork 16 49 240 1774 997 221 66
france 25 45 300 99830 53908 7986 9413
nobel-eu 28 41 378 1898 1016 135 214
ta1 24 51 396 10127249 5485593 843937 819678
geant 22 36 462 2999992 1636359 272726 359868
janos-us 26 42 650 80000 43076 6153 7624
norway 27 51 702 5348 2872 396 358

la
rg
e

india35 35 80 595 3292 1740 188 121
cost266 37 57 1332 679598 358166 36735 53562
giul39 39 86 1471 7366 3871 377 363
janos-us-ca 39 61 1482 2032274 1068246 104219 180471
pioro40 40 89 780 115953 60875 5797 7609
germany50 50 88 662 2365 1229 94 123

A
P zib54 54 80 1501 12230 6341 484 528

ta2 65 108 1869 31419014 16192876 966738 1311190

Table 5: Instance details

4.1. Results on small-medium instances

Let us first compare the two formulations on the small-medium size instances with
less than 30 nodes. In Figures 8a - 8c (and respectively Figures 8b - 8d), the number
of optimal and integer feasible solutions found by the SP (respectively PR) formulation,
with and without the additional valid inequalities, are reported.

Results show that SP outperforms PR in all the capacity cases, whatever additional
inequalities are applied. Indeed, in the high link capacity cases, SP can solve to optimality
all the instances with any additional inequalities choice, while PR can solve at most 25
out of 48 instances (the best performance is obtained when no additional inequality is
used or both of them are added). In the low link capacity cases, SP can solve more
than 30 instances while PR can solve 12 instances with no additional inequalities, 16
instances using only inequality VI2 and 14 in the other two cases. SP seems to find the
optimal solution almost every time it can find a feasible one: indeed, it is not able to
prove the optimality of the feasible solution found only in very few instances with h l
and m l capacity settings. When SP cannot prove optimality, the gap is still reasonable

19

(a) Number of optimal solutions SP. (b) Number of optimal solutions PR.

(c) Number of feasible solutions SP. (d) Number of feasible solutions PR.

Figure 8: Number of optimal and integer feasible solutions found

(at most around 27% for janos us instance with h l and m l capacities). The number of
instances where a feasible but not optimal solution is found is very small also for PR. It
seems therefore that finding a feasible solution is in a sense as challenging as proving its
optimality.

SP outperforms PR also as far as the computational times are concerned. As the PR
formulation cannot find a feasible solution for several instances of this group (except for
the h h capacity case), we restrict our comparison only to those instances where the PR
formulation is able to find a feasible solution for a capacity case different from h h with
at least one VI setting, namely instances from di-yuan to france (up to 300 demands).

The comparison is shown in Table 6 for the high link capacity cases and Table 7 for the
low link capacity cases. In each table instances are grouped based on the service capacity.
For each instance we report, for both formulations, the computational time needed by
the fastest setting (Best), namely the choice of additional valid inequalities that requires
the minimum computational time to solve the instance, and the computational time
needed by the most time consuming setting (Worst). TL-IS indicates that the approach
is not able to solve the instance to optimality, but it can provide an integer feasible
solution in the given time limit, whereas TL indicates that the approach cannot even
find a feasible solution. To show that the SP formulation outperforms the PR one

20

Best(PR) vs
Capacity Instance Best SP Worst SP Best PR Worst PR Worst(SP)

h h

di-yuan 0.10 0.13 1.59 23.86 11.07
pdh 0.09 0.20 3.11 15.24 14.38
polska 0.20 0.29 13.22 29.34 44.79
sun 0.43 0.85 213.41 TL-IS 251.03
dfn-bwin 0.37 0.56 56.39 58.40 99.64
nobel-us 0.52 0.62 40.24 683.65 63.92
nobel-germany 0.39 0.86 52.92 82.63 60.68
abilene 0.41 0.48 6.53 8.92 12.71
atlanta 0.90 2.37 1167.43 3430.02 490.95
newyork 1.49 4.28 TL-IS TL-IS -
france 1.67 2.42 TL-IS TL-IS -

m h

di-yuan 0.09 0.14 1.95 10.17 13.40
pdh 0.09 0.32 2.60 16.53 7.16
polska 0.19 2.24 9.59 21.81 3.29
sun 0.91 8.88 465.07 TL-IS 51.35
dfn-bwin 0.34 2.19 1360.67 TL-IS 619.06
nobel-us 0.60 2.73 10.69 2354.00 2.92
nobel-germany 0.69 7.29 178.74 TL-IS 23.52
abilene 0.60 1.68 3.74 19.26 1.23
atlanta 1.49 12.01 341.28 TL 27.41
newyork 4.18 20.47 TL-IS TL -
france 2.20 2.81 TL TL -

l h

di-yuan 0.15 0.27 1.25 2.56 3.59
pdh 0.11 0.25 0.74 68.72 1.94
polska 0.23 1.15 0.38 9.10 -2.03
sun 3.18 5.61 28.87 343.29 4.15
dfn-bwin 0.48 1.26 3.39 192.09 1.70
nobel-us 0.52 2.18 1.35 9.02 -0.62
nobel-germany 0.73 5.41 11.95 92.18 1.21
abilene 0.50 2.14 0.82 6.35 -1.59
atlanta 1.33 13.53 6.09 182.98 -1.22
newyork 1.92 27.60 TL TL -
france 6.23 335.67 TL-IS TL -

Table 6: Time comparison between SP and PR formulations for the high link capacity cases. Only best
(and worst) times with respect to the different possible VIs choices are reported. Times are expressed
in seconds. The time limit is set to 3600s.

(regardless of the setting), we report, in the last column, the difference between the
best computational time of PR and the worst computational time of SP normalized by
the smallest computational time (CPUtimeBestPR−CPUtimeWorstSP

min(CPUtimeBestPR,CPUtimeWorstSP)): a ’-’ denotes the

instances in which one or both the formulations cannot be solved to optimality. We
highlight with bold font the cases where even the worst setting of SP outperforms PR.

In the high and medium service capacity case, the worst performance of SP is always

21

Best(PR) vs
Capacity Instance Best SP Worst SP Best PR Worst PR Worst(SP)

h l

di-yuan 0.76 3.65 168.28 1506.64 45.07
pdh 2.79 53.59 296.77 TL-IS 4.54
polska 435.22 TL 353.85 TL-IS -
sun 63.72 574.84 TL TL -
dfn-bwin 2.94 7.85 TL-IS TL -
nobel-us 478.86 3065.77 TL TL -
nobel-germany 9.84 13.28 TL-IS TL -
abilene 2.37 11.23 491.14 3266.12 42.72
atlanta 1065.05 1471.85 TL TL -
newyork TL TL TL TL -
france TL TL TL TL -

m l

di-yuan 0.35 1.28 11.60 TL-IS 8.05
pdh 1.33 9.18 26.89 TL-IS 1.93
polska 98.69 TL 1214.45 TL -
sun 24.11 170.48 TL TL -
dfn-bwin 1.21 11.34 458.44 TL-IS 39.41
nobel-us 116.59 1978.38 TL TL -
nobel-germany 6.73 15.20 TL-IS TL -
abilene 1.81 18.54 161.16 1548.00 7.69
atlanta 663.40 1842.73 TL TL -
newyork TL TL TL TL -
france TL TL TL TL -

l l

di-yuan 0.27 0.61 0.42 3.31 -0.45
pdh 0.38 1.32 3.87 166.79 1.95
polska 193.06 TL 55.09 711.47 -
sun 8.59 103.78 TL TL -
dfn-bwin 0.76 9.95 15.91 1277.22 0.60
nobel-us 8.50 551.17 124.12 1725.29 -3.44
nobel-germany 1.97 26.68 50.85 TL 0.91
abilene 2.12 34.41 2.43 66.62 -13.17
atlanta 11.98 1798.66 769.79 TL -1.34
newyork 1409.36 TL TL TL -
france TL TL TL TL -

Table 7: Time comparison between SP and PR formulations for the low link capacity cases. Only best
(and worst) times with respect to the different possible VIs choices are reported. Times are expressed
in seconds. The time limit is set to 3600s.

better than the best performance of PR. The difference is significant in many instances
with high link capacity. Low link capacity instances seem to be more challenging both for
SP and PR: indeed the increase of the SP computational time passing from the high link
capacity instances to low link capacity instances is larger than the one of PR. However,
the worst SP setting remains always faster than the best PR one, which cannot solve to
optimality a significant number of instances. When it comes to the low service capacity,

22

the PR fastest VI choice improves upon the worst SP one in some instances. However,
the difference is smaller than for the high service capacity cases and SP is always faster
(except for the instance polska with l l capacities) than PR, if the best computational
times are compared. As the SP formulation in general outperforms the PR one regardless
of the VI settings, we present a detailed analysis of the impact of VIs only for SP.

4.1.1. Detailed analysis of the impact of VIs addition for the SP formulation

The impact of adding valid inequalities on the number of optimal and feasible solu-
tions is reported in Figure 8. Results show that the addition of inequalities improves the
number of optimal or feasible solutions found by SP (or leaves them unchanged).

The impact of adding valid inequalities to the SP formulation on the computational
times is summarized in Figure 9, where for each considered VIs choice, the number of
instances where such choice is the fastest is reported, while Tables 8 and 9 report the
details of the computational times for the different VIs choice: the third column (Best
SP) reports the best computational time among the different VIs choices, while the last
4 columns report, for each VIs choice, the difference between its computational time and
the best one normalized w.r.t. the best (calculated as CPUtimei−CPUtimeBest

CPUtimeBest
).

Figure 9: Speed of SP formulation with the different VIs choices reported as number of instances where
each choice is the fastest (for each capacity case).

The addition of valid inequalities almost always reduces the computational time
needed to find the optimal solutions. Indeed, the formulation without additional in-
equalities turns out to be the fastest almost only in instances with both high link and
service capacities (h h case). In general, the impact of VI1 is more evident when the link
capacity is low and the service capacity is high. This is reasonable, because with such
capacity setting the multicommodity nature of the problem emerges and the capacity
of incident links is the one that limits the access to services. Symmetrically, when the
service capacity is low, the VI2 shows its effectiveness more clearly. Adding both valid

23

inequalities seems to produce the best results: it is the fastest option in the majority of
the instances.

4.2. Scalability with respect to the network size and number of demands

We have considered 6 network topologies, from cost266 to pioro40, that have from 35
to 50 nodes and from about 600 to about 1500 demands, to assess the scalability of the
formulations with respect to the network size and number of demands. We increased the
time limit to two hours. Both the additional inequalities have been added.

PR is not even able to provide an integer feasible solution for any of the considered
instances, no matter the capacity settings. For some capacity settings, namely h l and
m l, also SP is not able to provide any feasible solution within the time limit. In Table 10,
the computational times of SP for the 6 considered instances are reported, for the capacity
settings h h, m h, l h, l l. SP can solve all of them but one instance with m h setting, for
which a feasible solution is found (TL-IS), and two with l l, for which not even a feasible
solution can be found (TL).

Increasing the network size and the number of demands increases the computational
times, but SP proves to degrade significantly less than PR. As observed for the small-
medium size instances, high link capacity instances are easier than low link capacity ones.
The computational times of SP for the high link capacity cases are acceptable, spreading
from around 40 seconds up to about 24 minutes, with the only exception of two instances
within the m h capacity case: giul39, (where optimality cannot be proved) and janos-
us-ca (where the computational time is a bit larger than one hour). When services and
links have both low capacity, finding an optimal solution almost always requires around
50-55 minutes (germany50 is solved in less than 5 minutes).

In general, when SP can find a feasible integer solution it can also prove its optimality
(a similar behavior has been observed for the small-medium size instances). In the m h
giul39 instance, the only one where a feasible, but not optimal, solution is provided, the
gap from the best bound is significant.

4.3. Impact of Property 2.1 and scalability with respect to the number of services

In order to assess the impact of Property 2.1 we have generated, for three topologies,
abilene, atlanta and dfn-bwin, instances with three types of VNF service instead of one.
Table 11 reports a comparison of the computational time for the two cases (one VNF
type and three VNF types). For each instance, the variation of the computational time
(in percentage) due to the increase of the number of services is reported. It is computed
as CPUtime3−CPUtime1

CPUtime1
, where CPUtimeκ is the computational time with κ services (a

negative increase represents a reduction of the computational time when tackling the
three service types case).

For the PR formulation passing from one service to three services seems to be always
more challenging than for the SP formulation from a computational point of view. We
denote with TL the cases where the PR formulation cannot find any solution for the
three case services, a star denotes the cases where even in the one case service only a
feasible solution can be found. On one instance (dfn-bwin with capacities m l) passing

24

Capacity Instance Best SP noVI VI1 VI2 VI1+2

h h

di-yuan 0.10 0.00 0.11 0.26 0.03
pdh 0.09 0.00 0.55 1.35 0.51
polska 0.20 0.09 0.01 0.44 0.00
sun 0.43 0.00 0.23 0.99 0.98
dfn-bwin 0.37 0.00 0.05 0.44 0.50
nobel-us 0.52 0.06 0.00 0.12 0.20
nobel-germany 0.39 0.00 0.21 1.21 1.09
abilene 0.41 0.09 0.17 0.13 0.00
atlanta 0.90 0.00 0.19 1.59 1.63
newyork 1.49 0.00 0.03 1.84 1.87
france 1.67 0.00 0.09 0.35 0.45
nobel-eu 3.31 0.00 0.07 2.57 2.70
ta1 3.64 0.01 0.00 0.28 0.29
geant 2.31 0.00 0.16 1.13 1.24
janos-us 13.65 0.00 0.00 0.72 0.82
norway 9.75 0.00 0.01 3.70 4.03

m h

di-yuan 0.09 0.14 0.38 0.54 0.00
pdh 0.09 0.20 2.46 0.32 0.00
polska 0.19 11.08 3.72 0.15 0.00
sun 0.91 8.74 2.07 0.07 0.00
dfn-bwin 0.34 5.54 0.65 1.40 0.00
nobel-us 0.60 3.53 2.33 0.00 0.24
nobel-germany 0.69 9.61 3.84 1.69 0.00
abilene 0.60 1.79 0.48 0.15 0.00
atlanta 1.49 7.05 1.17 0.22 0.00
newyork 4.18 3.90 2.40 0.16 0.00
france 2.20 0.28 0.00 0.06 0.11
nobel-eu 7.46 77.51 7.87 0.00 0.37
ta1 3.68 101.86 13.48 0.09 0.00
geant 8.73 47.80 9.91 0.01 0.00
janos-us 41.94 18.46 8.85 0.00 0.07
norway 89.26 36.52 3.06 7.66 0.00

l h

di-yuan 0.15 0.78 0.00 0.10 0.09
pdh 0.11 1.30 0.60 0.02 0.00
polska 0.23 4.07 3.93 0.16 0.00
sun 3.18 0.37 0.77 0.00 0.33
dfn-bwin 0.48 1.64 0.98 0.37 0.00
nobel-us 0.52 3.18 1.77 0.39 0.00
nobel-germany 0.73 6.41 0.87 0.93 0.00
abilene 0.50 3.26 2.49 0.00 0.54
atlanta 1.33 9.21 4.58 0.90 0.00
newyork 1.92 13.39 4.47 0.33 0.00
france 6.23 52.86 12.80 3.60 0.00
nobel-eu 8.17 17.57 4.07 0.27 0.00
ta1 6.44 51.31 6.66 0.47 0.00
geant 5.10 36.28 10.27 1.15 0.00
janos-us 18.93 16.58 10.81 0.03 0.00
norway 23.42 20.99 14.88 0.00 0.16

Table 8: Variation of computational time with respect to best VIs choice - part 1 - high link capacity

25

Capacity Instance Best SP noVI VI1 VI2 VI1+2

h l

di-yuan 0.76 3.78 0.00 2.97 1.05
pdh 2.79 18.19 1.61 2.42 0.00
polska 435.22 TL 2.85 3.3 0.00
sun 63.72 8.02 1.34 0.00 1.6
dfn-bwin 2.94 1.67 0.67 0.33 0.00
nobel-us 478.86 0.36 5.4 0.17 0.00
nobel-germany 9.84 0.00 0.35 0.25 0.18
abilene 2.37 0.24 0.01 3.75 0.00
atlanta 1065.05 0.27 0.38 0.00 0.19
newyork TL TL TL TL TL
france TL TL TL TL TL
nobel-eu 432.83 2.21 1.9 0.00 1.87
ta1 187.86 0.85 2.48 0.00 2.33
geant 142.74 13.45 0.00 2.27 13.48
janos-us 2440.33 TL TL 0.00 TL
norway TL TL TL TL TL

m l

di-yuan 0.35 2.64 1.74 0.00 0.16
pdh 1.33 5.92 0.00 0.34 1.79
polska 98.69 0.00 32.16 TL 2.73
sun 24.11 2.04 0.00 3.16 6.07
dfn-bwin 1.21 8.34 0.7 0.00 0.2
nobel-us 116.59 4.67 15.97 0.00 4.74
nobel-germany 6.73 0.52 1.26 0.00 0.39
abilene 1.81 2.95 9.25 0.83 0.00
atlanta 663.4 1.05 1.51 1.78 0.00
newyork TL TL TL TL TL
france TL TL TL TL TL
nobel-eu 322.68 6.58 0.00 0.91 1.51
ta1 8.58 358.34 4.76 0.55 0.00
geant 161.785 TL 2.63 0.00 16.54
janos-us 3600 TL TL TL TL
norway 3600 TL TL TL TL

l l

di-yuan 0.27 1.13 0.51 0.00 1.23
pdh 0.38 2.45 0.17 0.00 0.38
polska 193.057 TL TL 0.00 0.65
sun 8.59 11.09 1.01 0.1 0.00
dfn-bwin 0.76 12.09 1.54 0.29 0.00
nobel-us 8.5 58.52 63.82 0.00 0.17
nobel-germany 1.97 12.53 8.11 0.00 1.6
abilene 2.12 10.3 15.21 0.25 0.00
atlanta 11.98 5.27 149.14 6.09 0.00
newyork 1409.36 TL TL TL 0.00
france TL TL TL TL TL
nobel-eu 27.21 51.01 48.7 0.59 0.00
ta1 12.13 110.14 68.34 0.14 0.00
geant 29 40.87 85.27 0.00 0.15
janos-us 81.5332 TL TL 0.00 0.12
norway 251.317 TL TL 0.00 0.53

Table 9: Variation of computational time with respect to best VIs choice - part 2 - low link capacity

26

Instance h h m h l h l l
cost266 501.82 333.79 182.8 TL
germany50 151.97 694.57 70.39 265.93
giul39 975.67 TL-IS 415.86 2989.96
india35 119.65 65.14 39.62 3286.9
janos-us-ca 885.48 3718.73 610.05 TL
pioro40 302.33 1434.99 83.22 2950.12

Table 10: Computational times of SP formulation for large size instances (TL-IS means that the time
limit has been reached and a feasible solution is found, while TL means that not even a feasible solution
has been found within the time limit). PR cannot provide any feasible solution. The time limit is set to
7200s.

from one service to three services lead to the loss the optimality (TL-IS). Instances where
even with one service no feasible solution can be found are denoted with a ”-”.

Results show that the property is far from irrelevant, as it allows us, in general, to
dramatically reduce the computational time. Although for a few instances the compu-
tational times of SP formulation may reduce, in general, if the property is neglected the
computational times increase up to two orders of magnitude as far as SP is concerned,
and up to 5 orders of magnitude as far as PR is concerned. Further, if the property is
not applied, the number of instances that PR can solve reduces significantly: 7 out of
15 instances (almost half of them) that PR can solve to optimality with one service type
cannot be solved with three service types (TL and TL-IS) and for all but one no feasible
solution can be found with three service types. For further three instances, PR cannot
find a feasible solution when the number of service types increases.

It is worth noting that, even if the property is neglected, SP degrades significantly
less for the increase of the number of services, although in the SP formulation the number
of variables depends on the number of service types in each chain.

Formulation Instance h h h l m h m l l h l l

SP
abilene 82 138 80 415 38 -52
atlanta 136 147 337 -17 56 -89
dfn-bwin 226 -1 174 91 68 94

PR
abilene 7027 TL 6800 TL 12159 145558
atlanta TL - TL* - TL TL
dfn-bwin 39 TL* TL-IS - 4455 TL

Table 11: Time increase (in percentage) due to the increase of the number of VNF types (from 1 to 3)
for different capacity cases (in bold the cases where the overall computational time increases). TL-IS
denotes the instances where the PR formulation can find only a feasible solution for the three cases
services, TL denotes the instances where the PR formulation cannot find any feasible solution with the
three cases services.

4.4. Articulation point based preprocessing

We tested the articulation point preprocessing on three network topologies of SNDLib
which contain at least one articulation point: france, ta2 and zib54. In Table 12, the

27

computational time for the SP formulation with VI1+2 and the computational time
variation (in percentage) that is obtained adding the preprocessing (taking into account
also the time needed for the preprocessing) are reported for the capacity cases where an
optimal solution can be found for all the three instances (results are not reported for
the PR, as it fails in solving almost all the instances). We highlighted in bold the cases
where adding the preprocessing procedure reduces the overall computational time.

The preprocessing is quite fast (few seconds) and its addition reduces almost always
the computational time: thanks to the preprocessing SP solves to optimality, despite
their big size, instances for which no feasible solution can be found without preprocessing
(zib54 for the l l capacity case). Nevertheless, in some capacity cases (all the h l and m l
cases) no feasible solution can be found even using the preprocessing.

The preprocessing is not enough to allow PR to find a solution in most of the cases
(the only exception being the france network, where the solution can be certified for the
uncapacitated case).

To conclude, as it needs negligible computational time and is beneficial for some
instances, although not for all, we believe that the articulation point based preprocessing
is worth performing.

Instance h h m h l h
time (s) time red. time (s) time red. time (s) time red.

france 1.67 -32.0 2.20 -26.0 6.23 153.0
ta2 261.31 -73.0 1095.84 -93.0 716.57 -6.0
zib54 136.78 -37.0 543.45 -84.0 306.45 -36.0

Table 12: For each instance and capacity case, the solution time (in seconds) of the SP formulation
with VI1+2 and the time reduction (in percentage) obtained by using articulation point preprocessing
are reported. The cases where the preprocessing allows us to obtain a time reduction of the overall
optimization procedure (taking into account also the preprocessing time) are highlighted in bold.

5. Conclusions

Despite the large number of recent papers devoted to the Virtual Network Functions
chaining problem, it is difficult to find a comparison among the proposed approaches, as
many different versions of the problem have been considered and the proposed approaches
are tailored to them. Therefore, our goal was to analyze the most promising formulation
strategies on a common test bed. In order to do so, we worked on a version of the problem
where each demand asks for the same service and must be routed on a simple path. We
studied some problem properties and compare both theoretically and computationally
two formulations: the first formulation (SP) is based on splitting each demand path into
two subpaths, one connecting the source with the service, the second one connecting the
service with the destination. The second one (PR) uses arc flow variables and forbids
cycles exploiting node labels.

As for the problem properties, we proved that:

- the single service case is equivalent to the multiple services one, when the services
have the same capacity and the sequence of services is the same for all the demands;

28

- an instance of the service must be installed on the articulation points that belong
to biconnected components with internal demands.

As for the comparison between the two formulations, we proved that the continu-
ous relaxation of SP always provides a bound not worse than the one of PR, which is
confirmed by the computational results. SP outperforms PR as far as the scalability
is concerned, as well, as it can solve instances with up to about 60 nodes and 1800 de-
mands, if the link capacity is high. Instead, PR degrades significantly with the increasing
instance size: it cannot deal with instances with about 30 nodes and 700 demands. Both
the theoretical properties turn out to be effective also from the computational point of
view, as they help in speeding up the computational time.

We are currently extending the formulations to address more general versions of the
problem: the multi-service and multi-sequence case and the capacitated node one.

Furthermore, as computational results have shown that, in general, SP either is able
to find an optimal solution or it is not even able to provide a feasible solution, the
problem of finding a feasible solution is worth investigating. Therefore, we are currently
developing ILP based heuristics that should benefit from the choice of SP formulation,
which proved to be the more effective.

References

[1] B. Addis, D. Belabed, M. Bouet, and S. Secci, Virtual network functions placement and routing
optimization, 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), Oct 2015,
pp. 171–177.

[2] B. Addis, G. Carello, and M. Gao, On the complexity of a virtual network function placement and
routing problem, ENDM - Alio Euro 2018 special issue, 2018.

[3] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin, Virtual function placement for
service chaining with partial orders and anti-affinity rules, Networks 71 (2018), 97–106.

[4] M.F. Bari, S.R. Chowdhury, R. Ahmed, and R. Boutaba, On orchestrating virtual network func-
tions, 2015 11th International Conference on Network and Service Management (CNSM), Nov 2015,
pp. 50–56.

[5] M. Bouet, J. Leguay, and V. Conan, Cost-based placement of vDPI functions in NFV infrastruc-
tures, Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), April
2015, pp. 1–9.

[6] I. Contreras and E. Fernández, General network design: A unified view of combined location and
network design problems, Eur. J. Oper. Res. 219 (2012), 680 – 697.

[7] M. Gao, Models and Methods for Network Function Virtualization (NFV) Architectures, PhD
thesis, Université de Lorraine, 2019.

[8] M. Gao, B. Addis, M. Bouet, and S. Secci, Optimal orchestration of virtual network functions,
Comput. Networks 142 (2018), 108 – 127.

[9] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker, S. Beker, and D. Soldani, A
novel approach to virtual networks embedding for SDN management and orchestration, 2014 IEEE
Network Operations and Management Symposium (NOMS), May 2014, pp. 1–7.

[10] J. Hopcroft and R. Tarjan, Algorithm 447: Efficient algorithms for graph manipulation, Commun.
ACM 16 (June 1973), 372–378.

[11] J. Hwang, K.K. Ramakrishnan, and T. Wood, NetVM: High performance and flexible networking
using virtualization on commodity platforms, IEEE Trans. Network Service Manage. 12 (March
2015), 34–47.

[12] M.C. Luizelli, L.R. Bays, L.S. Buriol, M.P. Barcellos, and L.P. Gaspary, Piecing together the NFV
provisioning puzzle: Efficient placement and chaining of virtual network functions, 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), May 2015, pp. 98–106.

[13] M.C. Luizelli, W.L. da Costa Cordeiro, L.S. Buriol, and L.P. Gaspary, A fix-and-optimize approach
for efficient and large scale virtual network function placement and chaining, Comput. Commun.
102 (2017), 67 – 77.

29

[14] T. Lukovszki and S. Schmid, Online admission control and embedding of service chains, Post-
Proceedings of the 22nd International Colloquium on Structural Information and Communication
Complexity - Volume 9439, Springer-Verlag, New York, NY, USA, 2015, SIROCCO 2015 pp. 104–
118.

[15] R. Mijumbi, J. Serrat, J.L. Gorricho, N. Bouten, F.D. Turck, and S. Davy, Design and evaluation
of algorithms for mapping and scheduling of virtual network functions, Proceedings of the 2015 1st
IEEE Conference on Network Softwarization (NetSoft), April 2015, pp. 1–9.

[16] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, SNDlib 1.0 – Survivable Network Design
library, Networks 55 (May 2010), 276–286.

[17] N.W. Paper, Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges
Call for Action. http://portal.etsi.org/NFV/NFV White Paper.pdf, Oct. 2012.

[18] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento, Cloud4NFV: A platform for virtual
network functions, 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), Oct
2014, pp. 288–293.

Appendix A. Additional proofs and properties

In what follows, we report the full proofs that we sketched in Section 3.1. This
material is intended as a complement to the paper and not as stand-alone, therefore we
refer to the notation, equations and properties presented before. Nevertheless, for the
sake of clarity, we repeat some definitions and explanations.

Let us considered an instance of the VNF-PRSP problem. For any demand k, the
flow in a feasible continuous solution can be divided into flow on simple paths and flow
on cycles. Let us denote with Pk the set of simple paths and with Ck the set of cycles.
We can distinguish between two type of cycles (see Figure A.10): cycles sharing some
nodes with a simple path (Figure A.10a) and isolated cycles (Figure A.10b).

(a) Cycle sharing nodes with a simple path (b) Isolated cycle

Figure A.10: Examples of cycle sharing nodes and of isolated cycle

As we already observed (see Remark 3.1), the SP formulation forbids demands to be
served, even partially, by a VNF instance installed on an isolated cycle11. For example,
let us consider an isolated cycle of two nodes A and B such that the demand is partially
served by a node A (zkA = α, α < 1). Summing up flow balancing constraints (7) leads
to an inconsistency 0 = −α (analogously for subpath 2).
As a consequence, only three cases occur, as detailed in the following remark.

11Instead PR accepts solutions with an isolated cycle and a partial service installed on it, but routing

variable values (on the cycle) cannot be greater than
|N|

m+|N|
(where m is the length of the cycle) due to

the isolated loop elimination constraints (13).

30

Remark A1. Consider a feasible solution of the continuous relaxation of SP (x1, x2, y, z),
a demand k and a cycle c induced by such solution. Let us denote with Nc the set of
nodes of the cycle c that are not shared with any simple path: Nc = {i ∈ C \Pk} where C
denotes the set of the nodes belonging to cycle c. Due to flow balance constraints (7)-(8),
we have only three possible cases for all nodes belonging to Nc:

1. if a (partial) service instance is located on any node belonging to Nc, the cycle is
induced by variables of both semi-paths, and xk1

i = xk2
i

2. if no service is located on any node belonging to Nc, then

2.1) the cycle is induced by only one type of semi-path variables

2.2) the cycle can be decomposed into two super-imposed cycles, each of them
generated by only one type of semi-path variables.

Thus we can observe that:

Property A1. (it corresponds to Remark 3.2).
Let us consider a feasible solution (x1, x2, y, z), a demand k and the path-cycle decom-
position {Pk, Ck} of its routing. Let us suppose that a cycle c ∈ Ck exists that shares at
least one node with a simple path p ∈ Pk.
If a (partial) service is located on a node belonging to a cycle c ∈ Ck, but not to the
path ({i ∈ c \ Pk}), the routing variables inducing the path and the cycle are fractional
and their value is less than or equal to 1

2 .

The proof follows directly from constraints (7)-(8) and (9)-(10).

Property A2. Any solution such that no service instance is installed on a node belonging
to a cycle but not to a simple path can be transformed into an equivalent solution (in
term of cost, location and assignment) removing the cycles without service instances
installed and the corresponding flow from the routing.

The proof follows from flow balancing constraints as in classical flow problems.

Theorem A1. Any solution of the continuous relaxation of SP such that no service in-
stance is installed on a node belonging to a cycle but not to a simple path can be
mapped into an equivalent solution of PR in terms of routing, location and assignment
and therefore cost.

Proof. Opening variables yi and assignment variables zki , the objective function and
constraints (2), (3) and (4) are common to both formulations. SP routing variables can
be easily mapped into PR ones as follows:

xk
ij = xk1

ij + xk2
ij (A.1)

Thanks to constraints (9) and (10) the mapping guarantees also that xk
ij ∈ [0, 1]. Fur-

ther, link capacity constraints of SP (5) imply the link capacity constraint of PR (6).
Routing constraints of the SP formulation imply the routing constraints for the PR for-
mulation. In fact, by summing equations (7)-(8) and using the mapping (A.1), we obtain
constraints (11).

31

Now we show that SP routing constraints for the semi-path (7) imply routing-location
connecting constraints of PR (12).
Let us consider the case i ∈ N, i 6= ok:

∑

j:(i,j)∈A

xk1
ij −

∑

j:(j,i)∈A

xk1
ji = −zki

reordering terms, we obtain:

∑

j:(i,j)∈A

xk1
ij + zki =

∑

j:(j,i)∈A

xk1
ji

As
∑

j:(i,j)∈A xk1
ij ≥ 0, we can derive:

zki ≤
∑

j:(j,i)∈A

xk1
ji

Adding
∑

j:(i,j)∈A xk2
ij at the right side, as this term is always not negative, the inequality

still holds:
zki ≤

∑

j:(j,i)∈A

(xk1
ji + xk2

ij)

Then, using the routing variables mapping (A.1), we verify constraint (12):

zki ≤
∑

j:(j,i)∈A

xk
ji.

Finally, suitable values for π variables must be derived. Let us consider a demand k
and its routing. We can build an induced graph as follows:

Gk(Nk, Ak)

where (i, j) ∈ Ak if xk1
ij +xk2

ij > 0 and ∃p ∈ Pk : (i, j) ∈ p, i.e., the arc belongs to at least
a simple path. A node ı̂ belongs to Nk if there exists an arc ((̂ı, j) or (j, ı̂)) in Ak. For
any arc (i, j) ∈ Gk we define the following cost cij = xk1

ij + xk2
ij = xk

ij .

As Gk does not contain arcs that belong only to cycles in Ck, the obtained graph is
acyclic, thus we can define πk

j as the longest path from node ok to node j:

• πk
ok

= 0

• πk
j = maxi:(i,̂)∈Ak{πk

i + xk
ij}

Such values obviously satisfy constraints (13) for the nodes belonging to the path.
The nodes that belong to a cycle and to a simple path (nodes from ℓ to m in Fig-

ure A.11) have already been assigned a suitable value π. We now need to determine a
value of π for the nodes on the cycle NC that have been removed.

32

ℓ

i

m

Figure A.11: An example of a cycle sharing some nodes with a simple path

Let us consider the two nodes ℓ and m, corresponding to the smallest (πk
ℓ) and largest

(πk
m) value of variables π on the cycle NC , respectively. For all the nodes i ∈ Nc, we

impose:

πk
i =

πk
m + πk

ℓ

2

Now, we prove that such a value of π always satisfy constraints (13).
We can observe that xij ≤ 1 in any feasible solution, therefore the values of π are bounded
by |N | − 1. As for the arcs in A \Ak, we have two cases.

1. Arcs belonging to the cycle but not a path.
Due to Property A1, we can infer that for any arc belonging to the cycle but not
the path, we have xk

ij ≤
1
2 . Therefore, the term:

xk
ij − |N | (1− xk

ij)

is always non positive as |N | ≥ 2. Therefore for any two nodes in the cycle, as they
have the same value of π, the constraint is valid.

2. Arcs belonging to the cycle and incident both in the path and the cycle, i.e., with
one extreme in ℓ or m.
Let consider the arc of the cycle entering node ℓ: (i, ℓ) (see Figure 2), we need to
prove that:

πk
ℓ ≥ πk

i + xk
iℓ − |N |(1− xk

iℓ), (A.2)

Let us denote with n the number of arcs in the path between node ℓ and node m
(n ≤ |N | − 1), and with β ≤ 1 the value of the associated routing variable on the
path, then we have:

πk
m = πk

ℓ + βn

and we obtain:

πk
i =

πk
m + πk

ℓ

2
= πk

ℓ +
βn

2
≤ πk

ℓ +
(|N | − 1)

2

Thus, denoting with γ the right-hand side of equation (A.2), we get:

γ ≤ πk
ℓ +

(|N | − 1)

2
+ xk

iℓ − |N |(1− xk
iℓ)

33

and, rearranging the terms:

γ ≤ πk
ℓ +

(

xk
iℓ −

1

2

)

(|N |+ 1)

and using xk
iℓ ≤

1
2 (see Property A1):

πk
ℓ ≥ γ

A similar argument can be used to prove that the constraint is valid for the link
belonging to the cycle and exiting the other extreme node m.

�

Appendix B. Extending the SP formulation for the multiple services case

If we want to consider multiple services and that each demand can ask for a differ-
ent number of services (among the available ones), we need to introduce the following
notation:

• F : set of VNFs types

• nk: number of services asked by demand k

• V NF k
f : indicator parameters, equal to 1 if demand k asks for service of type f

Furthermore, if the chain order is given, we need to define:

• fk(s) : {1, ..., nk} → F : integer indicator map, type of service at position s for
demand k, 0 if the service is not requested

Decision variables must be extended accordingly:

• yif ∈ {0, 1} if service type f ∈ F is located on node i ∈ N

• zkif ∈ {0, 1} if demand k ∈ D uses service type f ∈ F on node i ∈ N

• xks
ij ∈ {0, 1} if arc (i, j) ∈ A is used by demand k ∈ D, subpath s ∈ {1, ..., nk + 1}

34

The resulting SP extended formulation is:

min
∑

i∈N

∑

f∈F

yif

∑

i∈N

zkif = 1 ∀k ∈ D, f ∈ F : V NF k
f = 1

zkif ≤ yif ∀k ∈ D, i ∈ N, f ∈ F
∑

k∈D

∑

s∈1...nk+1

dk xks
ij ≤ u ∀(i, j) ∈ A

∑

k∈D:V NFk
f
=1

dk zkif ≤ qf ∀i ∈ N, f ∈ F

∑

j:(i,j)∈A

xk,s
ij −

∑

j:(j,i)∈A

xk,s
ji = zki,fk(s−1) − zki,fk(s) ∀k ∈ D, i ∈ N, s ∈ 2..nk

∑

j:(i,j)∈A

xk,1
ij −

∑

j:(j,i)∈A

xk,1
ji =

{

1− zk
i,fk(1) if i = ok

−zk
i,fk(1) otherwise

∀k ∈ D, i ∈ N

∑

j:(i,j)∈A

xk,nk+1
ij −

∑

j:(j,i)∈A

xk,nk+1
ji =

{

zk
i,fk(nk)

− 1 if i = tk

zk
i,fk(nk)

otherwise
∀k ∈ D, i ∈ N

∑

s∈1...nk+1

∑

l:(j,i)∈A

xks
ji ≤ 1 ∀k ∈ D, i ∈ N

∑

s∈1...nk+1

∑

j:(i,j)∈A

xks
ij ≤ 1 ∀k ∈ D, i ∈ N

To extend the formulation for the case with unordered services, it is necessary to
decouple the subpaths description and the services assignment to nodes (originally both
represented by variable z). We keep variables z to represent the location of services,
while a new variable w will be used to describe the flow balance for subpaths:

- wks
i ∈ {0, 1} if demand k ∈ D uses the s-th service on node i ∈ N

With respect to already presented constraints, only the flow balancing constraints are
affected by this change:

∑

j:(i,j)∈A

xk,s
ij −

∑

j:(j,i)∈A

xk,s
ji = wk,s−1

i − wk,s
i ∀k ∈ D, i ∈ N, s ∈ 2..nk

∑

j:(i,j)∈A

xk,1
ij −

∑

j:(j,i)∈A

xk,1
ji =

{

1− wk1
i if i = ok

−wk1
i otherwise

∀k ∈ D, i ∈ N

∑

j:(i,j)∈A

xk,nk+1
ij −

∑

j:(j,i)∈A

xk,nk+1
ji =

{

wk,nk

i − 1 if i = tk

wk,nk

i otherwise
∀k ∈ D, i ∈ N

Additional consistency constraints must be added to link z and w variables:
∑

f∈F :V NFk
f
=1

zkif =
∑

s∈1...nk+1

wk,s
i ∀k ∈ D, i ∈ N

35

	Introduction
	Modeling paradigms: Virtual Network Embedding vs Placement and Routing
	A short literature review
	Some remarks on the current state of the art
	Paper contribution

	Problem description and properties
	General remarks
	Impact of biconnected components and articulation points

	Mathematical formulation
	Relation between the two formulations
	Impact of the biconnected components

	Enriching the formulation

	Computational Results
	Results on small-medium instances
	Detailed analysis of the impact of VIs addition for the SP formulation

	Scalability with respect to the network size and number of demands
	Impact of Property 2.1 and scalability with respect to the number of services
	Articulation point based preprocessing

	Conclusions
	Additional proofs and properties
	Extending the SP formulation for the multiple services case

